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Asymptotic expansions of the
non-holomorphic Eisenstein series
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Abstract

In this report we describe one asymptotic expansion of the non-holomorphic
Eisenstein series using Airy functions. We might expect that the property
of the Eisenstein series on the complex parameter is simple because of the
”good behavior” of its constant terms. But the fact is that it is not so, and
this makes our study interesting. We will find an analogy between Eisenstein
series and the square of the Riemann zeta-function in the point of view of
the asymptotic expansion.

1 Eisenstein series

Let k > 0 be an even integer and H be the upper half plane. The non-holomorphic
Eisenstein series for SL(Z) is defined by

Ei(z,5) =y‘{),:d}(cz+d)“"|cz+d|‘2". ¢))

Here z=x++/—1y € H, s € C and the summation is taken over (}}), a complete
system of representation of { (& 1) € SLy(Z) } \SL>(Z). The right-hand side of (1)
converges absolutely and locally uniformly on {(z,s)| z € H,%R(s) > 1 — £}, and
E;(z,s) has a meromorphic continuation to the whole s-plane.

In this report we consider the Eisenstein series E(z,s) = Eo(z,s). Leti= /-1,
s = 0 +it € C and {(s) be the Riemann zeta-function. For R(s) > 1, {(25)E(z,s)
is expressed by . .
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The Fourier expansion is as follows;

L25)E(s) = L2s)y + V(25— 1)erDyi-s

4y Tt K, (2 2 @
+ F(;;\/ingln o1-2s(n)K,_ ! (2@wny) cos(27nx),
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Gs(l) = Z dsa
d|l,d>0

and Ky (1) (v, T € C) is the modified Bessel function defined by the integral

8

Kv(t) = fu’lexp(—3t(u+1)) du.

N —
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It is well-known that the Fourier expansion (2) gives the holomorphic continuation
of §(2s)E(z,s) to the whole s-plane except for the simple pole at s = 1, and gives
the functional equation

7T(s)¢ (25)E(z,8) = n~1HT(1 — 5)§(2 — 25)E(z,1 —5).

2 Asymptotic expansion

Based on Olver’s works [4]-[7], Balogh ([1], [2]) gave one uniform asymptotic
expansion of K;; (¢ € R) for large values ¢ using Airy functions. The Airy function
is defined by

Ai(€) = %gcos (36 +&u) du= \/lgné%K% (%5%).

The uniform asymptotic expansion due to Balogh is as follows;

Kt = Y2 g (-20) (227 {0 (1+ £ 2a00)

; 1 (3)
+f—3Ai'(§)k§01—2kBk(P)+£2m+1 )

wheret € R, 7 € C, and r, p, £ are parameters such that
1
r=1/t, %p% = (r?—1)7 —arcsecr, £ =1ip.

The coefficients are defined in [4] and [5] by

2%
Ar(p) = 1)—:'0 (—1)bip~ U

. 2U+1 Y
pP2By(p) = 1)_:0 (—1Daip~ 2 Upg—141-

Here aq;, b; are real coefficients and Uy is a polynomial in 7:%_—1 The error term
€m+1 is defined in [6] and [7].

The asymptotic expansion (3) is useful near the transition point ¢ = 7. Expan-
sions for the cases T/t £ lor T —t = o(‘tl}f) are already obtained by using saddle
point method. (See [8].)
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In the following we assume o = -21~ Applying asymptotic expansions of the
Bessel function to the Eisenstein series, we have the following theorem.

Theorem 1 For any positive constant € > 0, we have
$(1+2it)E(z,1 +it)
1

— 4git \/y_:)::_l.ln_it Gir(n) {1* - (27:ny)2}-21‘ cos(27nx) {\/i sin(f(t,n)) +O (%) }

, Ny , -1
HEHLG 3 () {1 - (2mny)?} ¥ 8% cos(2mm)
n=iy

{4 (1+1-1(0) ~ §h-3B0p)) +expl-3eD 1 +1EDH0 (1) }

X 1+0(%)}+0(t‘).

Here

@
welf

_ t N\ _y2_ 23, 1
f(t,n)—tarccosh( 27l:ny) {t* — (27ny)*}* + yid

1 t
M= f——
! [1 +46 27ry] ’
for some positive constant 8 > 0 and

In (4), we are able to describe error terms more precisely. In that sense we call (4)
the asymptotic expansion of the Eisenstein series.

3 Remark

Let D < 0 be the discriminant of an imaginary quadratic field X and {x(s) be
the Dedekind zeta-function of K. Let h(D) be the ideal class number of K and
J1,f25°++  fu(p) be the equivalence classes of binary qudratic forms of discrimi-
nant D. Then we have

h(D) :
. C@Bf)rs) =2 WDk ).

Here z(f) = (—b+ v/D)/2a € H is the associated root of the quadratic form
f(X,Y) = aX? + bXY +cY?, and w is the number of roots of unity in K. (Cf.
[9], [10, Sect.8, Sect.11].) It is also well known that {x(s) = {(s)L(s) for the
L-function with Kronecker’s symbol. This shows that Theorem 1 is one approach
to the study of the product of classical zeta-functions. Especially we will find
an analogy between Theorem 1 and formulas of Voronoi-Atkinson type for {2(s)
proved by Jutila [3].
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