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1 Introduction

If o is an algebraic number, we denote by |a| the maximum of the absolute
values of the conjugates of a and by den(a) the least positive integer such
that den(a)a is an algebraic integer, and we set [|a|| = max{fo],den(e)}.
Then for nonzero algebraic a, we have the fundamental inequalities

la] > [|af 2R and [|o|| < [|af Y

(cf. Lemma 2.10.2 in [12]).
Let K be an algebraic number field, Ok be the ring of integers in K. Let
r and L be integers such that » > 2 and L > 1. We consider the function:

o) - oo Ek(z.r")
@0( ) kzzo Fk(x,.k),

where
Ep(z) = apz + aper® + ... + arrzt € K|z],
Fi(z) = 1+ bz + boz® + ... + bioz” € Oklz],
10g ||arell, log|lbre]| = o(r*), 1<€<L.

The aim of this paper is to study the arithmetical nature of ®y(a) when
a€ K,0< |a| <1, and Fi(a™) # 0 for every k > 0.
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It should be noticed that in some cases ®¢(z) can be explicitely computed
as a rational function. Specific examples are, with r—=2

oo 2k
T . xTr
kz:ol——:z:z"’”l T 1—1’
o okp2* T
§01+$2" T 1-g
i (—2)kz2* z
2 g2 1 2441

k=0

The first equality is due to Lucas [9]. The latter two equalities are proved
in Duverney [4] but are evidently older. In the case where r=3, we have for
example

x k3 (1 — £23) oz

Pt e - h B
This equality is proved in Duverney and Shiokawa [7]. Clearly for these
examples, ®g(a) € K if a € K.

Our main result will be the

Transcendence Criterion. ®y(a) is algebraic if and only if ®o(z) €
K(z).

The proof of Transcendence Criterion relies on Mahler’s transcendence
method, more precisely on the following result, which is a special case of a
theorem of Loxton and van der Poorten (8] (cf. Theorem 2.9.1 in [12]).

Theorem 1. Let K be an algebraic number field, 7 > 2 be an integer,
{®..(z) }n>0 be a sequence in the ring of formal power series K{[z]| and o € K
with 0 < |a| < 1. If the following three properties are satisfied, then ®q(a)
is transcendental.

(I) @a(a™) = an®o(a) + b,
where an, b, € K, and log ||a,||,log ||b.|| = O(T™).

(I) If ®,(z) = X2, O‘E")x‘, then for any € > 0 there is a positive integer ng
such that
loglof”|| < er™(1+8)

41



for any n > ng and £ > 0.

(IIT) Let {s¢}e>0 be variables and

F(z;8) = F(z; {se}0) = 3822,

=0

in such a way that
F(z;0®) = F(z;{0;"}120) = ®a(2)-

Then for any polynomials Py(z, 8), ..., Pa(z,3) € K[z, {s¢}e0] and
d
E(z,s) =Y Pi(z,s)F(z;s),
=0

there is a positive integer I with the following property: if n is sufficiently
large and Py(z, ™), ..., Py(z,c™) are not all zero, then ord E(z,o™) < I,
where ord denotes the zero order at 0.

However, applying Theorem 1 to ®o(z) will not be an easy task, because
of condition (III). Thus the second section will be devoted to the proof of
Theorem 2, in which condition (ITI) will be replaced by a simpler one, namely,
some kind of irrationality measure of the function ®(z). The tool in this
section is an inductive method developed in Duverney [5]. By introducing
low-order Padé-approximants of the functions ®,,(z) connected to ®¢(z), we
will arrive to Transcendence Criterion.

2 An inductive method

Theorem 2. Let K be an algebraic number field, » and L be integers such
that r >2 and L > 1, and '

[oe] Ek(xr")

S = @0(32) = P Fk(z_,.k)’
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Ei(z) = ajaz + akex? + ... + axpzl € Klz],
Fk(x) =14+ byz+ bk2$2 + ...+ bkLIL € K[:L‘]
Suppose that there is a positive constant ¢; such that for any polynomials
Ao, A1 € K|[z], not both zero, satisfying deg Ag,deg A; < M,
ord(Ag + A1S) < aM. (1)

Then for any positive integer d there is a positive constant cg such that
for any polynomials Ag, Ay, ..., A¢ € K|z], not all zero, satisfying deg A; <
M, 0<:<d,

ord(Ag + A1S + ... + AaS®) < caM. (2)

Proof. Let
n( )__ Z n+k(z )

F, ntk (IL‘

R, = q’n(xr )1

Then S = T, + R,. We prove (2) by induction on d. If d = 1, (2) is the same
as (1). Suppose that for a given d > 2, we have

ord(By + B1S + ... + Ba_15%") < ca 1M, (3)

for every By, ..., Ba_1 € K]|z|, not all zero, deg B; < M,0<i<d—1. We
may assume cq_1 > 1 and Ay # 0. Let e = dL. For every n > 0, there exist
Qn(z) € K|z] with Q,(z) # 0, and Py (), ..., Pad(z) € K|[z] such that

deanSde) degpnisde1 1S"'Sd:
Qn(2)®p(z) — Pai(z) = z%H1Ghi(z), 1<i<d, (4)

where

Gri(z) = ignuz’ € K{[=]].

£=0
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For this we choose @Qn(z) in such a way that the terms of degrees de +
1,...,de + e vanish in the Taylor expansion of Qn(z)®.(z)* for i = 1,2,...,d.
We only have to solve a linear homogeneous system which has de equations
and de + 1 unknowns.

Lemma 1. ord Gp1(z) < v, where v = c1(de+ L) — (de + e+ 1).
Proof. In (4) replacing = by =7 , we have
Qu@™)(S — Ta) — Pua(a™) = 29+ Gy (7).

Multiplying both sides by Dp = [I[P=3 Fi(z""), we have

DaQn(z™)S = Qu(z™) DaTa — DuPur(z”") = 29+ DG (z™).
Since deg D,,,deg D, T, < L™,

deg DpQn(z™"), deg(Qn(z™ ) DpTn+ DuPai(z™)) < (L + de)r™.
By (1) we have
ord Gni(z™) < (ci(de + L) — (de + e + 1))r™,

which implies the lemma.

We define Pog(z) = Qn(z), Gno(z) = 0. In (4) replacing z by 2™, we
obtain for every 1 = 0, 1,...,d,

@n (xfn)(s - Tn)‘ - P m’(xrn) = x(de+e+1)'nGni(xr")~ (5)

We develop (S — T;,)* and write the equality (5) in matricial form. Then we
get
1 F, nO(xr:) 0
Qn(z™ )M, S - P"l(.z )= pdetet e G"l(:z )

s Po (ﬁ:"‘) Gua iz'")

,»  (6)
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1 0 0 0
T, 1 o --.. 0
M,=| T2 —2T, 1 0 0

(-1yerg (- ()T

In [5] it is shown that

[—y

1 0 0 0
T, 1 0 .- --- 0
MII=|T2 2. 1 0 -0
(G 1

Note that DIM; ! has its elements in K[z]. Multiplying (6) on the left by
M1, we get

1 P, ,.o(a:’:) 0 .
@) | 5 |- mpr | D) | pesenen pg | S
S Pra(z™) . Gra(z"™)
Multiplying (7) on the left by the row matrix D2(Ay, ..., Ag) We obtain
d
U, Z Ah Sh) _ v;‘ _ x(de+e+l)rn Hn, (8)
=0
where
U, = D8Q.(z") € K|z,
Pno(.’brn)

P,,,] (:L‘rn )

Vo= (AO) "'aAd)DiM;I € K[x]’

P,,d (x"“ )
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0
G (™
H, = (Aq, ..., A)) DS M nl(: ) € K||z]].
Gﬂd(:r:’")
Let n be the positive integer such that
Ml <eg M <™. 9
Then, as e =dL and ¢4 > 1,
deg Vo, < M + dLr" + der™ < (de + e+ 1)r". (10)
Let m be the least integer such that (0, gnim,-.-, gnam) 7# 0. By Lemma 1,
m < «. Let
(0 (0
Gnim :
: 0
= Onim |’ Gnim 7& 0.
\ Gndm } \ Gndm /
Then under mod (™™ we have
(0 )
Ho = D(Ao,..AgMzt| O
n = a0 B4 gnimT™
\ Goama™" )
[ 0 0 0 0)
Gnim
1 0 -~ 0 0 : .
= D3(Ay,...,Aq) . : il
d—1 —i—1 .. “ o )
i )Tf ' 101\ guim




[ 0 0 0 0\ o
) 1 O --- 0 0 : n
= Di(do,.A)| -
d-Ngd-i-1 .. 1 0 .
14 gn
\ (.:)Sd—i 1) -

= D:(Bo +BiS+ ..+ Bdw,-S""'):z:'""",
where By, ..., B4_; € K|[z] and

d
Ba_; = Ad(i)gnim #0, degBph <M, 0<h<d-i

Since ord D, = 0, by (3), (9) we obtain
ord (Dﬁ(Bo +BS+..+ Bd~,-Sd_"):z:’"'") < cg-1M +mr™ < (1+ m)r™.
Hence H, # 0 mod z(™*D™ . Suppose that V, # 0. By (10) we get
ord V,, < (de + e + 1)r™.
Therefore by (8), (9) we obtain

d
ord (E AhS") <(de+e+1)r" < (de+e+ 1)rcg1M.
h=0

If V. = 0, by (8), (9) we obtain

d
ord (Z AhSh) <(de+e+1)r"+(m+1)r" < (de+e+ 2+ y)rcg1M.
h=0

Letting ¢g = (de + e + 2 + ¥)rcq_,, we obtain (2).

Examples involving Fibonacci and Lucas numbers

Let a = 1-v5 1 +2\/§. Then nth Fibonacci number F,, and

and 8 =

nth Lucas number L,, are written as

o a® -ﬁ" _ a™ — (__l)ua—n
n — a— ﬂ - a —ﬁ )
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n=a"+0"=a"+ (-1)"a™™
Let {ax}r>0 and {bx}r>0 be sequences in K and Ok respectively. Then

oo a 0o a a2"
k k
— - 11
,;sz-l-bk (IB a)‘;l_l_(ﬂ_a)bkazk_(agk)za ( )
oo 00 2k

ax axQ
' = 3 12
kz=:1 Lok + by ,; 1+ ba?* + (C!zk)2 (12)

is transcendental by using Schmidt’s
k!F 2k

theorem on approximations of an algebraic number by algebric numbers.
Later Mahler [10] proved it without using Schmidt’s theorem and Loxton
and van der Poorten (8] generalized Mahler’s method. Becker and Topfer [1]
and Nishioka [13] studied the arithmetical nature of the series (11) and (12)
when b, = 0 for every k, {a,} is a periodic sequence and a linear recurence
sequence of algebraic numbers respectively. Duverney, Kanoko and Tanaka
[5] studied the case b = b for every k and {ax} is a linear recurrence sequence
of algebraic numbers.
We have the following.

Mignotte [11] proved that
k=0

Theorem 3. Assume there exist infinitely many k such that a, # 0, and
that log |jac||, log [|b]| = o(2%). Let

00 2k
arZ
0] = .
(=) ,;0 1+ (8 — a)bpz?* — 2!

If ®¢(z) € K(z), then there exist N € N and a € K such that b = 0 and
ax = a for every k > N.

In particular, Z % i algebraic if and only if ax = a and b = 0
= Fox + b
for every k > N.

Theorem 4. Assume that there exist infinitely many k such that ax # 0,
and log ||ak||, log ||bk|| = o(2F). Let

k
X a;,xz

0] = .
() ,;0 1+ bpz?* + z2*
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If ®(z) € K(z), then one of the following two conditions is satisfied.

(i) There exist N € N and a € K such that by = 2 and a; = a4* for every
k> N.

(ii) There exist a constant a, p,q € N, ¢ # 0, and N € N such that b =

2 cos (2" . Iq—)‘rr), ax = a2Fsin (2" . g'fr) for every k > N.

In particular, Z is algebraic if and only if (i) or (ii) holds.

L2k bk

Corollary. Assume that there e)ust mﬁmtely many k such that a; #
0, and log]lex] log bl = o(2%). 1F 3~
eventually periodic, |bx| < 2 and a1 = 2akb,c for every large k.

is algebraic, then {b:} is

Example . Under the assumptions of Theorem 11, Z z—— is transcen-
2k
dental.
Moreover if |be| > 2 for infinitely many k, then z L b is transcen-
2x + Ok
dental.
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