Constructing topological groups through unit equations

東川雅志（Masasi Higasikawa）
東京女子大学（Tokyo Woman＇s Christian University）

October 22， 2002

Abstract

We treat problems concerning duality properties of topological groups． To solve them，we make the additive group of the integers into topological groups．The onstruction depends on a family of exponential Diophantine equations．

1 Introduction

We exhibit an application of exponential Diophantine equations to some prob－ lems on characters of topological groups．In Section 2，we introduce two duality properties we consider．Section 3 is for the explanation of the metrics on the integers due to J．W．Nienuys［4］．In Section 4，we find particular metrics an－ swering the questions．The construction is closely tied with a family of S－unit equations．As an appendix，we mention the ineffectiveness of the method．

Most of the contents of this article overlap those of［5］or［6］，which is mainly intended for the audience with a topological background．Here we proceed more number－theoretically．

2 Problems

All topological groups we treat are Hausdorff and Abelian，and a character is a continuous homomorphism into the torus $\mathbf{T}=\mathbf{R} / \mathbf{Z}$ ．A subgroup H of a topological group G is dually closed if for each $g \in G$ on the outside of H ，there exists a character χ of G separateing g from H ；i．e．，χ vanishes on H but does not at g ．We say that H is dually embedded if every character of H is obtained as the restriction of one of G ．

Our concern is for the following two properties：＂every closed subgroup is dually closed＂and＂every closed subgroup is dually embedded．＂We denote the former by $\mathbf{X}(1)$ and the latter by $\mathbf{X}(2)$ after［1］．

The problem is whether these are preserved under direct products. Constructing a counterexample, We show that so is neither against misunderstanding in the literature ([8]).

3 Metrics on the Integers

We begin with some metric group topologies on the integers as in [4]. Suppose that $\delta:\left\{p^{n}: n \in \mathbf{N}\right\} \rightarrow \mathbf{R}_{>0}$ is a non-increasing function defined on the powers of a prime p with $\delta\left(p^{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. We define a function $\|\cdot\|_{\delta}: \mathbf{Z} \rightarrow \mathbf{R}$ by

$$
\|u\|_{\delta}=\inf \left\{\sum_{i} \delta\left(p^{n_{i}}\right): u=\sum_{i} e_{i} p^{n_{i}}, e_{i} \in\{1,-1\}, n_{i} \in \mathbf{N}\right\}
$$

We denote by \mathbf{Z}_{δ} the topological group \mathbf{Z} with the metric induced by $\|\cdot\|_{\delta}$. This topology is finer than or equal to the p-adic topology.

Our counterexample consists of \mathbf{Z}_{δ} and \mathbf{Z}_{ε} for some δ defined on the powers of p and ε on those of another prime q. Here we must choose 'nice' δ and ε with a certain number-theoretic property, which is made precise in the next section.

We have rather straightforward observations unconditionally:

1. Both groups have $X(1)$ and $X(2)$;
2. The diagonal $\Delta=\{(u, u): u \in \mathbf{Z}\} \subset \mathbf{Z}_{\delta} \times \mathbf{Z}_{\varepsilon}$ is dually-closed.
3. There exists a homomorphism $\Delta \rightarrow \mathbf{T}$ that is not obtained as the restriction of a character of the whole product.

Accordingly if Δ is discrete (and closed in the product), then the product has neither $\mathbf{X}(1)$ nor $\mathbf{X}(2)$.

4 Number-theoretic Requirements

For the diagonal Δ to be discrete, we find 'nice' δ and ε such that

$$
\inf \left\{\|u\|_{\delta}+\|u\|_{\varepsilon}: u \in \mathbf{Z}, u \neq 0\right\}>0
$$

Here we invoke a finiteness theorem for S-unit equations, which is similar to [3, Theorem 8].

Theorem 4.1 Suppose that G and H are finitely generated subgroups of \mathbf{C}^{*}. For any positive integers k and l, there are finite sets $A \subseteq G$ and $B \subseteq H$ such that for every solution of the equation

$$
x_{1}+\cdots+x_{k}=y_{1}+\cdots+y_{l}
$$

with $x_{1}, \ldots, x_{k} \in G, y_{1}, \ldots, y_{l} \in H$ and no vanishing subsums, one has $x_{1}, \ldots, x_{k} \in$ A and $y_{1}, \ldots, y_{l} \in B$.

Now we construct a pair of metrics as desired. Let p and q be distinct primes and k, l and s positive integers. We apply the theorem above to the groups $G=\langle p,-1\rangle$ and $H=\langle q,-1\rangle$, and set

$$
F(p, q, k, l)=\{a \in A: a \geq 1\}
$$

with respect to the purported set A and

$$
F(p, q, s)=\bigcup_{k+l \leq s} F(p, q, k ; l) .
$$

Then the final definition follows:

$$
\begin{aligned}
& \delta\left(p^{n}\right)=1 / \min \left\{s: p^{n} \leq \max F(p, q, s)\right\}, \\
& \varepsilon\left(q^{n}\right)=1 / \min \left\{s: q^{n} \leq \max F(q, p, s)\right\} .
\end{aligned}
$$

Note that if

$$
e_{1} p^{m_{1}}+\cdots+e_{k} p^{m_{k}}=f_{1} q^{n_{1}}+\cdots+f_{l} q^{n_{l}}
$$

has no vanishing subsums with non-negative integers $m_{1}, \ldots, m_{k}, n_{1}, \ldots n_{l}$ and $e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l} \in\{ \pm 1\}$, then we have $p^{m_{i}} \in F(p, q, k+l), q^{n_{j}} \in F(q, p, k+l)$, and hence

$$
\delta\left(p^{m_{i}}\right), \varepsilon\left(q^{n_{j}}\right) \geq \frac{1}{k+l}
$$

for each $1 \leq i \leq k$ and $1 \leq \boldsymbol{j} \leq \boldsymbol{l}$. Accordingly for a non-zero integer \boldsymbol{u} with

$$
u=e_{1} p^{m_{1}}+\cdots+e_{k} p^{m_{k}}=f_{1} q^{n_{1}}+\cdots+f_{l} q^{n_{l}}
$$

it holds that

$$
\|u\|_{\delta}+\|u\|_{\varepsilon} \geq \delta\left(p^{m_{1}}\right)+\cdots+\delta\left(p^{m_{k}}\right)+\varepsilon\left(q^{n_{1}}\right)+\cdots \varepsilon\left(q^{n_{l}}\right) \geq 1 .
$$

Thus we are done.
Theorem 4.2 Neither $\mathbf{X}(1)$ nor $\mathbf{X}(2)$ is preserved under the product $\mathbf{Z}_{\delta} \times \mathbf{Z}_{\varepsilon}$ for δ and ε decreasing slowly enough.

A Appendix

Since Theorem 4.1 is ineffective, we do not have explicit functions in Theorem 4.2 or even the estimation of their order. Here we exhibit a now unsuccessful attempt at effectivization.

We recall an analogue due to C.L. Stewart [11, Theorem 1]. Suppose that a and b are integers greater than 1 with $\log a / \log b$ irrational. Then, from some estimations for linear forms in logarithms, effective lower bound is obtained for the sum of the numbers of non-zero digits of a positive integer n in base a and in base b.

We would like to find a similar bound in case 'negative digits' are allowed. That is, for an integer n with a representation, which may not be unique,

$$
\begin{align*}
n & =a_{1} a^{m_{1}}+a_{2} a^{m_{2}}+\cdots+a_{r} a^{m_{r}} \\
& =b_{1} b^{l_{1}}+b_{2} b^{l_{2}}+\cdots+b_{t} b^{b_{t}}, \tag{1}
\end{align*}
$$

where the integers satisfy following conditions:

$$
\begin{aligned}
& 0<\left|a_{i}\right|<a \\
& 0<\left|b_{j}\right|<b
\end{aligned}
$$

for $i=1,2, \ldots, r$ and $j=1,2, \ldots, t$, and

$$
\begin{aligned}
& m_{1}>m_{2}>\ldots>m_{r} \geq 0, \\
& l_{1}>l_{2}>\ldots>l_{t} \geq 0,
\end{aligned}
$$

we want an effective lower bound for $r+t$ in term of n.
We assume that n is positive and sufficiently large and try to proceed as in [11]. For appropriate $1 \leq p \leq r$ and $1 \leq q \leq t$, set

$$
\begin{align*}
& A_{1} a^{m_{p}}=a_{1} a^{m_{1}}+\cdots+a_{p} a^{m_{p}} \\
& A_{2}=a_{p+1} a^{m_{p+1}}+\cdots+a_{r} a^{m_{r}} \tag{2}\\
& B_{1} b^{l_{q}}=b_{1} b^{l_{1}}+\cdots+b_{q} b^{q_{q}} \\
& B_{2}=b_{q+1} b^{l_{q+1}}+\cdots+b_{t} b^{l_{t}} \\
& R=\frac{A_{1} a^{m_{p}}}{B_{1} b^{q_{q}}}
\end{align*}
$$

A parallel argument breaks down at the upper estimation for $\max \left\{R, R^{-1}\right\}$, since we have no efficient lower bound for $A_{1} a^{m_{p}}$.

We may save part of the proof as follows: if there exists a positive integer n with (1) and (2) such that

$$
\begin{align*}
& 4 \max \left\{\frac{\left|A_{2}\right|}{A_{1} a^{m_{p}}}, \frac{\left|B_{2}\right|}{B_{1} b^{q_{q}}}\right\} \tag{3}\\
\leq & \exp \left(-C(3,1) \log \left(\max \left\{e, A_{1}, B_{1}\right\}\right) \log (\max \{e, a\}) \log (\max \{e, b\}) \log \left(\max \left\{e, m_{p}, l_{q}\right\}\right)\right) \\
& \max \left\{m_{p}, l_{q}\right\}>C_{1}(3,1) \log a \log b \log \left(\max \left\{A_{1}, B_{1}\right\}\right)
\end{align*}
$$

where the constants C and C_{1} are from [2] and from [9], respectively,

$$
\begin{aligned}
& C(n, d)=18(n+1)!n^{n+1}(32 d)^{n+2} \log (2 n d) \\
& C_{1}(n, d)=\left(\frac{3}{2} n d\right)^{n-1}(21 d \log (6 d))^{\min \{n, d+1\}}
\end{aligned}
$$

then it follows that $\log a / \log b$ is rational. More precisely, (3) implies that $R=1$, which, in turn combined with (4), yields the rationality results. So it suffices to get a lower bound for $r+s$ assuming that for every representation (1) and partition (2) at least one of (3) and (4) fails. We, however, have no idea about

References

[1] R. Brown, P.J. Higgins and S.A. Morris, Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties, Math. Proc. Cambridge Philos. Soc. 78 (1975), 19-32.
[2] A. Baker and G. Wüstholtz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1933) 19-62.
[3] J.-H. Evertse, K. Győry, C.L. Stewart and R. Tijdeman, S-unit equations and their applications, in: (A. Baker ed.) New advances in transcendence theory, Cambridge University Press, 1988, pp. 110-174.
[4] J.W. Nienhuys, Some examples of monothetic groups, Fund. Math. 88 (1975), 163-171.
[5] M. Higasikawa, Non-productive duality properties of topological groups, Topology Proc. (to appear).
[6] M. Higasikawa, Group topologies and semigroup topologies on the integers determined by convergent sequences, in: General and Geometric Topology and its Applications, RIMS Kokyuroku 1248, 2002, pp. 75-79.
[7] J.W. Nienhuys, Some examples of monothetic groups, Fund. Math. 88 (1975), 163-171.
[8] N. Noble, k-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551561.
[9] A.J. van der Poorten and J.H. Loxton, Multiplicative relations in number fields, Bull. Austral. Math. Soc. 16 (1977) 83-98.
[10] A.J. van der Poorten and J.H. Loxton, Computing the effectively computable bound in Baker's inequality for linear forms in logarithms, and: Multiplicative relations in number fields: Corrigenda and addenda, Bull. Austral. Math. Soc. 17 (1977) 151-155.
[11] C.L. Stewart, On the representation of an integer in different bases, J. Reine Angew. Math. 319 (1980) 63-72.

E-mail: higasik@dream.com

