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Abstract

We treat problems concerning duality properties of topological gouffi$\cdot$

To solve them, we make the additive group of the integers into topological
groups. The onstruction depends on afamily of exponential Diophantine
equations.

1Introduction
We exhibit an application of exponential Diophantine equations to some prok
lems on characters of topological groups. In Section 2, we introduce two duality
properties we consider. Section 3is for the explanation of the metrics on the
integers due to J. W. Nienuys [4]. In Section 4, we find particular metrics an-
swering the questions. The construction is closely tied with afamily of 5-unit
equations. As an appendix, we mention the ineffectiveness of the method.

Most of the contents of this article overlap those of [5] or [6], which is mainly
intended for the audience with atopological badcground. Here we proceed more
number-theoretically.

2Problems
All topological groups we treat are Hausdorff and Abelian, and acharacter is
acontinuous homomorphism into the torus $\mathrm{T}=\mathrm{R}/\mathrm{Z}$ . Asubgroup $H$ of a
topological group $G$ is dually closed if for each $g\in G$ on the outside of $H$, there
exists acharacter $\chi$ of $G$ separateing $g$ from $H$;i.e., $\chi$ vanishes on $H$ but does
not at $g$ . We say that $H$ is dually embedded if every character of $H$ is obtained
as the restriction of one of $G$.

Our concern is for the following two properties: “every closed subgroup is
dually closed” and “every closed subgroup is dualy embedded.” We denote the
former by $\mathrm{X}(1)$ and the latter by $\mathrm{X}(2)$ after [1]
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The problem is whether these are preserved under direct products. Con-
structing acounterexample, We show that so is neither against misunderstand-
ing in the literature ([8]).

3Metrics on the Integers
We begin with some metric group topologies on the integers as in [4]. Suppose
that 6: $\{p^{n} : n\in \mathrm{N}\}arrow \mathrm{R}_{>0}$ is anon-increasing function defined on the powers
of aprime $p$ with $5(\mathrm{p}\mathrm{n})arrow 0$ as $narrow\infty$ . We define afunction $||\cdot||\delta$ : $\mathrm{Z}arrow \mathrm{R}$ by

$||u|| \delta=\inf\{\sum.\cdot\delta(p^{n\iota})$ : $u= \sum_{\dot{1}}$
$e_{*}.p^{n}$‘, $e:\in\{1, -1\},n_{*}$. $\in \mathrm{N}\}$ .

We denote by $\mathrm{z}_{\delta}$ the topological group $\mathrm{Z}$ with the metric induced by $||\cdot||_{\delta}$ .
This topology is finer than or equal to the $\mathrm{p}$-adic topology.

Our counterexample consists of $\mathrm{Z}_{\delta}$ and $\mathrm{Z}_{\epsilon}$ for some $\delta$ defined on the powers
of $p$ and $\epsilon$ on those of another prime $q$ . Here we must choose ‘nice’ $\delta$ and $\epsilon$ with
acertain number-theoretic property, which is made precise in the next section.

We have rather straightforward observations unconditionally:

1. Both groups have $\mathrm{X}(1)$ and $\mathrm{X}(2)$ ;

2. The diagonal $\mathrm{A}=\{(u,u) : u\in \mathrm{Z}\}\subset \mathrm{Z}_{\delta}\mathrm{x}\mathrm{Z}_{e}$ is dually-closed.

3. There exists ahomomorphism $\mathrm{A}arrow \mathrm{T}$ that is not obtained as the restric-
tion of acharacter of the whole product.

Accordingly if Ais discrete (and closed in the product), then the product
has neither $\mathrm{X}(1)$ nor $\mathrm{X}(2)$ .

4Number-theoretic Requirements
For the diagonal Ato be discrete, we find ‘nice’ $\delta$ and $\epsilon$ such that

$\inf\{||u||\delta+||u||_{\epsilon} : u\in \mathrm{Z},u\neq 0\}>0$ .
Here we invoke afiniteness theorem for $S$-unit equations, which is similar to

[3, Theorem 8].

Theorem 4.1 Suppose that $G$ and $H$ are finitely generated subgroups of $\mathrm{C}^{*}$ .
For any positive integers $k$ and $l$ , there are finite sets $A\subseteq G$ and $B\subseteq H$ such
that for every solution of the equation

$x_{1}+\cdots+x_{k}=y_{1}+\cdots+y_{l}$

with $x_{1}$ , $\ldots$ , $x_{k}\in G$ , $y_{1}$ , $\ldots$ , $y\iota\in H$ and no vanishing subsums, one has $x_{1}$ , $\ldots$ , $x_{k}\in$

$A$ and $y_{1}$ , $\ldots,y\iota$ $\in B$ . $\square$
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Now we construct apair of metrics as desired. Let p and q be distinct
primes and k, l and s positive integers. We apply the theorem above to the
groups G $=(p,$ -1\rangle and H $=\langle q,$-1\rangle , and set

$F(p,q, k, l)=\{a\in A:a\geq 1\}$

with respect to the purported set $A$ and

$F(p, q, s)=\cup F(p, q, k, l)k+l\leq\epsilon$
.

Then the final definition follows:

$\delta(p^{n})=1/\min\{s : p^{n}\leq \mathrm{m}\mathrm{a}\mathrm{x}F(p,q, s)\}$ ,

$\epsilon(q^{n})=1/\min\{s:q^{n}\leq\max F(q,p, s)\}$.
Note that if

$e_{1}p^{m_{1}}+\cdots+e_{k}p^{m_{k}}=f_{1}q^{n_{1}}+\cdots+f_{l}q^{n_{l}}$

has no vanishing subsums with non-negative integers $m_{1}$ , $\ldots$ , $m_{k},n_{1}$ , $\ldots n_{l}$ and
$e_{1}$ , $\ldots$ , $e_{k},f1$ , $\ldots$ , $f[\in\{\pm 1\}$ , then we have $p^{m}\in F(p,q,k+l),q^{n_{\mathrm{j}}}\in F(q,p, k+l)$ ,
and hence

$\delta(p^{m:}),\epsilon(q^{n_{\mathrm{j}}})\geq\frac{1}{k+l}$

for each $1\leq i\leq k$ and $1\leq j\leq l$ . Accordingly for anon-zero integer $u$ with

$u=e_{1}p^{m_{1}}+\cdots+e_{k}p^{m_{k}}=f_{1}q^{n_{1}}+\cdots+f_{l}q^{n_{1}}$ ,

it holds that

$||u||_{\delta}+||u||_{\epsilon}\geq\delta(p^{m_{1}})+\cdots+\delta(p^{m_{\mathrm{k}}})+\epsilon(q^{n_{1}})+\cdots\epsilon(q^{n_{\iota}})\geq 1$ .

Thus we are done.

Theorem 4.2 Neither $\mathrm{X}(1)$ nor $\mathrm{X}(2)$ is preserved under the product $\mathrm{z}_{\delta}\mathrm{x}\mathrm{Z}_{\epsilon}$

for $\delta$ and $\epsilon$ decreasing slowly enough. $\square$

AAppendix
Since Theorem 4.1 is ineffective, we do not have explicit functions in Theorem
4.2 or even the estimation of their order. Here we exhibit anow unsuccessful
attempt at effectivization.

We recall an analogue due to $\mathrm{C}.\mathrm{L}$ . Stewart [11, Theorem 1]. Suppose that $a$

and $b$ are integers greater than 1with $\log a/\log b$ irrational. Then, from some
estimations for linear forms in logarithms, effective lower bound is obtained for
the sum of the numbers of non-zero digits of apositive integer $n$ in base $a$ and
in base $b$.
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We would like to find asimilar bound in case ‘negative digits’ are allowed.
That is, for an integer $n$ with arepresentation, which may not be unique,

$n$ $=$ $a_{1}a^{m_{1}}+a_{2}a^{m_{2}}+\cdots+a_{r}a^{m_{r}}$

$=$ $b_{1}b^{l_{1}}+b_{2}b^{l_{2}}+\cdots+b_{t}b^{l_{t}}$ , (1)

where the integers satisfy following conditions:

$0<|a_{t}|<a$ ,

$0<|b_{j}|<b$,

for $i=1$ , 2, $\ldots$ , $r$ and $j=1,2$, $\ldots$ , $t$, and
$m_{1}>m_{2}>\ldots>m_{r}\geq 0$ ,

$l_{1}>l_{2}>\ldots>l_{t}\geq 0$ ,

we want an effective lower bound for $r+t$ in term of $n$.
We assume that $n$ is positive and sufficiently large and try to proceed as in

[11]. For appropriate $1\leq p\leq r$ and $1\leq q\leq t$ , set

Alamp $=$ $a_{1}a^{m_{1}}+\cdots+a_{p}a^{m_{p}}$ ,
$A_{2}$ $=$ $a_{p+1}a^{m_{p+1}}+\cdots+a_{r}a^{m_{\mathrm{r}}}$ ,

$B_{1}b^{l_{q}}$ $=$ $b_{1}b^{l_{1}}+\cdots+b_{q}b^{l_{q}}$ , (2)

$B_{2}$ $=$ $b_{q+1}b^{l_{\mathrm{q}+1}}+\cdots+b_{t}b^{l_{t}}$ ,

$R= \frac{A_{1}a^{m_{p}}}{B_{1}b^{l_{\mathrm{q}}}}$ .

Aparallel argument breaks down at the upper estimation for $\max\{R, R^{-1}\}$ ,
since we have no efficient lower bound for $A_{1}a^{m_{p}}$ .

We may save part of the proof as follows: if there exists apositive integer $n$

with (1) and (2) such that

$4 \max\{\frac{|A_{2}|}{A_{1}a^{m_{\mathrm{p}}}}$ , $\frac{|B_{2}|}{B_{1}b^{l_{q}}}\}$ (3)

$\leq$ $\exp$ $(-C(3,1) \log(\max\{e,A_{1}, B_{1}\})\log(\mathrm{m}\mathrm{r}\{e,a\})\log(\max\{e,b\})\log(\max\{e,m_{\mathrm{p}},l_{q}\}))$ ,

$\mathrm{m}m\{m_{p},l_{q}\}$ $>\mathrm{C}\{\mathrm{n},$ $1$ ) $\log a$ $\log b\log$($\max\{A_{1}$ , Bt}), (4)

where the constants $C$ and $C_{1}$ are from [2] and from [9], respectively,
$\mathrm{C}\{\mathrm{n}$ , $=18(n+1)!n^{n+1}(32d)^{n+2}\log$(4),

$C_{1}(n,d)=(3 \frac{d}{2}nd)^{n-1}(21d\log(6d))^{\min\{n,d+1\}}$ ,

then it follows that $\log a/\log b$ is rational. More precisely, (3) implies that $R=1$ ,
which, in turn combined with (4), yields the rationality results. So it suffices
to get alower bound for $r$ $+s$ assuming that for every representation (1) and
partition (2) at least one of (3) and (4) fails. We, however, have no idea abou
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