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Abstract

We consider implicit-explicit Runge-Kutta (IMEX RK) schemes for time-
dependent semi-linear partial differential equations. We show that the error of
a scheme is of ©(At?) in time under some conditions, where At is the stepsize.
This result is, in a sence, optimal. The so-called order reduction phenomena
occur, i.e., the error of a scheme based on a partitioned RK method whose
order > 3 behaves as O(At?), which is shown numerically.

1. Introduction

We consider initial-boundary value problems of the form

%=Lu+g(t,x,u),05t5T,er, (1.1)
Syu(t, z) = (t, ), 0<t<T, z €99, (1.2)
u(0, z) = v’(z), z € Q. - (1.3)

Here, u = u(t,z) is an JR™-valued unknown function,  is a bounded domain in
IR? with the boundary 89, L is a linear partial differential operator with constant
coefficients with respect to x, @, is a boundary operator. Various reaction-diffusion
equations and nonlinear Schrédinger equations such as the Gross-Pitaevskii equation
(see, e.g., [4]) are typical examples of (1.1).

Many numerical schemes for evolutional problems in partial differential equations
(PDEs) are derived and implemented along the idea of the method of lines (MOL).
In this approach a PDE is first discretized in space by finite difference or finite
element techniques to be converted into a system of ordinary differential equations
(ODEs). We consider the grid 2, defined by €, = QN hZ¢ for b > 0, and MOL
approximations of (1.1)—(1.2) in the form

dU

—df = LyUn + oa(t) + ga(t, Un). (1.4)
Here, U}, is an approximate function of u on €, L; is a difference approximation
of L, g is the restriction of g onto €25, and @4(t) is a function determined from the
boundary condition (1.2).
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The ODE (1.4) is usually a stiff equation, not easily treated with the standard
explicit methods. In some cases (e.g., [11]), the equation (1.4) is solved by a scheme
of the form

U;;H'l = U,? + At(LhU,?+1 -+ (Ph(tn+1)) + Atgh(t'm I?)a (15)

where At is the stepsize, given by At = T//N for some integer N > 1, t, = nAt, and
U? is an approximate value of Uy (t,). The scheme (1.5) is obtained by applying the
backward Euler formula to the linear part of (1.4) and the forward Euler formula to
the nonlinear part. This type of scheme is called implicit-explicit (IMEX) scheme,
or semi-implicit scheme.

The scheme (1.5) is of first order in the sense of order of convergence. There are
two ways of improving (1.5) in accuracy: omne is along the idea of linear multistep
methods [1, 3, 12]; the other is along the idea of Runge-Kutta (RK) methods (2, 6, 8].
We follow the latter approach.

Let us consider a pair of two RK methods defined by the arrays

010 0 ce 0 00 0 <o 0

Cy | a9y Qg9 0 e 0 Co 621 0 0

c3 | a3 asz ass : c3|@3 aszx 0 :
. , (1.6)

0 : 0

Cs | Qg1 Qg2 “*° Ggs—1 Oss Co |Bs1 TGsp - as,s——l 0

bl b2 vt bs—l bs b1 bg s bs_1 bs

The left formula determines a diagonally implicit (semi-implicit) RK method, the
right formula an explicit RK method. As usual, we assume that

i —1
Cz-=2aij=§:ai,-, 0<¢g<1l =23, .., s (1.7)
Jj=1 j=1 .

By applying the left formula to the linear part of (1.4) and the right formula to
the nonlinear part, we obtain the following scheme for the initial-boundary value
problem (1.1)-(1.2):

U}(:n = U;: + Atz a;; (LhU}(:,)L + ‘Ph(tn + CjAt))
=1
i—1 ,
+ ALY a5 gn(ta + c5A8, Ud), i=1,2 .,s (18
i=1

Uptt = Up + Aty bi(LaUs + onlta + cist))

i=1

+ AtY b gi(ta + AL UDL). (1.9)
=1
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Here, Uy is given by U = [4%(2) |zeq,- _

The main purpose of the present paper is to clarify the convergence property
of the scheme (1.8)—(1.9), especially from a viewpoint of the B-convergence theory
[7]. The concept of B-convergence is closely related to the so-called order reduction
phenomena, which were first pointed out and studied by Verwer [15] in the PDE
context (see also [13, 14]).

2. Main theorem

For €™-valued functions on 2, we define an inner product by

U, Vin=h0* > Uz) V(z), (2.1)
2€EQ,
and let || - ||, denote the corresponding norm. We also put
an(t) = uy(t) — Laun — @n(t) — gu(t, un), (2.2)

where uy(t) = [u(t, %) ],cq,, and consider the following conditions concerning the
problem (1.1)-(1.3) and the MOL approximation (1.4)

(A1) The exact solution u(t, z) is of class C* with respect to t; g(t, z, u) is of class
C? with respect to t,u and the functions
o0g 09 &g Iy %y
b Bt’ bu’ o2 Btow’ Oudu,

are bounded for (t,z,u) € [0,T] x 2 x IR™.
(A;) For any €™-valued function U on 4, Re(U, LyU), < 0.
(As) || an(t) [[» — 0 as h — 0.
Moreover, we write

A = (aij)i<ij<s, b=1[b1, by, ..., bs]7,

AA = (a.,'j)]_s,;ljs,,, 3 - [El, 32, ey ES]T,
and consider the following conditions concerning the RK pair (1.6).

(B1) The partitioned RK method (1.6) is of second order, i.e., the parameters b;,
b;, c; satisfy

Ybi=1, Ybhea=1/2, Ybh=1 Y bhca=1/2
i=1 i=1 i=1 o=l
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(B3) The diagonally implicit RK method is A-stable, ASI-stable, and AS-stable,
i.e., the stability function 7(z) = 1 + zb(I, — z4)™'1, 1 = [1,1, ... , 17,
satisfies

|r(z)| <1 forany z€ C_,
and each component of (I, — zA)™! and zbT (I, — zA)~! is bounded on €' _,
where €_ = {z € € : Rez < 0}.

(B3) The rational functions

bI(I, — zA) "1y b (I, — zA)™'y

4(2) = bT(I, — zA)™11’ é(2) = bT (I, — zA)~'1 (2:3)
are bounded on €'_, where
v=ln v Wl =00 A s W
w= 2= age, W= 3 asics - ;Vt‘ia,.jc,-.
j=1 j=1 j=1

Theorem 2.1 Assume that (A))—(A3z) and (B1)-(Bs) are satisfied. Then, there are
positive numbers hy, Aty, C such that

(max, (| UF = un(t) [ < O(A8 + max | an(t) |1) (2.4)

holds for any h < hy and At < Atyp.

The proof is carried out by a simular argument as in the proof of Theorem 3.3
[5], on the based of the following lemma (see, e.g., [10], IV.11).

Lemma 2.2 (Theorem of von Neumann) Let ¢(z) be a rational function which
has no pole in € _, and assume that Ly satisfies (Az). Then, we have

| $(AtLa) [ln < _sup [9(2)]- (2.5)
Rez<0

Proof of Theorem 2.1. Put t,,; = t, + ¢; At and define rﬁ)n, Phn DY

Un(tni) = un(ts) + ALY aij (LhUh(tn,j) + <Ph(tn,j))
i=1

i1 .
+ ALY 855 gu(tngs unltns)) + o (2.6)
Jj=1
Un(tat1) = un(ts) + ALY b; (Lhuh(tn,i) + ‘Ph(tn,i))
i=1

+ ALY B gh(tnis un(tng)) + Phn- (2.7)
=1
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Then, it follows from (2.2) and (1.7) that

rio, = Un(t) — un(tn) — At i aij [ th(tns) = O (tnss Un(tn;)) — on(tns)]

=1

1—1
—At Z a;j gn (tn,j’ Uh (tn’j))
7=1

= Ay ull(tn) + AL F; 61 (tn, un(tn)) + ALY ai; on(tn ) + O(AL),

j=1
where dan
i (t, un(t)) = ( , h(t)) (t un(t) ) uh (t)
Similarly, it follows from (2.2) and (Bl) that
Phn = AY bon(ta;) + O(AL).
i=1

On the other hand, (2.6), (2.7), (1.8), (1.9) imply

89 = sh+AtZa,, Ly 87, + Atza,, T3 60 4P

J" J—-
entl = e 4 Ath,- La 6 + Ath T 65 + prons
: =1
where
S = un(tns) = Uty <h = un(tn) = Ur,
® _ (199 1 _ ey .
J9 = /0 2% (tnss (1 = OULD, + Bun(ta:)) 6.

Eliminating 6h,n, we get
et = [I+ (bTZ +b W) (I - AZ - AW,)"'(1 ®I)]ep
+BTZ+5 W) - AZ - AW, Phn + Phns

where A= AQ®I, A=AQL b=bQRI,b=001, I=1,Q]1,

Z=0t(10 L), W, =At[( TN, (AT, o, (BT
ram = [T, (T, ., ]

Moreover, letting

Er =ep+ APYR,  vf = G(AtL) uj(t) + B(ALLR) 65 (tn, un(tn)),

(2.8)

(2.9)

(2.10)
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we can rewrite (2.10) as

et = [I+TZ+b W) - AZ - AW,) A )] &
+(VTZ+b W) — AZ — AW,)  Fpn + frny  (211)

where

~

Phn = Thn — APy @ uj(tn) — Aty ® gﬁl)(tm uh(tﬂ)),
Phn = Pam + AL (v,’f“ - v,’:)

FARBTZ + 5 W) I — AZ — AW,) w .,
Whn = Y@ U(tn) +7 ® g (tn, un(tn)) — 1 ® v

By (2.9), we have

P = ALY ai; an(tay) + O(A). (2.12)
j=1

Moreover, b" Z(I — AZ Y lwp, = 0, by the definitions of v}, and wp . Hence, it
follows from

(I-AZ-AW,)'=(I-AZ)'+(I- AZ)'AW ,,(I- AZ-AW,)™! (2.13)
that
BTZ+ 8 W, )I - AZ — AW,)  wh, = b Wa(I — AZ)  wy,,
F(OTZ+8 W) - AZ) AW, (I — AZ — AW,) 'wp..

By making use of Lemma 2.2 it is shown that this value is of O(At) by ASLstability
and AS-stability of the implicit RK method, which, together with, vptt — o =
O(At), implies

Phn = ALY b an(tn;) + O(AL). (2.14)

i=1
It follows from (2.11), (2.12), (2.14) that there exists C such that
el < E(a% + max Il ea(®) In) (215)

holds for sufficiently small A and At. This is also verified on the basis of Lemma 2.2.
Therefore, (2.4) holds. []



3. Numerical examples

Consider the simple model problem

du O%u
— f t t>0 0< < .
9! 81:2 g( 3$7 u)) — b —_ T -—_— 1, (3 1)

2

g(t,z,u) = g—u—u?-%-e“"

*t cos? (),

w(t,0) =e ™2 w(t,l)=—eT"H2 ¢>0, (3.2)
u(0,z) =cos(rz), 0<=z<1, (3.3)

whose exact solution is \
u(t,z) = e " ! cos(nx).

Moreover, consider the grid
O0=z¢< -+ <zj=jh< - <zy=1 h=1/M,

and an MOL approximation determined by

uf_y +10u; +ujy, _ Y1~ 2uj + U
12 h?
+ g(t, Tj-1, uj—l) + IOg(t,xj, uj) + Q(ta wj-’-la uj+1)
B 12 3
i=12 ., M-1, (3.4)

where M is a positive integer and u;(t) is an approximation of u(t, z;). The functions
uo(t) and ups(t) are given by
up(t) =2, up(t) = -2

)

corresponding to (3.2). Simple computation shows that
an(t) = O(h*) (3.5)

holds for (3.4).
One of the simplest RK pairs which satisfy (B, )—(B3) is the pair of the trapezoidal
rule and Heun’s method (a modification of the Crank-Nicolson scheme),

0’ 0 0 0l 0 0 |
1/1/2 1/2 , 1|1 0 . (3.6)
|1/2 1/2 |1/2 1/2

Clearly, (B,) is satisfied, and it follows from

1 1-2/2 0
1—z/2[ z/2 1

z

(I, - zA)™ ' = ] 26T (Iy — 2A)™! = 1_2/2[1/2, 1/2],
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r(z) = 14267 (I, — zA)™'1 = i ji;; ,

that the implicit method satisfies (By). In addition, v = [0, 0]7 and 7 = [0, 1/2]".

Hence,

b7 (I, — 2A)7 o W(L - 24)7'F
o) = 2T — 0. Be) = grir—agmy = Ve

and (B3) is satisfied.
The RK pair

0o |0 0 0 0 0 0
a |0 « 0 o 0 0 3+3
3 o= (3 7)
1-a|0 1-20 o a—1 21—-a) O 6
[0 1/2 1/2 | 0 1/2  1/2

also satisfies (B;)~(B3). This pair, which was proposed by Ascher, Ruuth and Spiteri
[2], determines a third order partitioned RK method for ODEs. In particular, (B, )

is satisfied. The conditions (B;) and (Bs;) follow from

1 0 0
1
0 0
(I; — zA)™! = 1—az ,
0 (20 — 1)z 1

T(l-a2)? 1-az

_ 1-Ba-1)z 1
zbT (I - —d
(I = z4) [0’ (1-—az)? '~ 1—az

1-(20—1)z— (a—1/3)7?

bl

n

rz) = (1 — az)? ’
_(o?\ (2a-1)z ~ \_ aa-1)z
#lz) = (?) 2+ (1-4a)z’ 9(z) = - 2+ (1 - 4a)z

We apply the RK pairs (3.6) and (3.7) to the MOL approximation (3.4), and
integrate it from ¢ = 0 to ¢ = 1, with various gridsizes and stepsizes of the form

1
At=h= —. 3.8
= (38)
Table 1 shows the values
—log,em, em= 12;63{1\4( max | u(tn, ;) — |)

Tt is observed that &y is of O(At?) for each method. Noting (3.5) and (3.8), we can
consider the result for (3.7) presents an order reduction phenomenon, i.e., the error

of a “third order” method behaves as O(At?).



Table 1. Numerical results for the model problem (3.1)-(3.3)

M 20 40 80 160 320 640
Method (3.6) | 3.63 5.09 6.79 864 1056 12.52
Method (3.7) | 5.60 7.42 9.32 11.25 13.19 15.16

Fig. 1 shows a numerical result concerning the “soliton solution”

2

w(t,z) = V2a exp[i {gx - (-C— — a)t}] sech[a(x - ct)] (3.9)

4

to the simple nonlinear Schrodinger equation

3_w aw
ot 32

The “lst order scheme” indicates the method (1.5), and the “2nd order scheme”
indicates the method (3.6). The values @ = 0.5, ¢ = 1, Az = 0.2, At = 0.005 are
used for the computation.

+i|lww , (3.10)

le 2 | L T T L] L) Ls
1 i t=40
t=0 | 1st order i\ 2nd order
05t - * scheme | i | scheme ]
0 - X

20 -10 0 10 20 30 40 50 60

Fig. 1. Numerical solutions of the nonlinear Schrodinger equation (3.10).

Fig. 2 shows a stationary solution to the equation (Brusselator)

du u  H%u

T U(82 32)+°‘_(ﬂ+1)"+“”

dv Pv P (311)
—a—tzDV(a2 32)+ﬂu—uv

0<z<4,0<y<4 Dy=002 Dy=1 a=1 B =18,

under the Neumann boundary condition, obtained by the method (3.6). These
figures suggest that the method (3.6) is useful for some problems.
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Fig. 2. Stationary solution to the equation (3.11).
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