Universal bound for isogenies of elliptic curves over number fields

> 東京大学•大学院数理科学研究科 河村 隆 (Takashi Kawamura) Graduate School of Mathematical Sciences, University of Tokyo

1 Introduction

Let E and E^{\prime} be isogenous elliptic curves defined over a number field k of degree d ．Masser and Wüstholz［6］proved the existence of a constant c depending effectively only on d such that there is an isogeny between E and E^{\prime} whose degree is at most $c\{w(E)\}^{4}$ ，where $w(E)=\max \left\{1, h\left(g_{2}\right), h\left(g_{3}\right)\right\}$ when E is identified with its Weierstrass equation $y^{2}=4 x^{3}-g_{2} x-g_{3}$ ．Here h denotes the absolute logarithmic Weil height．But they did not give an explicit formula of c ．The purpose of this paper is to express c as an explicit function of d bounded by a polynomial when E has no complex multiplication．The main result is as follows．

Theorem．Given a positive integer d ，there exists a constant $c(d)$ depending only on d with the following property．Let k be a number field of degree at most d ，and let E be an elliptic curve defined over k without complex multiplication．Suppose E is isogenous to another elliptic curve E^{\prime} defined over k ．
（i）Then there is an isogeny between E and E^{\prime} whose degree is at most $c(d)\{w(E)\}^{4}$ ，where

$$
\begin{aligned}
c(d)= & 6.55 \times 10^{94}\left\{\operatorname { m a x } \left(1.09 \times 10^{7} d^{1.45}[15.5 \max \{\log (88.8 d+2.8)\right.\right. \\
& \left.\left.38.4\}+342.3]^{1.45}, 1.82 \times 10^{63}\right)\right\}^{210}(11.4 d+55.3)^{20}
\end{aligned}
$$

In particular the function $c(d)$ in d increases as $1.9 \times 10^{1956} d^{325}$ when d goes to infinity．
（ii）$c(1) \doteq 8.2 \times 10^{13415}$ when $d=1$ ，i．e．，$k=\mathbf{Q}$ ．
We proceed along the line of［6］．Main devices in calculating c are as follows．First we distinguish five constants which are unified as c_{3} in［6，Lemma 3．3．］and those in［6，Lemmas 3.4 and 4．4］．Secondly we improve the relative degree of the field generated by the values of Weierstrass p－functions and their derivatives over k from 81 to 36 ．

Pellarin [8] found an upper bound of the form $4.2 \times 10^{61} d^{4} \max \{1$, $\log d\}^{2} h(E)^{2}$, where $h(E)=\max \{1, h(j)\}+\max \left\{1, h\left(1, g_{2}, g_{3}\right)\right\}$ and j is the j-invariant of E. But his Lemme 3.2 seems to contain some mistakes, because the cardinality of \mathbf{C}-linear independent monic monomials $\underline{X}^{\underline{\lambda}}$ on G such that $\underline{\lambda} \leq \underline{D}, M_{\underline{D}}$, is $\prod_{n}\left(D_{n}+1\right)$ on line 21 of page 219 . This lemma is used in the proof of Proposition 3.1, and plays a crucial role in the main estimate. We hope that his proof will be corrected.

2 Preliminary estimates

Let Ω be a lattice in the complex plane. Let (ω_{1}, ω_{2}) be a basis of Ω such that $\tau=\omega_{2} / \omega_{1}$ belongs to the standard fundamental region for the modular group. So $|\tau| \geq 1, x=\operatorname{Re} \tau$ satisfies $|x| \leq \frac{1}{2}$, and $y=\operatorname{Im} \tau$ satisfies $y \geq \frac{\sqrt{3}}{2}$. Let A be the area of the unit of Ω, which equals $y\left|\omega_{1}\right|^{2}$. Let g_{2} and g_{3} be the invariants of Ω, let $p(z)$ be the corresponding Weierstrass function, and $\gamma=\max \left\{\left|\frac{1}{4} g_{2}\right|^{\frac{1}{2}},\left|\frac{1}{4} g_{3}\right|^{\frac{1}{3}}\right\}$.

Lemma 2.1. There exists a function $\theta_{0}(z)$ such that $\theta(z)=\gamma \theta_{0}(z)$ and $\tilde{\theta}(z)=p(z) \theta_{0}(z)$ are entire functions, with no common zeros, that satisfy

$$
\left.|\log \max \{|\theta(z)|,|\tilde{\theta}(z)|\}-\pi| z\right|^{2} / A \mid<10.5 y .
$$

for all complex z.
Proof. This is [4, Lemma 3.1] except for the estimation of the constant on the right-hand side of the inequality, which is 10.5 .
q. e. d.

Lemma 2.2. Let z be a complex number not in Ω, and $\|z\|$ be the distance from z to the nearest element of Ω. Then

$$
\left|p(z)-p\left(\omega_{2} / 2\right)\right|<77244\|z\|^{-2} .
$$

Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is 77244 .
q. e. d.

Let d be a positive integer, and k be a number field of degree at most d. Moreover, g_{2} and g_{3} are assumed to lie in k, and $w=\max \left\{1, h\left(g_{2}\right)\right.$, $h\left(g_{3}\right)$.

Lemma 2.3. There are constants $c_{1, i}(1 \leq i \leq 5)$, depending only on d, such that
(i) $c_{1,1}{ }^{-w} \leq \gamma<c_{1,1}{ }^{w}$,
(ii) $y<c_{1,2} w$,
(iii) $A>c_{1,3}{ }^{-w}$,
(iv) $\left|\omega_{1}\right|>c_{1,4}{ }^{-w}$,
(v) $A^{-1}\left|\omega_{2}\right|^{2}<c_{1,5} w$,
where $c_{1,1}=2 e^{0.5 d}, c_{1,2}=3.2 d+1.2, c_{1,3}=16.6 e^{3.8 d}, c_{1,4}=4.37 e^{1.9 d}$, and $c_{1,5}=3.2 d+1.5$.

Proof. This is [6, Lemma 3.3] except for the estimation of the constants $c_{1, i}(1 \leq i \leq 5)$.
q. e. d.

Lemma 2.4. There are a constant c_{2} depending only on d and a positive integer $b<2.22^{w}$ with the following properties. Suppose n is a positive integer, ζ is an element of Ω / n not in Ω, and write $\xi=p(\zeta)$. Then
(i) ξ is an algebraic number of degree at most $d n^{2}$ with $h(\xi)<8.55 w$,
(ii) $b n^{2} \xi$ is an algebraic integer, and $|\xi|<c_{2}{ }^{w} n^{2}$,
where $c_{2}=2.951 \times 10^{6} \exp (3.8 d)$.
Proof. When $\frac{1}{4} g_{2}$ and $\frac{1}{4} g_{3}$ are algebraic integers, from the proof of $[6$, Lemma 3.4] ξ has degree at most $d n^{2}$, and $n^{2} \xi$ is an algebraic integer. In the general case we can find a positive integer $b_{0} \leq\left(\sqrt[3]{2} e^{\frac{1}{6}}\right)^{w}$ such that $\frac{1}{4} b_{0}{ }^{4} g_{2}$ and $\frac{1}{4} b_{0}{ }^{6} g_{3}$ are algebraic integers. These correspond to the lattice $\Omega_{0}=\Omega / b_{0}$ with Weierstrass function $p_{0}(z)=b_{0}^{2} p\left(b_{0} z\right)$. So $\xi_{0}=p_{0}\left(\zeta / b_{0}\right)$ has degree at most $d n^{2}$, and $n^{2} \xi_{0}$ is an algebraic integer. As $\xi=b_{0}{ }^{-2} \xi_{0}$, $n^{2} \xi_{0}=b_{0}{ }^{2} n^{2} \xi$ is an algebraic integer, $b_{0}{ }^{2} n^{2} \xi \leq\left(\sqrt[3]{4} e^{\frac{1}{3}}\right)^{w} n^{2} \xi<2.22^{w} n^{2} \xi$, and ξ is an algebraic number of degree at most $d n^{2}$.

The Néron-Tate height $q(P)$ of the point P in \mathbf{P}^{2} with projective coordinates (1, $p(\zeta), p^{\prime}(\zeta)$) satisfies $q(P)=0$. By [3, Lemme 3.4] the Weil height $h(P)$ satisfies $h(P) \leq q(P)+3 w+8 \log 2 \leq(3+8 \log 2) w$. So $h(\xi) \leq h(P)<8.55 w$.

By Lemma 2.2

$$
\begin{equation*}
|\xi|<\left|p\left(\omega_{2} / 2\right)\right|+c_{3}\|\zeta\|^{-2} \tag{1}
\end{equation*}
$$

where $c_{3}=77244$. As $p\left(\omega_{2} / 2\right)$ is a root of $4 x^{3}-g_{2} x-g_{3}=0$, from Cardano's Formula $\left|p\left(\omega_{2} / 2\right)\right| \leq\left(\left|g_{3}\right|+\sqrt{\left|g_{3}\right|^{2}+\left|g_{2}\right|^{3} / 27}\right)^{\frac{1}{3}}<\left(1.3 e^{\frac{d}{2}}\right)^{w}$. By Lemma 2.3(iv) $\|\zeta\|^{-2} \leq n^{2}\left|\omega_{1}\right|^{-2}<n^{2} c_{1,4}{ }^{2 w}$. From (1)

$$
|\xi| \leq\left(1.3 e^{\frac{d}{2}}\right)^{w}+c_{3} c_{1,4}^{2 w} n^{2}<\left\{2.951 \times 10^{6} \exp (3.8 d)\right\}^{w} n^{2}=c_{2}^{w} n^{2}
$$

3 The Main Proposition: construction

Let E and E^{*} be elliptic curves defined over \mathbf{C}, and Ω and Ω^{*} be their period lattices respectively. Let φ be an isogeny from E^{*} to E. It is said to be normalized if it induces the identity on the tangent spaces. Then $\Omega^{*} \subset \Omega$, and $\left[\Omega: \Omega^{*}\right]$ is the degree of φ. It is said to be cyclic if its kernel is a cyclic group.

Main Proposition. Given a positive integer d, there exists a constant $c_{4}(d)$ depending only on d, with the following property. Let k be a number field of degree at most d, and let E and E^{*} be elliptic curves defined over k without complex multiplication. Suppose there is a normalized cyclic isogeny φ from E^{*} to E of degree N. Then there is an isogeny between E and E^{*} of degree at most $c_{4}(d)\left\{w(E)+w\left(E^{*}\right)+\log N\right\}^{4}$, where

$$
\begin{aligned}
c_{4}(d)= & 1.47 \times 10^{16}[\max \{(5910 d[15.5 \max \{\log (7.4 d+2.8), 38.4\} \\
& \left.\left.+342.3])^{1.45}, 1.82 \times 10^{63}\right\}\right]^{42}
\end{aligned}
$$

Before the proof of Main Proposition we need Lemmas 3.1-3.5. The body of the proof is described in Section 4.

Let $\left(\omega_{1}, \omega_{2}\right)$ and $\left(\omega_{1}{ }^{*}, \omega_{2}{ }^{*}\right)$ be bases of Ω and Ω^{*} respectively such that $\tau=\omega_{2} / \omega_{1}$ and $\tau^{*}=\omega_{2}{ }^{*} / \omega_{1}{ }^{*}$ lie in the standard fundamental region. Then there are integers $m_{i j}(i, j=1,2)$ such that

$$
\begin{equation*}
\omega_{1}^{*}=m_{11} \omega_{1}+m_{12} \omega_{2}, \omega_{2}^{*}=m_{21} \omega_{1}+m_{22} \omega_{2} \tag{2}
\end{equation*}
$$

and $m_{11} m_{22}-m_{12} m_{21}=N$. Write $h=w(E)+w\left(E^{*}\right) \geq 2$.
Lemma 3.1. We have $\left|m_{i j}\right|<(7.4 d+2.8) N^{\frac{1}{2}} h \quad(i, j=1,2)$.
Proof. This is [6, Lemma 4.1] except for the estimation of the constant on the right-hand side of the inequality, which is $7.4 d+2.8$. q. e. d.

Let C be a sufficiently large constant depending only on $d, L=$ $h+\log N, D=\left[C^{20} L^{2}\right]$ and $T=\left[C^{39} L^{4}\right]$. Let $p(z)$ and $p^{*}(z)$ be the Weierstrass functions corresponding to Ω and Ω^{*} respectively. For $t>0$ and independent variables z_{1} and z_{2} let $D_{i}(t)$ be the set of differential operators of the form

$$
\partial=\left(\partial / \partial z_{1}\right)^{t_{1}}\left(\partial / \partial z_{2}\right)^{t_{2}}\left(t_{1} \geq 0, t_{2} \geq 0, t_{1}+t_{2}<t\right)
$$

Lemma 3.2. There is a nonzero polynomial $P\left(X_{1}, X_{2}, X_{1}{ }^{*}, X_{2}{ }^{*}\right)$ of degree at most D in each variable, whose coefficients are rational integers of absolute values at most $\exp \left(c_{5} T L\right)$, such that the function

$$
f\left(z_{1}, z_{2}\right)=P\left(p\left(z_{1}\right), p\left(z_{2}\right), p^{*}\left(m_{11} z_{1}+m_{12} z_{2}\right), p^{*}\left(m_{21} z_{1}+m_{22} z_{2}\right)\right)
$$

satisfies $\partial f\left(\omega_{1} / 2, \omega_{2} / 2\right)=0$ for all ∂ in $D_{i}(8 T)$, where

$$
c_{5}=156 \log C+12 \max \{\log (7.4 d+2.8), 38.4\}+251.3
$$

Proof. Let M denote any monomial of degree at most D in each of the four functions appearing in f, that is,

$$
M=\left\{p\left(z_{1}\right)\right\}^{d_{1}}\left\{p\left(z_{2}\right)\right\}^{d_{2}}\left\{p^{*}\left(m_{11} z_{1}+m_{12} z_{2}\right)\right\}^{d_{3}}\left\{p^{*}\left(m_{21} z_{1}+m_{22} z_{2}\right)\right\}^{d_{4}}
$$

with $0 \leq d_{i} \leq D(1 \leq i \leq 4)$, and let ∂ be any operator of $D_{i}(8 T)$. Then ∂M can be written as a polynomial in the four numbers $m_{i j}(i, j=1,2)$ and the twelve functions obtained from the above four by replacing the Weierstrass functions by their first and second derivatives. From Baker's Lemma [2, Lemma 3]

$$
\frac{d^{j}}{d z^{j}}\{p(z)\}^{k}=\sum u\left(t, t^{\prime}, t^{\prime \prime}, j, k\right)\{p(z)\}^{t}\left\{p^{\prime}(z)\right\}^{t^{\prime}}\left\{p^{\prime \prime}(z)\right\}^{t^{\prime \prime}}
$$

where the sum is taken over nonnegetive integers t, t^{\prime} and $t^{\prime \prime}$ which satisfy $2 t+3 t^{\prime}+4 t^{\prime \prime}=j+2 k$, and $u\left(t, t^{\prime}, t^{\prime \prime}, j, k\right)$ are integers of absolute values at most $j!48^{j}\left(7!2^{8}\right)^{k}$. So the total degree of ∂M is at most $3 D+$ $8 T-1+0.5 \times(8 T-1)+D<12(D+T)$. And its coefficients are integers of absolute values at most $(8 T-1)!48^{8 T-1}\left(7!2^{8}\right)^{D}<T^{8 T}\left(2^{56} \times 3^{8}\right)^{D+T}$.

By Lemma 3.1 we have $\log \left|m_{i j}\right|<\left(\log c_{6}+1\right) L / 2$, where $c_{6}=7.4 d+$ 2.8. From (2) the twelve functions at $\left(z_{1}, z_{2}\right)=\left(\omega_{1} / 2, \omega_{2} / 2\right)$ take the values

$$
p^{(t)}\left(\omega_{j} / 2\right), p^{*(t)}\left(\omega_{j}^{*} / 2\right)(t=0,1,2 ; j=1,2)
$$

By Lemma $2.4 h\left(p\left(\omega_{j} / 2\right)\right)$ and $h\left(p^{*}\left(\omega_{j}^{*} / 2\right)\right)$ are at most 8.55L. Both $p^{\prime}\left(\omega_{j} / 2\right)$ and $p^{* \prime}\left(\omega_{j}^{*} / 2\right)$ are zero. And

$$
\begin{aligned}
h\left(p^{\prime \prime}\left(\omega_{j} / 2\right)\right) & =h\left(6 p\left(\omega_{j} / 2\right)^{2}-g_{2} / 2\right) \\
& \leq 2 h\left(p\left(\omega_{j} / 2\right)\right)+h\left(g_{2}\right)+\log 12+\log 2<19.7 L
\end{aligned}
$$

So does $h\left(p^{* \prime \prime}\left(\omega_{j}^{*} / 2\right)\right)$. Thus $m_{i j}$ and the values of the twelve functions have heights at most $c_{7} L$, where

$$
c_{7}=\max \{0.5+0.5 \log (7.4 d+2.8), 19.7\}
$$

As $p\left(\omega_{j} / 2\right)$ and $p^{*}\left(\omega_{j}^{*} / 2\right)$ are roots of cubic equations with coefficients in k, and $p^{\prime \prime}\left(\omega_{j} / 2\right)$ and $p^{* \prime \prime}\left(\omega_{j}^{*} / 2\right)$ lie in the field generated by $p\left(\omega_{j} / 2\right)$ and $p^{*}\left(\omega_{j}^{*} / 2\right)$ over k, these values lie in k^{\prime} whose degree is at most $36 d$.

The conditions of Lemma 3.2 amount to $R=4 T(8 T+1)$ homogeneous linear equations in $S=(D+1)^{4}$ unknowns with coefficients in k^{\prime}. By

Siegel's Lemma [1 , Proposition], if $S \geq 2 \times 36 d R$, these can be solved in rational integers, not all zero, of absolute values at most $S \exp \left(c_{8}\right)$, where c_{8} is the height of linear equations. To satisfy the condition $S \geq 72 d R$ it suffices that

$$
\begin{equation*}
C^{80} L^{8}>2305 d C^{78} L^{8}, \text { so } C>48.1 \sqrt{d} \tag{3}
\end{equation*}
$$

Next we calculate c_{8}. By Lemma 2.4 there is a positive integer $b \leq$ 2.22^{w} such that $4 b p\left(\omega_{j} / 2\right)$ is an algebraic integer. Since $p^{\prime \prime}\left(\omega_{j} / 2\right)=$ $6 p\left(\omega_{j} / 2\right)^{2}-g_{2} / 2$, and there is a positive integer $b_{2} \leq e^{w}$ such that $b_{2} g_{2}$ is an algebraic integer, $16 b^{2} b_{2} p^{\prime \prime}\left(\omega_{j} / 2\right)$ is an algebraic integer. If we multiply ∂M at $\left(z_{1}, z_{2}\right)=\left(\omega_{1} / 2, \omega_{2} / 2\right)$ by an integer at most $(16 \times$ $\left.2.22^{2 L} e^{L}\right)^{12(D+T)}$, every term is an algebraic integer. As $h\left(\sum_{i=1}^{n} a_{i}\right) \leq$ $\max h\left(a_{i}\right)+\log n$ for algebraic integers a_{i},

$$
\begin{aligned}
S \exp \left(c_{8}\right) \leq & (D+1)^{4}\left(16 \times 2.22^{2 L} e^{L}\right)^{12(D+T)}{ }_{13} H_{12(D+T)} \\
& T^{8 T}\left(2^{56} \times 3^{8}\right)^{D+T} \exp \left\{12 c_{7}(D+T) L\right\}<\exp \left(c_{5} T L\right)
\end{aligned}
$$

q. e. d.

Let $\theta_{0}(z)$ and $\theta_{0}{ }^{*}(z)$ be the functions in Lemma 2.1 corresponding to $p(z)$ and $p^{*}(z)$ respectively. So the function

$$
\Theta\left(z_{1}, z_{2}\right)=\left\{\theta_{0}\left(z_{1}\right) \theta_{0}\left(z_{2}\right) \theta_{0}^{*}\left(m_{11} z_{1}+m_{12} z_{2}\right) \theta_{0}^{*}\left(m_{21} z_{1}+m_{22} z_{2}\right)\right\}^{D}
$$

is entire. Let $F\left(z_{1}, z_{2}\right)=\Theta\left(z_{1}, z_{2}\right) f\left(z_{1}, z_{2}\right)$.
Lemma 3.3. The function $F\left(z_{1}, z_{2}\right)$ is entire. Further, for any complex number z and any operator ∂ in $D_{i}(4 T+1)$ we have

$$
\left|\partial F\left(\omega_{1} z, \omega_{2} z\right)\right|<\exp \left\{c_{9} L\left(T+D|z|^{2}\right)\right\}
$$

where

$$
c_{9}=234 \log C+154.8 d+2 \log (7.4 d+2.8)+12 \max \{\log (7.4 d+2.8)
$$

$$
38.4\}+423.5
$$

Proof. Let $\gamma, \gamma^{*}, \theta, \theta^{*}, \tilde{\theta}, \tilde{\theta}^{*}$ be as in Lemma 2.1 corresponding to p, p^{*}. Then $F\left(z_{1}, z_{2}\right)$ can be expressed as a polynomial in the eight functions

$$
\begin{equation*}
\gamma^{-1} \theta\left(z_{i}\right), \tilde{\theta}\left(z_{i}\right), \gamma^{*-1} \theta^{*}\left(m_{i 1} z_{1}+m_{i 2} z_{2}\right), \tilde{\theta}^{*}\left(m_{i 1} z_{1}+m_{i 2} z_{2}\right)(i=1,2) \tag{4}
\end{equation*}
$$

so it is entire. It is the quadrihomogenized version of P in Lemma 3.2.

Let $M_{0}=\max \left|m_{i j}\right|, A_{0}=\min \left(A, A^{*}\right)$, and $\delta=M_{0}{ }^{-1} A_{0} \frac{1}{2}$, where A and A^{*} are determinants of Ω and Ω^{*} respectively. For any complex number z let z_{1} and z_{2} be complex numbers satisfying

$$
\begin{equation*}
\left|z_{i}-\omega_{i} z\right|=\delta(i=1,2) \tag{5}
\end{equation*}
$$

We claim that $\left|F\left(z_{1}, z_{2}\right)\right|<\exp \left\{c_{10} L\left(T+D|z|^{2}\right)\right\}$, where $c_{10}=$ $156 \log C+147.2 d+12 \max \{\log (7.4 d+2.8), 38.4\}+404.3$. By Lemma 2.1
$\log \max \left\{\left|\theta\left(z_{i}\right)\right|,\left|\tilde{\theta}\left(z_{i}\right)\right|\right\}<10.5 y+\pi A^{-1}\left|z_{i}\right|^{2}$

$$
\leq 10.5\left(y+A^{-1} \delta^{2}+A^{-1}\left|\omega_{i}\right|^{2}|z|^{2}\right)(i=1,2)
$$

As $A^{-1} \delta^{2} \leq M_{0}{ }^{-2} \leq 1$, from Lemma 2.3(i)(ii)(v) the first two functions in (4) have absolute values at most
$c_{1,1}{ }^{L} \exp \left\{10.5\left(c_{1,2} L+1+c_{1,5} L|z|^{2}\right)\right\}<\exp \left\{\left(11.5 c_{1,5}+5.25\right) L\left(1+|z|^{2}\right)\right\}$, for $c_{1,5}>c_{1,2}>\log c_{1,1}$.

The last two expressions in (4) are estimated similarly. From (2) and (5) $z_{i}{ }^{*}:=m_{i 1} z_{1}+m_{i 2} z_{2}$ satisfy $\left|z_{i}{ }^{*}-\omega_{i}{ }^{*} z\right| \leq 2 M_{0} \delta(i=1,2)$. Thus $\log \max \left\{\left|\theta^{*}\left(z_{i}^{*}\right)\right|,\left|\tilde{\theta}^{*}\left(z_{i}^{*}\right)\right|\right\}<10.5\left(y^{*}+4 M_{0}{ }^{2} A^{*-1} \delta^{2}+A^{*-1}\left|\omega_{i}^{*}\right|^{2}|z|^{2}\right)$ ($i=1,2$).

By Lemma 2.3 the last two functions have absolute values at most $c_{1,1}{ }^{L} \exp \left\{10.5\left(c_{1,2} L+4+c_{1,5} L|z|^{2}\right)\right\}<\exp \left\{\left(11.5 c_{1,5}+21\right) L\left(1+|z|^{2}\right)\right\}$.

By Lemma 3.2

$$
\begin{aligned}
\left|F\left(z_{1}, z_{2}\right)\right| & <\exp \left(c_{5} T L\right) \exp \left\{\left(46 c_{1,5}+84\right) D L\left(1+|z|^{2}\right)\right\}(D+1)^{4} \\
& <\exp \left\{c_{10} L\left(T+D|z|^{2}\right)\right\}
\end{aligned}
$$

which is the claim.
By the Cauchy Integral Formula

$$
\begin{aligned}
\left|\partial F\left(\omega_{1} z, \omega_{2} z\right)\right| & =\left|\frac{t_{1}!t_{2}!}{(2 \pi i)^{2}} \oint \oint \frac{F\left(z_{1}, z_{2}\right)}{\left(z_{1}-\omega_{1} z\right)^{t_{1}+1}\left(z_{2}-\omega_{2} z\right)^{t_{2}+1}} d z_{1} d z_{2}\right| \\
& <t_{1}!t_{2}!\delta^{-\left(t_{1}+t_{2}\right)} \exp \left\{c_{10} L\left(T+D|z|^{2}\right)\right\}
\end{aligned}
$$

where the integrals are around the circles (5). From Lemma 2.3(iii) and Lemma 3.1

$$
\begin{aligned}
\delta=M_{0}^{-1} A_{0}^{\frac{1}{2}} & >(7.4 d+2.8)^{-1} N^{-\frac{1}{2}} h^{-1} c_{1,3}-\frac{h}{2} \\
& >\left\{6.72(7.4 d+2.8)^{\frac{1}{2}} \exp (1.9 d)\right\}^{-L}=: c_{11}^{-L}
\end{aligned}
$$

$$
\begin{aligned}
\left|\partial F\left(\omega_{1} z, \omega_{2} z\right)\right| & <(4 T)!c_{11}{ }^{4 L T} \exp \left\{c_{10} L\left(T+D|z|^{2}\right)\right\} \\
& <\exp \left\{c_{9} L\left(T+D|z|^{2}\right)\right\}
\end{aligned}
$$

q. e. d.

Let Q be the unique integral power of 2 that satisfies

$$
C^{17 / 8}<Q \leq 2 C^{17 / 8}
$$

Lemma 3.4. For any odd integer q and $\zeta=q / Q$, we have

$$
\left|\Theta\left(\omega_{1} \zeta, \omega_{2} \zeta\right)\right|>\exp \left(-84 D L Q^{2}\right)
$$

Further, for any ∂ in $D_{i}(4 T+1)$ such that $\partial f\left(\omega_{1} \zeta, \omega_{2} \zeta\right) \neq 0$, we have

$$
\left|\partial f\left(\omega_{1} \zeta, \omega_{2} \zeta\right)\right|>\exp \left(-c_{12} T L Q^{8}\right)
$$

where $c_{12}=16 d[290 \log C+15.5 \max \{\log (7.4 d+2.8), 38.4\}+342.3]$.
Proof. By Lemma 2.3(i) and Lemma 2.4(i)

$$
\max \left\{\gamma,\left|p\left(\omega_{j} \zeta\right)\right|\right\}<\exp \left(8.55 d h Q^{2}\right)(j=1,2)
$$

From Lemma 3.1 and Lemma 2.3(ii)

$$
\left|\theta_{0}\left(\omega_{j} \zeta\right)\right|>\exp \left(-10.5 y-8.55 d h Q^{2}\right)>\exp \left\{-10.5 d\left(1+c_{1,2} / Q^{2}\right) h Q^{2}\right\}
$$ and the same bound holds for $\left|\theta_{0}^{*}\left(\omega_{j}^{*} \zeta\right)\right|(j=1,2)$. Thus

$\left|\Theta\left(\omega_{1} \zeta, \omega_{2} \zeta\right)\right|>\exp \left\{-4 D \times 10.5 d\left(1+c_{1,2} / Q^{2}\right) h Q^{2}\right\}>\exp \left(-84 D L Q^{2}\right)$, for by (3) $Q^{2}>C^{17 / 4}>48^{4} d^{2}>3.2 d+1.2=c_{1,2}$.
$\alpha:=\partial f\left(\omega_{1} \zeta, \omega_{2} \zeta\right)$ is estimated as in the proof of Lemma 3.2. α is a polynomial in the $m_{i j}(i, j=1,2)$ and the twelve numbers $p^{(t)}\left(\omega_{j} \zeta\right), p^{*(t)}\left(\omega_{j}^{*} \zeta\right)(j=1,2 ; t=0,1,2)$. Let ∂M be as in the proof of Lemma 3.2, and ∂ be any operator of $D_{i}(4 T+1)$. From Baker's Lemma the total degree of ∂M is at most $6(D+T)$, and the absolute values of its coefficients are at most $T^{4 T}\left(2^{24} \times 3^{4}\right)^{D+T}$.

By Lemma 2.4 there is a positive integer $b<2.22^{w}$ such that $b Q^{2} p\left(\omega_{j} \zeta\right)$ is an algebraic integer. Since $p^{\prime}\left(\omega_{j} \zeta\right)^{2}=4 p\left(\omega_{j} \zeta\right)^{3}-g_{2} p\left(\omega_{j} \zeta\right)-g_{3}$, and there is a positive integer $b_{3} \leq e^{w}$ such that $b_{3} g_{3}$ is an algebraic integer, $\left(b^{3} b_{2} b_{3}\right)^{\frac{1}{2}} Q^{3} p^{\prime}\left(\omega_{j} \zeta\right)$ is an algebraic integer. And $2 b^{2} b_{2} Q^{4} p^{\prime \prime}\left(\omega_{j} \zeta\right)$ is an algebraic integer. If we multiply ∂M at $\left(z_{1}, z_{2}\right)=\left(\omega_{1} \zeta, \omega_{2} \zeta\right)$ by
a positive integer at most $\left(2 \times 2.22^{2 L} e^{1.5 L} Q^{4}\right)^{6(D+T)}$, every term is an algebraic integer. By Lemma $2.4 h\left(p\left(\omega_{j} \zeta\right)\right)$ and $h\left(p^{*}\left(\omega_{j}{ }^{*} \zeta\right)\right)$ are at most $8.55 L$,

$$
\begin{aligned}
h\left(p^{\prime}\left(\omega_{j} \zeta\right)\right) \leq & \frac{1}{2}\left\{3 h\left(p\left(\omega_{j} \zeta\right)\right)+\log 4+h\left(g_{2}\right)+h\left(p\left(\omega_{j} \zeta\right)\right)+h\left(g_{3}\right)\right. \\
& +\log 3\}<2 \times 8.55 L+L+\log 3<19.7 L
\end{aligned}
$$

and $h\left(p^{* \prime}\left(\omega_{j}{ }^{*} \zeta\right)\right), h\left(p^{\prime \prime}\left(\omega_{j} \zeta\right)\right)$ and $h\left(p^{* \prime \prime}\left(\omega_{j}^{*} \zeta\right)\right)$ are at most 19.7L. Thus at $\left(z_{1}, z_{2}\right)=\left(\omega_{1} \zeta, \omega_{2} \zeta\right)$,

$$
\begin{aligned}
\exp (h(\partial M)) \leq & \left(2 \times 2.22^{2 L} e^{1.5 L} Q^{4}\right)^{12(D+T)}{ }_{17} H_{6(D+T)} \\
& T^{4 T}\left(2^{24} \times 3^{4}\right)^{D+T} \exp \left\{6 c_{7}(D+T) L\right\}
\end{aligned}
$$

α is a linear combination of ∂M with rational integer coefficients whose absolute values are at most $\exp \left(c_{5} T L\right)$. So

$$
\begin{aligned}
h(\alpha) & \leq \log (D+1)^{4}+c_{5} T L+h(\partial M) \\
& <[290 \log C+15.5 \max \{\log (7.4 d+2.8), 38.4\}+342.3] T L
\end{aligned}
$$

Next we estimate the degree of $\alpha, \operatorname{deg} \alpha$. Since

$$
\begin{aligned}
\mathbf{Q}(\alpha) & =\mathbf{Q}\left(p^{(t)}\left(\omega_{j} \zeta\right), p^{*(t)}\left(\omega_{j}^{*} \zeta\right)\right)(j=1,2 ; t=0,1,2) \\
& \subset k\left(p\left(\omega_{j} \zeta\right), p^{*}\left(\omega_{j}^{*}\right), p^{\prime}\left(\omega_{j} \zeta\right), p^{* \prime}\left(\omega_{j}^{*} \zeta\right)\right)
\end{aligned}
$$

the degrees of $p\left(\omega_{j} \zeta\right)$ and $p^{*}\left(\omega_{j}^{*} \zeta\right)$ are at most $d Q^{2}$ by Lemma 2.4(i), and $\left[k\left(p\left(\omega_{j} \zeta\right), p^{\prime}\left(\omega_{j} \zeta\right)\right): k\left(p\left(\omega_{j} \zeta\right)\right)\right] \leq 2$,

$$
\operatorname{deg} \alpha=[\mathbf{Q}(\alpha): \mathbf{Q}] \leq d\left(Q^{2}\right)^{4} 2^{4}=16 d Q^{8}
$$

Hence $|\alpha| \geq \exp \{-(\operatorname{deg} \alpha) h(\alpha)\}>\exp \left(-c_{12} T L Q^{8}\right)$. q. e. d.
Lemma 3.5. If C satisfies $C>(256 / \log 2) c_{12}$ with the constant c_{12} in Lemma 3.4, then for any odd integer q and any ∂ in $D_{i}(4 T+1)$ we have $\partial f\left(q \omega_{1} / Q, q \omega_{2} / Q\right)=0$.

Proof. Assume that there exist an odd integer q and an operator ∂ in $D_{i}(4 T+1)$ such that $\alpha=\partial f\left(\omega_{1} \zeta, \omega_{2} \zeta\right) \neq 0$ for $\zeta=q / Q$. We can suppose that $0<\zeta<1$, and that

$$
\begin{equation*}
\alpha \Theta\left(\omega_{1} \zeta, \omega_{2} \zeta\right)=G(\zeta) \tag{6}
\end{equation*}
$$

where $G(z)=\partial F\left(\omega_{1} z, \omega_{2} z\right)$ and ∂ is of minimal order.
$G^{(t)}(z)$ is a linear combination of the $\partial^{\prime} f\left(\omega_{1} z, \omega_{2} z\right)$ for ∂^{\prime} in $D_{i}(t+$ $1+4 T)$, so by Lemma 3.2 and periodicity

$$
\begin{equation*}
G^{(t)}(s+1 / 2)=0 \tag{7}
\end{equation*}
$$

for any integer t with $0 \leq t<4 T$ and any integer s. We apply the Schwarz Lemma to (7) for $0 \leq s<S$, where $S=\left[C^{18} L\right]$. Then $|G(\zeta)| \leq$ $2^{-4 T S} M_{1}$, where M_{1} is the supremum of $|G(z)|$ for $|z| \leq 5 S$. By Lemma $3.3 M_{1}<\exp \left\{25 c_{9} L\left(T+D S^{2}\right)\right\}<\exp \left(50 c_{9} L D S^{2}\right)$. If $C>(25 / \log 2) c_{9}$, then $\exp \left(50 c_{9} L D S^{2}\right)<2^{2 T S}$, so $|G(\zeta)|<2^{-2 T S}$. By (6) and Lemma 3.4

$$
\begin{equation*}
|\alpha|<2^{-2 T S} \exp \left(84 D L Q^{2}\right)<2^{-T S}, \tag{8}
\end{equation*}
$$

where the second inequality follows, because $C>(84 / \log 2)^{4 / 131}$. But also from Lemma 3.4 we have the lower bound

$$
\begin{equation*}
|\alpha|>\exp \left(-c_{12} T L Q^{8}\right) \tag{9}
\end{equation*}
$$

If

$$
\begin{align*}
C> & (256 / \log 2) c_{12} \\
\doteq & 5909 d[290 \log C+15.5 \max \{\log (7.4 d+2.8), 38.4\} \\
& +342.3] \tag{10}
\end{align*}
$$

then $2^{T S}>\exp \left(c_{12} T L Q^{8}\right)$, which contradicts (8) and (9). As $256 c_{12}>$ $25 c_{9},(10)$ implies that $C>(25 / \log 2) c_{9}$.
q. e. d.

4 Proof of Main Proposition: deconstruction

Let $G=E^{2} \times E^{* 2}$ embedded in \mathbf{P}^{81} by Segre embedding. Let ε be the exponential map from \mathbf{C}^{4} to G obtained from the functions $p\left(z_{1}\right), p\left(z_{2}\right)$, $p^{*}\left(z_{1}{ }^{*}\right), p^{*}\left(z_{2}{ }^{*}\right)$ and their derivatives for independent complex variables $z_{1}, z_{2}, z_{1}{ }^{*}, z_{2}{ }^{*}$. Define a subspace Z of \mathbf{C}^{4} by the equations

$$
z_{1}^{*}=m_{11} z_{1}+m_{12} z_{2}, z_{2}^{*}=m_{21} z_{1}+m_{22} z_{2}
$$

Write O_{G} for the zero of G, and let Σ and Σ_{0} be the sets of even and odd multiples of the point $\sigma=\varepsilon\left(\omega_{1} / Q, \omega_{2} / Q, \omega_{1}^{*} / Q, \omega_{2}{ }^{*} / Q\right)$ in G respectively. We use Philippon's zero estimate.

Lemma 4. There is a connected algebraic subgroup $H=\varepsilon(W) \neq G$ of G such that

$$
\begin{equation*}
T^{\rho} R \Delta<c_{13} D^{r} \tag{11}
\end{equation*}
$$

where W is a subspace of \mathbf{C}^{4}, ρ is the codimension of $Z \cap W$ in Z, R is the number of points in Σ distinct modulo H, Δ is the degree of H, r is the codimension of H in G, and $c_{13}=4.032 \times 10^{7}$.

Proof. By Lemma 3.5 there is a polynomial, homogeneous of degree D, that vanishes to order at least $4 T+1$ along $\varepsilon(Z)$ at all points of Σ_{0}, but does not vanish identically on G. Let $\Sigma(4)=\left\{\sum_{i=1}^{4} \sigma_{i} \mid \sigma_{i} \in\right.$ $\Sigma\}$, so $\Sigma_{0}=\sigma+\Sigma(4)$. From [5, Lemma 1] translations on an elliptic curve are described by homogeneous polynomials of degree 2. Accroding to Philippon's zero estimate [9, Théorème 1], there exists a connected algebraic subgroup $H=\varepsilon(W) \neq G$ of G such that

$$
T^{\rho} R \Delta \leq \operatorname{deg} G \times 2^{\operatorname{dim} G}(2 D)^{r}
$$

As $\operatorname{deg} G=3^{2 \operatorname{dim} G} \times 4!=2^{3} \times 3^{9}$ and $r \leq 4, T^{\rho} R \Delta<c_{13} D^{r}$. q. e. d.
Now we can give the proof of Main Proposition. We want to find a nontrivial graph subgroup of an isogeny $E \rightarrow E^{*}$ of small degree. We consider the three cases $\rho=2,1,0$ in (11).

When $\rho=2, T^{2} R \Delta<c_{13} D^{r}$. So

$$
\begin{equation*}
R<c_{13} D^{r} T^{-2}<4.04 \times 10^{7} C^{2} D^{r-4}=: c_{14} C^{2} D^{r-4} \tag{12}
\end{equation*}
$$

Thus $r=4, H=O_{G}$, and $R=Q / 2$. If

$$
\begin{equation*}
C>2^{8} c_{14}^{8} \doteq 1.817 \times 10^{63} \tag{13}
\end{equation*}
$$

then $Q / 2>C^{17 / 8} / 2>c_{14} C^{2}$ contradicting (12). Hence the case $\rho=2$ is ruled out under (13).

Next when $\rho=1, Z \cap W$ has dimension 1 , so $r \leq 3$. If H is nonsplit, then by [8, Lemma 2.2] there is an isogeny of degree at most $9 \Delta^{2}$ between E and E^{*}. From (11) $\Delta<c_{13} D^{3} T^{-1}<4.04 \times 10^{7} C^{21} L^{2}$. Thus we get an isogeny of degree at most

$$
\begin{equation*}
9 \times\left(4.04 \times 10^{7}\right)^{2} C^{42} L^{4} \doteq 1.469 \times 10^{16} C^{42} L^{4} \tag{14}
\end{equation*}
$$

If H is split, we can not have $r=3$ by the proof of [6 , Proposition]. If $r \leq 2$, then $R=Q / 2$ by [6, Lemma 5.2], and $R<c_{13} D^{2} T^{-1}<c_{14} C$. The assumption of no complex multiplication is used to prove [6, Lemma 5.2] in applying Kolchin's Theorem. Since $C>\left(2 c_{14}\right)^{8 / 9}$ from (13), $Q / 2>C^{17 / 8} / 2>c_{14} C$. Hence a contradiction.

Lastly when $\rho=0$, then $Z \subset W$ and $r \leq 2$. If $r=2$, then from the proof of $[6$, Proposition $] N \leq 9 \Delta<9 c_{13} D^{2} \leq 9 c_{13} C^{40} L^{4}$, so the original isogeny φ satisfies the required estimate.

If $r=1$, then by the proof of [6, Proposition] H is nonsplit, and there is an isogeny of degree at most $9 \Delta^{2}$ between E and E^{*}. As by (11)
$\Delta<c_{13} D \leq c_{13} C^{20} L^{2}$, we get an isogeny of degree at most $9 \times(4.04 \times$ $\left.10^{7}\right)^{2} C^{40} L^{4} \doteq 1.469 \times 10^{16} C^{40} L^{4}$.

Next we estimate C, the conditions for which are (10) and (13), for (10) implies (3). Let C_{0} be the solution of the equation

$$
C_{0}=5910 d\left[290 \log C_{0}+15.5 \max \{\log (7.4 d+2.8), 38.4\}+342.3\right] .
$$

Let $x_{0}=\log C_{0}, A_{1}=5910 \times 290 d, A_{2}=5910 d[15.5 \max \{\log (7.4 d+$ $2.8), 38.4\}+342.3]$, and $f(x)=e^{x}-A_{1} x-A_{2}$, so $f\left(x_{0}\right)=0$. If $x_{1}=$ $\left\{A_{2} /\left(A_{2}-A_{1}\right)\right\} \log A_{2}$, then $f\left(x_{1}\right)>0$. As $f(x)$ increases monotonously, $x_{0}<x_{1}$, that is, $C_{0}<\exp x_{1}<A_{2}^{1.45}$.

Thus $C=\max \left\{A_{2}{ }^{1.45}, 1.82 \times 10^{63}\right\}$ satisfies both (10) and (13). From (14) we have proved Main Proposition with $c_{4}(d)=1.47 \times 10^{16} C^{42}$.

5 Proof of Theorem

We normalize the isogeny by Lemma 5 to apply Main Proposition.
Lemma 5. Given a positive integer d, there exists a constant c_{15} with the following property. Let k be a number field of degree at most d, let E and $E_{1}{ }^{*}$ be elliptic curves defined over k, and let φ be an isogeny from E to $E_{1}{ }^{*}$ of degree N. Suppose k^{\prime} is the smallest extension field of k over which φ is defined. Then $\left[k^{\prime}: k\right] \leq 12$, and there is an elliptic curve E^{*}, defined over k^{\prime} and isomorphic over k^{\prime} to $E_{1}{ }^{*}$, such that the induced isogeny from E to E^{*} is normalized. Further we have

$$
w\left(E^{*}\right)<(11.4 d+54.3) w(E)+13 \log N=: c_{15} w(E)+13 \log N .
$$

Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is $11.4 d+54.3$. q. e. d.

Now we give the proof of Theorem. Let N be the smallest degree of any isogeny between E and E^{\prime}. By [6, Lemma 6.2] there is a cyclic isogeny from E to E^{\prime} of degree N. According to Lemma 5 there are an extension k^{\prime} of k with $\left[k^{\prime}: k\right] \leq 12$ and an elliptic curve E^{*} defined over k^{\prime} and isomorphic to E^{\prime} such that the induced isogeny φ from E to E^{*} is normalized and $w\left(E^{*}\right)<c_{15}\{w(E)+\log N\}$.

As φ is cyclic, by Main Proposition there is an isogeny between E and E^{*} whose degree N_{1} satisfies
$N_{1} \leq c_{4}(12 d)\left\{w(E)+w\left(E^{*}\right)+\log N\right\}^{4}<c_{4}(12 d)\left(c_{15}+1\right)^{4}\{w(E)+\log N\}^{4}$.

So there is an isogeny of degree N_{1} between E and E^{\prime}, and

$$
N \leq N_{1}<c_{4}(12 d)\left(c_{15}+1\right)^{4}\{w(E)+\log N\}^{4} .
$$

Thus $N<c_{16}\{w(E)\}^{4}$ for a constant c_{16} depending only on d.
Lastly we estimate c_{16}. Let $c_{17}=c_{4}(12 d)\left(c_{15}+1\right)^{4}, w=w(E), N_{0}$ satisfy $N_{0}=c_{17}\left(w+\log N_{0}\right)^{4}$, and $c_{18}=N_{0} / w^{4}$. Then $N<N_{0}$, and $c_{18} w^{4}=c_{17}\left(w+4 \log w+\log c_{18}\right)^{4}$. Therefore

$$
c_{18}=c_{17}\left(1+4 \log w / w+\log c_{18} / w\right)^{4}<c_{17}\left(5+\log c_{18}\right)^{4} .
$$

Let c_{19} satisfy $c_{19}=c_{17}\left(5+\log c_{19}\right)^{4}$. Then $c_{18}<c_{19}$, and c_{19} is estimated similarly as C_{0} in the proof of Main Proposition. So $c_{19}<5^{20} c_{17}{ }^{5}$, and

$$
N<N_{0}=c_{18} w^{4}<c_{19} w^{4}<5^{20} c_{17}{ }^{5} w^{4}=5^{20}\left\{c_{4}(12 d)\right\}^{5}\left(c_{15}+1\right)^{20} w^{4} .
$$

Hence $c_{16}=5^{20}\left\{c_{4}(12 d)\right\}^{5}\left(c_{15}+1\right)^{20}<c(d)$.
Acknowledgements. The author is most grateful to Professor Takayuki Oda for helpful advice. He thanks Professor David W. Masser, Professor Sinnou David and Professor Noriko Hirata-Kohno for valuable advice about the estimation of heights.

References

[1] M. Anderson and D. W. Masser, Lower bounds for heights on elliptic curves, Math. Z. 174 (1980), 23-34.
[2] A. Baker, On the periods of the Weierstrass p-function, Symposia Math. Vol. IV, INDAM Rome 1968, Academic Press, London (1970), 155-174.
[3] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France 62 (1995).
[4] D. W. Masser, Counting points of small height on elliptic curves, Bull. Soc. Math. France, 117 (1989), 247-265.
[5] D. W. Masser and G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72 (1983) 407-464.
[6] D. W. Masser and G. Wüstholz, Estimating isogenies on elliptic curves, Invent. Math. 100 (1990), 1-24.
[7] D. W. Masser and G. Wüstholz, Isogeny estimates for abelian varieties, and finiteness theorems, Ann. Math. 137 (1993), 459-472.
[8] F. Pellarin, Sur une majoration explicite pour un degré d'isogenie liant deux courbes elliptiques, Acta Arithmetica C. 3 (2001), 203-243.
[9] P. Philippon, Nouveaux lemmes de zéros dans les groupes algébriques commutatifs, Rocky Mountain J. Math. 26 (1996), 1069-

