Universal bound for isogenies of elliptic curves over number fields

東京大学・大学院数理科学研究科 河村 隆(Takashi Kawamura) Graduate School of Mathematical Sciences, University of Tokyo

1 Introduction

Let E and E' be isogenous elliptic curves defined over a number field k of degree d. Masser and Wüstholz [6] proved the existence of a constant c depending effectively only on d such that there is an isogeny between E and E' whose degree is at most $c\{w(E)\}^4$, where $w(E) = \max\{1, h(g_2), h(g_3)\}$ when E is identified with its Weierstrass equation $y^2 = 4x^3 - g_2x - g_3$. Here h denotes the absolute logarithmic Weil height. But they did not give an explicit formula of c. The purpose of this paper is to express c as an explicit function of d bounded by a *polynomial* when E has no complex multiplication. The main result is as follows.

Theorem. Given a positive integer d, there exists a constant c(d) depending only on d with the following property. Let k be a number field of degree at most d, and let E be an elliptic curve defined over k without complex multiplication. Suppose E is isogenous to another elliptic curve E' defined over k.

(i) Then there is an isogeny between E and E' whose degree is at most $c(d)\{w(E)\}^4$, where

$$c(d) = 6.55 \times 10^{94} \{ \max(1.09 \times 10^7 d^{1.45} [15.5 \max\{ \log(88.8d + 2.8), 38.4\} + 342.3]^{1.45}, 1.82 \times 10^{63}) \}^{210} (11.4d + 55.3)^{20}.$$

In particular the function c(d) in d increases as $1.9 \times 10^{1956} d^{325}$ when d goes to infinity.

(ii) $c(1) \doteq 8.2 \times 10^{13415}$ when d = 1, i. e., $k = \mathbf{Q}$.

We proceed along the line of [6]. Main devices in calculating c are as follows. First we distinguish five constants which are unified as c_3 in [6, Lemma 3.3.] and those in [6, Lemmas 3.4 and 4.4]. Secondly we improve the relative degree of the field generated by the values of Weierstrass *p*-functions and their derivatives over k from 81 to 36.

Pellarin [8] found an upper bound of the form $4.2 \times 10^{61} d^4 \max\{1, \log d\}^2 h(E)^2$, where $h(E) = \max\{1, h(j)\} + \max\{1, h(1, g_2, g_3)\}$ and j is the j-invariant of E. But his Lemme 3.2 seems to contain some mistakes, because the cardinality of **C**-linear independent monic monomials $\underline{X}^{\underline{\lambda}}$ on G such that $\underline{\lambda} \leq \underline{D}, M_{\underline{D}}$, is $\prod_n (D_n + 1)$ on line 21 of page 219. This lemma is used in the proof of Proposition 3.1, and plays a crucial role in the main estimate. We hope that his proof will be corrected.

2 Preliminary estimates

Let Ω be a lattice in the complex plane. Let (ω_1, ω_2) be a basis of Ω such that $\tau = \omega_2/\omega_1$ belongs to the standard fundamental region for the modular group. So $|\tau| \ge 1$, $x = \operatorname{Re} \tau$ satisfies $|x| \le \frac{1}{2}$, and $y = \operatorname{Im} \tau$ satisfies $y \ge \frac{\sqrt{3}}{2}$. Let A be the area of the unit of Ω , which equals $y|\omega_1|^2$. Let g_2 and g_3 be the invariants of Ω , let p(z) be the corresponding Weierstrass function, and $\gamma = \max\{|\frac{1}{4}g_2|^{\frac{1}{2}}, |\frac{1}{4}g_3|^{\frac{1}{3}}\}$.

Lemma 2.1. There exists a function $\theta_0(z)$ such that $\theta(z) = \gamma \theta_0(z)$ and $\tilde{\theta}(z) = p(z)\theta_0(z)$ are entire functions, with no common zeros, that satisfy

$$|\log \max\{| heta(z)|, \ | ilde{ heta}(z)|\} - \pi |z|^2/A| < 10.5y.$$

for all complex z.

Proof. This is [4, Lemma 3.1] except for the estimation of the constant on the right-hand side of the inequality, which is 10.5. q. e. d.

Lemma 2.2. Let z be a complex number not in Ω , and ||z|| be the distance from z to the nearest element of Ω . Then

$$|p(z) - p(\omega_2/2)| < 77244 ||z||^{-2}$$

Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is 77244. q. e. d.

Let d be a positive integer, and k be a number field of degree at most d. Moreover, g_2 and g_3 are assumed to lie in k, and $w = \max\{1, h(g_2), h(g_3)\}$.

Lemma 2.3. There are constants $c_{1,i}$ $(1 \le i \le 5)$, depending only on d, such that

(i) $c_{1,1}^{-w} \le \gamma < c_{1,1}^{w}$, (ii) $y < c_{1,2}w$, (iii) $A > c_{1,3}^{-w}$,

(iv) $|\omega_1| > c_{1,4}^{-w}$,

(v) $A^{-1}|\omega_2|^2 < c_{1,5}w$,

where $c_{1,1} = 2e^{0.5d}$, $c_{1,2} = 3.2d + 1.2$, $c_{1,3} = 16.6e^{3.8d}$, $c_{1,4} = 4.37e^{1.9d}$, and $c_{1,5} = 3.2d + 1.5$.

Proof. This is [6, Lemma 3.3] except for the estimation of the constants $c_{1,i}$ $(1 \le i \le 5)$. q. e. d.

Lemma 2.4. There are a constant c_2 depending only on d and a positive integer $b < 2.22^w$ with the following properties. Suppose n is a positive integer, ζ is an element of Ω/n not in Ω , and write $\xi = p(\zeta)$. Then

(i) ξ is an algebraic number of degree at most dn^2 with $h(\xi) < 8.55w$, (ii) $bn^2\xi$ is an algebraic integer, and $|\xi| < c_2^w n^2$,

where $c_2 = 2.951 \times 10^6 \exp(3.8d)$.

Proof. When $\frac{1}{4}g_2$ and $\frac{1}{4}g_3$ are algebraic integers, from the proof of [6, Lemma 3.4] ξ has degree at most dn^2 , and $n^2\xi$ is an algebraic integer. In the general case we can find a positive integer $b_0 \leq (\sqrt[3]{2}e^{\frac{1}{6}})^w$ such that $\frac{1}{4}b_0{}^4g_2$ and $\frac{1}{4}b_0{}^6g_3$ are algebraic integers. These correspond to the lattice $\Omega_0 = \Omega/b_0$ with Weierstrass function $p_0(z) = b_0{}^2p(b_0z)$. So $\xi_0 = p_0(\zeta/b_0)$ has degree at most dn^2 , and $n^2\xi_0$ is an algebraic integer. As $\xi = b_0{}^{-2}\xi_0$, $n^2\xi_0 = b_0{}^2n^2\xi$ is an algebraic integer, $b_0{}^2n^2\xi \leq (\sqrt[3]{4}e^{\frac{1}{3}})^w n^2\xi < 2.22^w n^2\xi$, and ξ is an algebraic number of degree at most dn^2 .

The Néron-Tate height q(P) of the point P in \mathbf{P}^2 with projective coordinates (1, $p(\zeta)$, $p'(\zeta)$) satisfies q(P) = 0. By [3, Lemme 3.4] the Weil height h(P) satisfies $h(P) \le q(P) + 3w + 8\log 2 \le (3 + 8\log 2)w$. So $h(\xi) \le h(P) < 8.55w$.

By Lemma 2.2

$$|\xi| < |p(\omega_2/2)| + c_3 ||\zeta||^{-2}, \tag{1}$$

where $c_3 = 77244$. As $p(\omega_2/2)$ is a root of $4x^3 - g_2x - g_3 = 0$, from Cardano's Formula $|p(\omega_2/2)| \leq (|g_3| + \sqrt{|g_3|^2 + |g_2|^3/27})^{\frac{1}{3}} < (1.3e^{\frac{d}{2}})^w$. By Lemma 2.3(iv) $\|\zeta\|^{-2} \leq n^2 |\omega_1|^{-2} < n^2 c_{1,4}^{2w}$. From (1)

$$|\xi| \le (1.3e^{\frac{d}{2}})^w + c_3 c_{1,4}^{2w} n^2 < \{2.951 \times 10^6 \exp(3.8d)\}^w n^2 = c_2^w n^2.$$

3 The Main Proposition: construction

Let E and E^* be elliptic curves defined over \mathbf{C} , and Ω and Ω^* be their period lattices respectively. Let φ be an isogeny from E^* to E. It is said to be normalized if it induces the identity on the tangent spaces. Then $\Omega^* \subset \Omega$, and $[\Omega : \Omega^*]$ is the degree of φ . It is said to be cyclic if its kernel is a cyclic group.

Main Proposition. Given a positive integer d, there exists a constant $c_4(d)$ depending only on d, with the following property. Let k be a number field of degree at most d, and let E and E^* be elliptic curves defined over k without complex multiplication. Suppose there is a normalized cyclic isogeny φ from E^* to E of degree N. Then there is an isogeny between E and E^* of degree at most $c_4(d)\{w(E) + w(E^*) + \log N\}^4$, where

$$\begin{array}{rcl} c_4(d) &=& 1.47 \times 10^{16} [\max\{(5910d [15.5 \max\{\log(7.4d+2.8), \ 38.4\} \\ &+ 342.3])^{1.45}, \ 1.82 \times 10^{63}\}]^{42}. \end{array}$$

Before the proof of Main Proposition we need Lemmas 3.1-3.5. The body of the proof is described in Section 4.

Let (ω_1, ω_2) and (ω_1^*, ω_2^*) be bases of Ω and Ω^* respectively such that $\tau = \omega_2/\omega_1$ and $\tau^* = \omega_2^*/\omega_1^*$ lie in the standard fundamental region. Then there are integers m_{ij} (i, j = 1, 2) such that

$$\omega_1^* = m_{11}\omega_1 + m_{12}\omega_2, \ \omega_2^* = m_{21}\omega_1 + m_{22}\omega_2 \tag{2}$$

and $m_{11}m_{22} - m_{12}m_{21} = N$. Write $h = w(E) + w(E^*) \ge 2$.

Lemma 3.1. We have $|m_{ij}| < (7.4d + 2.8)N^{\frac{1}{2}}h$ (i, j = 1, 2).

Proof. This is [6, Lemma 4.1] except for the estimation of the constant on the right-hand side of the inequality, which is 7.4d + 2.8. q. e. d.

Let C be a sufficiently large constant depending only on d, $L = h + \log N$, $D = [C^{20}L^2]$ and $T = [C^{39}L^4]$. Let p(z) and $p^*(z)$ be the Weierstrass functions corresponding to Ω and Ω^* respectively. For t > 0 and independent variables z_1 and z_2 let $D_i(t)$ be the set of differential operators of the form

$$\partial = (\partial/\partial z_1)^{t_1} (\partial/\partial z_2)^{t_2} \ (t_1 \ge 0, \ t_2 \ge 0, \ t_1 + t_2 < t).$$

Lemma 3.2. There is a nonzero polynomial $P(X_1, X_2, X_1^*, X_2^*)$ of degree at most D in each variable, whose coefficients are rational integers of absolute values at most $\exp(c_5TL)$, such that the function

$$f(z_1, \ z_2) = P(p(z_1), \ p(z_2), \ p^*(m_{11}z_1 + m_{12}z_2), \ p^*(m_{21}z_1 + m_{22}z_2))$$

satisfies $\partial f(\omega_1/2, \omega_2/2) = 0$ for all ∂ in $D_i(8T)$, where

$$c_5 = 156 \log C + 12 \max \{ \log(7.4d + 2.8), 38.4 \} + 251.3.$$

Proof. Let M denote any monomial of degree at most D in each of the four functions appearing in f, that is,

$$M = \{p(z_1)\}^{d_1} \{p(z_2)\}^{d_2} \{p^*(m_{11}z_1 + m_{12}z_2)\}^{d_3} \{p^*(m_{21}z_1 + m_{22}z_2)\}^{d_4}$$

with $0 \le d_i \le D$ $(1 \le i \le 4)$, and let ∂ be any operator of $D_i(8T)$. Then ∂M can be written as a polynomial in the four numbers m_{ij} (i, j = 1, 2) and the twelve functions obtained from the above four by replacing the Weierstrass functions by their first and second derivatives. From Baker's Lemma [2, Lemma 3]

$$rac{d^{j}}{dz^{j}}\{p(z)\}^{k}=\sum \ u(t,\ t',\ t'',\ j,\ k)\{p(z)\}^{t}\{p'(z)\}^{t'}\{p''(z)\}^{t''},$$

where the sum is taken over nonnegetive integers t, t' and t'' which satisfy 2t + 3t' + 4t'' = j + 2k, and u(t, t', t'', j, k) are integers of absolute values at most $j!48^{j}(7!2^{8})^{k}$. So the total degree of ∂M is at most $3D + 8T - 1 + 0.5 \times (8T - 1) + D < 12(D + T)$. And its coefficients are integers of absolute values at most $(8T - 1)!48^{8T-1}(7!2^{8})^{D} < T^{8T}(2^{56} \times 3^{8})^{D+T}$.

By Lemma 3.1 we have $\log |m_{ij}| < (\log c_6 + 1)L/2$, where $c_6 = 7.4d + 2.8$. From (2) the twelve functions at $(z_1, z_2) = (\omega_1/2, \omega_2/2)$ take the values

$$p^{(t)}(\omega_j/2), \ p^{*(t)}(\omega_j^*/2) \ (t=0, \ 1, \ 2; \ j=1, \ 2)$$

By Lemma 2.4 $h(p(\omega_j/2))$ and $h(p^*(\omega_j^*/2))$ are at most 8.55*L*. Both $p'(\omega_j/2)$ and $p^{*'}(\omega_j^*/2)$ are zero. And

$$\begin{array}{lll} h(p''(\omega_j/2)) &=& h(6p(\omega_j/2)^2 - g_2/2) \\ &\leq& 2h(p(\omega_j/2)) + h(g_2) + \log 12 + \log 2 < 19.7L. \end{array}$$

So does $h(p^{*''}(\omega_j^*/2))$. Thus m_{ij} and the values of the twelve functions have heights at most c_7L , where

$$c_7 = \max\{0.5 + 0.5 \log(7.4d + 2.8), 19.7\}.$$

As $p(\omega_j/2)$ and $p^*(\omega_j^*/2)$ are roots of cubic equations with coefficients in k, and $p''(\omega_j/2)$ and $p^{*''}(\omega_j^*/2)$ lie in the field generated by $p(\omega_j/2)$ and $p^*(\omega_j^*/2)$ over k, these values lie in k' whose degree is at most 36d.

The conditions of Lemma 3.2 amount to R = 4T(8T+1) homogeneous linear equations in $S = (D+1)^4$ unknowns with coefficients in k'. By Siegel's Lemma [1, Proposition], if $S \ge 2 \times 36dR$, these can be solved in rational integers, not all zero, of absolute values at most $S \exp(c_8)$, where c_8 is the height of linear equations. To satisfy the condition $S \ge 72dR$ it suffices that

$$C^{80}L^8 > 2305dC^{78}L^8$$
, so $C > 48.1\sqrt{d}$. (3)

Next we calculate c_8 . By Lemma 2.4 there is a positive integer $b \leq 2.22^w$ such that $4bp(\omega_j/2)$ is an algebraic integer. Since $p''(\omega_j/2) = 6p(\omega_j/2)^2 - g_2/2$, and there is a positive integer $b_2 \leq e^w$ such that b_2g_2 is an algebraic integer, $16b^2b_2p''(\omega_j/2)$ is an algebraic integer. If we multiply ∂M at $(z_1, z_2) = (\omega_1/2, \omega_2/2)$ by an integer at most $(16 \times 2.22^{2L}e^L)^{12(D+T)}$, every term is an algebraic integer. As $h(\sum_{i=1}^n a_i) \leq \max h(a_i) + \log n$ for algebraic integers a_i ,

$$S \exp(c_8) \leq (D+1)^4 (16 \times 2.22^{2L} e^L)^{12(D+T)} {}_{13}H_{12(D+T)}$$

$$T^{8T} (2^{56} \times 3^8)^{D+T} \exp\{12c_7(D+T)L\} < \exp(c_5TL).$$

q. e. d.

Let $\theta_0(z)$ and $\theta_0^*(z)$ be the functions in Lemma 2.1 corresponding to p(z) and $p^*(z)$ respectively. So the function

$$\Theta(z_1, z_2) = \{ heta_0(z_1) heta_0(z_2) heta_0^*(m_{11}z_1 + m_{12}z_2) heta_0^*(m_{21}z_1 + m_{22}z_2)\}^D$$

is entire. Let $F(z_1, z_2) = \Theta(z_1, z_2)f(z_1, z_2)$.

Lemma 3.3. The function $F(z_1, z_2)$ is entire. Further, for any complex number z and any operator ∂ in $D_i(4T+1)$ we have

$$|\partial F(\omega_1 z, \omega_2 z)| < \exp\{c_9 L(T+D|z|^2)\},$$

where

$$c_9 = 234 \log C + 154.8d + 2 \log(7.4d + 2.8) + 12 \max\{\log(7.4d + 2.8), 38.4\} + 423.5.$$

Proof. Let γ , γ^* , θ , θ^* , $\tilde{\theta}$, $\tilde{\theta}^*$ be as in Lemma 2.1 corresponding to p, p^* . Then $F(z_1, z_2)$ can be expressed as a polynomial in the eight functions

$$\gamma^{-1}\theta(z_i), \ \tilde{\theta}(z_i), \ \gamma^{*-1}\theta^*(m_{i1}z_1 + m_{i2}z_2), \ \tilde{\theta}^*(m_{i1}z_1 + m_{i2}z_2) \ (i = 1, \ 2),$$
(4)

so it is entire. It is the quadrihomogenized version of P in Lemma 3.2.

Let $M_0 = \max |m_{ij}|$, $A_0 = \min(A, A^*)$, and $\delta = M_0^{-1}A_0^{\frac{1}{2}}$, where A and A^* are determinants of Ω and Ω^* respectively. For any complex number z let z_1 and z_2 be complex numbers satisfying

$$|z_i - \omega_i z| = \delta \ (i = 1, \ 2). \tag{5}$$

We claim that $|F(z_1, z_2)| < \exp\{c_{10}L(T + D|z|^2)\}$, where $c_{10} = 156 \log C + 147.2d + 12 \max\{\log(7.4d + 2.8), 38.4\} + 404.3$. By Lemma 2.1

$$\begin{split} \log \max\{|\theta(z_i)|, \ |\tilde{\theta}(z_i)|\} &< 10.5y + \pi A^{-1}|z_i|^2 \\ &\leq 10.5(y + A^{-1}\delta^2 + A^{-1}|\omega_i|^2|z|^2) \ (i = 1, \ 2). \end{split}$$

As $A^{-1}\delta^2 \leq M_0^{-2} \leq 1$, from Lemma 2.3(i)(ii)(v) the first two functions in (4) have absolute values at most

$$c_{1,1}^{L} \exp\{10.5(c_{1,2}L+1+c_{1,5}L|z|^{2})\} < \exp\{(11.5c_{1,5}+5.25)L(1+|z|^{2})\},\$$

for $c_{1,5} > c_{1,2} > \log c_{1,1}$.

The last two expressions in (4) are estimated similarly. From (2) and (5) $z_i^* := m_{i1}z_1 + m_{i2}z_2$ satisfy $|z_i^* - \omega_i^*z| \le 2M_0\delta$ (i = 1, 2). Thus $\log \max\{|\theta^*(z_i^*)|, |\tilde{\theta}^*(z_i^*)|\} < 10.5(y^* + 4M_0^2A^{*-1}\delta^2 + A^{*-1}|\omega_i^*|^2|z|^2)$ (i = 1, 2).

By Lemma 2.3 the last two functions have absolute values at most $c_{1,1}^{L} \exp\{10.5(c_{1,2}L + 4 + c_{1,5}L|z|^{2})\} < \exp\{(11.5c_{1,5} + 21)L(1 + |z|^{2})\}.$

By Lemma 3.2

$$\begin{split} |F(z_1, \ z_2)| &< \ \exp(c_5 T L) \exp\{(46 c_{1,5} + 84) D L (1 + |z|^2)\} (D + 1)^4 \\ &< \ \exp\{c_{10} L (T + D |z|^2)\}, \end{split}$$

which is the claim.

By the Cauchy Integral Formula

$$\begin{aligned} |\partial F(\omega_1 z, \omega_2 z)| &= \left| \frac{t_1! t_2!}{(2\pi i)^2} \oint \oint \frac{F(z_1, z_2)}{(z_1 - \omega_1 z)^{t_1 + 1} (z_2 - \omega_2 z)^{t_2 + 1}} dz_1 dz_2 \right| \\ &< t_1! t_2! \delta^{-(t_1 + t_2)} \exp\{c_{10} L(T + D|z|^2)\}, \end{aligned}$$

where the integrals are around the circles (5). From Lemma 2.3(iii) and Lemma 3.1

$$\delta = M_0^{-1} A_0^{\frac{1}{2}} > (7.4d + 2.8)^{-1} N^{-\frac{1}{2}} h^{-1} c_{1,3}^{-\frac{h}{2}} \\ > \{6.72(7.4d + 2.8)^{\frac{1}{2}} \exp(1.9d)\}^{-L} =: c_{11}^{-L}.$$

$$\begin{aligned} |\partial F(\omega_1 z, \ \omega_2 z)| &< (4T)! c_{11}^{4LT} \exp\{c_{10} L(T+D|z|^2)\} \\ &< \exp\{c_9 L(T+D|z|^2)\}. \end{aligned}$$

q. e. d.

Let Q be the unique integral power of 2 that satisfies

$$C^{17/8} < Q \leq 2C^{17/8}$$

Lemma 3.4. For any odd integer q and $\zeta = q/Q$, we have

 $|\Theta(\omega_1\zeta, \omega_2\zeta)| > \exp(-84DLQ^2).$

Further, for any ∂ in $D_i(4T+1)$ such that $\partial f(\omega_1\zeta, \omega_2\zeta) \neq 0$, we have

$$|\partial f(\omega_1\zeta, \omega_2\zeta)| > \exp(-c_{12}TLQ^8),$$

where $c_{12} = 16d[290 \log C + 15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3]$. Proof. By Lemma 2.3(i) and Lemma 2.4(i)

$$\max\{\gamma, |p(\omega_j \zeta)|\} < \exp(8.55 dhQ^2) \ (j = 1, 2)$$

From Lemma 3.1 and Lemma 2.3(ii)

$$| heta_0(\omega_j \zeta)| > \exp(-10.5y - 8.55 dhQ^2) > \exp\{-10.5d(1+c_{1,2}/Q^2)hQ^2\},$$

and the same bound holds for $|\theta_0^*(\omega_j^*\zeta)|$ (j = 1, 2). Thus

 $|\Theta(\omega_1\zeta, \ \omega_2\zeta)| > \exp\{-4D imes 10.5 d(1+c_{1,2}/Q^2)hQ^2\} > \exp(-84DLQ^2),$

for by (3) $Q^2 > C^{17/4} > 48^4 d^2 > 3.2d + 1.2 = c_{1,2}$.

 $\alpha := \partial f(\omega_1 \zeta, \omega_2 \zeta)$ is estimated as in the proof of Lemma 3.2. α is a polynomial in the m_{ij} (i, j = 1, 2) and the twelve numbers $p^{(t)}(\omega_j \zeta), p^{*(t)}(\omega_j^* \zeta)$ (j = 1, 2; t = 0, 1, 2). Let ∂M be as in the proof of Lemma 3.2, and ∂ be any operator of $D_i(4T+1)$. From Baker's Lemma the total degree of ∂M is at most 6(D+T), and the absolute values of its coefficients are at most $T^{4T}(2^{24} \times 3^4)^{D+T}$.

By Lemma 2.4 there is a positive integer $b < 2.22^w$ such that $bQ^2p(\omega_j\zeta)$ is an algebraic integer. Since $p'(\omega_j\zeta)^2 = 4p(\omega_j\zeta)^3 - g_2p(\omega_j\zeta) - g_3$, and there is a positive integer $b_3 \leq e^w$ such that b_3g_3 is an algebraic integer, $(b^3b_2b_3)^{\frac{1}{2}}Q^3p'(\omega_j\zeta)$ is an algebraic integer. And $2b^2b_2Q^4p''(\omega_j\zeta)$ is an algebraic integer. If we multiply ∂M at $(z_1, z_2) = (\omega_1\zeta, \omega_2\zeta)$ by a positive integer at most $(2 \times 2.22^{2L} e^{1.5L} Q^4)^{6(D+T)}$, every term is an algebraic integer. By Lemma 2.4 $h(p(\omega_j \zeta))$ and $h(p^*(\omega_j^* \zeta))$ are at most 8.55L,

$$egin{aligned} h(p'(\omega_j\zeta)) &\leq & rac{1}{2}\{3h(p(\omega_j\zeta)) + \log 4 + h(g_2) + h(p(\omega_j\zeta)) + h(g_3) \ &+ \log 3\} < 2 imes 8.55L + L + \log 3 < 19.7L, \end{aligned}$$

and $h(p^{*'}(\omega_j^*\zeta))$, $h(p''(\omega_j\zeta))$ and $h(p^{*''}(\omega_j^*\zeta))$ are at most 19.7*L*. Thus at $(z_1, z_2) = (\omega_1\zeta, \omega_2\zeta)$,

$$\exp(h(\partial M)) \leq (2 \times 2.22^{2L} e^{1.5L} Q^4)^{12(D+T)} {}_{17} H_{6(D+T)}$$
$$T^{4T} (2^{24} \times 3^4)^{D+T} \exp\{6c_7(D+T)L\}.$$

 α is a linear combination of ∂M with rational integer coefficients whose absolute values are at most $\exp(c_5TL)$. So

$$\begin{array}{rcl} h(\alpha) &\leq & \log(D+1)^4 + c_5 TL + h(\partial M) \\ &< & [290 \log C + 15.5 \max\{\log(7.4d+2.8), 38.4\} + 342.3] TL. \end{array}$$

Next we estimate the degree of α , deg α . Since

$$\begin{aligned} \mathbf{Q}(\alpha) &= & \mathbf{Q}(p^{(t)}(\omega_j \zeta), \ p^{*(t)}(\omega_j^* \zeta)) \ (j = 1, \ 2; \ t = 0, \ 1, \ 2) \\ &\subset & k(p(\omega_j \zeta), \ p^*(\omega_j^*), \ p'(\omega_j \zeta), \ p^{*'}(\omega_j^* \zeta)), \end{aligned}$$

the degrees of $p(\omega_j \zeta)$ and $p^*(\omega_j^* \zeta)$ are at most dQ^2 by Lemma 2.4(i), and $[k(p(\omega_j \zeta), p'(\omega_j \zeta)) : k(p(\omega_j \zeta))] \leq 2$,

$$\deg \alpha = [\mathbf{Q}(\alpha) : \mathbf{Q}] \le d(Q^2)^4 2^4 = 16dQ^8$$

Hence $|\alpha| \ge \exp\{-(\deg \alpha)h(\alpha)\} > \exp(-c_{12}TLQ^8)$. q. e. d.

Lemma 3.5. If C satisfies $C > (256/\log 2)c_{12}$ with the constant c_{12} in Lemma 3.4, then for any odd integer q and any ∂ in $D_i(4T+1)$ we have $\partial f(q\omega_1/Q, q\omega_2/Q) = 0$.

Proof. Assume that there exist an odd integer q and an operator ∂ in $D_i(4T+1)$ such that $\alpha = \partial f(\omega_1\zeta, \omega_2\zeta) \neq 0$ for $\zeta = q/Q$. We can suppose that $0 < \zeta < 1$, and that

$$\alpha \Theta(\omega_1 \zeta, \ \omega_2 \zeta) = G(\zeta), \tag{6}$$

where $G(z) = \partial F(\omega_1 z, \omega_2 z)$ and ∂ is of minimal order.

 $G^{(t)}(z)$ is a linear combination of the $\partial' f(\omega_1 z, \omega_2 z)$ for ∂' in $D_i(t + 1 + 4T)$, so by Lemma 3.2 and periodicity

$$G^{(t)}(s+1/2) = 0 \tag{7}$$

for any integer t with $0 \le t < 4T$ and any integer s. We apply the Schwarz Lemma to (7) for $0 \le s < S$, where $S = [C^{18}L]$. Then $|G(\zeta)| \le 2^{-4TS}M_1$, where M_1 is the supremum of |G(z)| for $|z| \le 5S$. By Lemma 3.3 $M_1 < \exp\{25c_9L(T+DS^2)\} < \exp(50c_9LDS^2)$. If $C > (25/\log 2)c_9$, then $\exp(50c_9LDS^2) < 2^{2TS}$, so $|G(\zeta)| < 2^{-2TS}$. By (6) and Lemma 3.4

$$|\alpha| < 2^{-2TS} \exp(84DLQ^2) < 2^{-TS}, \tag{8}$$

where the second inequality follows, because $C > (84/\log 2)^{4/131}$. But also from Lemma 3.4 we have the lower bound

$$|\alpha| > \exp(-c_{12}TLQ^8). \tag{9}$$

If

 $C > (256/\log 2)c_{12}$ $= 5909d[290\log C + 15.5\max\{\log(7.4d + 2.8), 38.4\} + 342.3],$ (10)

then $2^{TS} > \exp(c_{12}TLQ^8)$, which contradicts (8) and (9). As $256c_{12} > 25c_9$, (10) implies that $C > (25/\log 2)c_9$. q. e. d.

4 Proof of Main Proposition: deconstruction

Let $G = E^2 \times E^{*2}$ embedded in \mathbf{P}^{81} by Segre embedding. Let ε be the exponential map from \mathbf{C}^4 to G obtained from the functions $p(z_1)$, $p(z_2)$, $p^*(z_1^*)$, $p^*(z_2^*)$ and their derivatives for independent complex variables z_1, z_2, z_1^*, z_2^* . Define a subspace Z of \mathbf{C}^4 by the equations

 $z_1^* = m_{11}z_1 + m_{12}z_2, \ z_2^* = m_{21}z_1 + m_{22}z_2.$

Write O_G for the zero of G, and let Σ and Σ_0 be the sets of even and odd multiples of the point $\sigma = \varepsilon(\omega_1/Q, \omega_2/Q, \omega_1^*/Q, \omega_2^*/Q)$ in G respectively. We use Philippon's zero estimate.

Lemma 4. There is a connected algebraic subgroup $H = \varepsilon(W) \neq G$ of G such that

$$T^{\rho}R\Delta < c_{13}D^r, \tag{11}$$

where W is a subspace of \mathbb{C}^4 , ρ is the codimension of $Z \cap W$ in Z, R is the number of points in Σ distinct modulo H, Δ is the degree of H, r is the codimension of H in G, and $c_{13} = 4.032 \times 10^7$. *Proof.* By Lemma 3.5 there is a polynomial, homogeneous of degree D, that vanishes to order at least 4T + 1 along $\varepsilon(Z)$ at all points of Σ_0 , but does not vanish identically on G. Let $\Sigma(4) = \{\sum_{i=1}^4 \sigma_i | \sigma_i \in \Sigma\}$, so $\Sigma_0 = \sigma + \Sigma(4)$. From [5, Lemma 1] translations on an elliptic curve are described by homogeneous polynomials of degree 2. Accroding to Philippon's zero estimate [9, Théorème 1], there exists a connected algebraic subgroup $H = \varepsilon(W) \neq G$ of G such that

$$T^{\rho}R\Delta \leq \deg G \times 2^{\dim G}(2D)^{r}.$$

As deg $G = 3^{2\dim G} \times 4! = 2^3 \times 3^9$ and $r \leq 4$, $T^{\rho}R\Delta < c_{13}D^r$. q. e. d.

Now we can give the proof of Main Proposition. We want to find a nontrivial graph subgroup of an isogeny $E \to E^*$ of small degree. We consider the three cases $\rho = 2, 1, 0$ in (11).

When $\rho = 2$, $T^2 R \Delta < c_{13} D^r$. So

$$R < c_{13}D^{r}T^{-2} < 4.04 \times 10^{7}C^{2}D^{r-4} =: c_{14}C^{2}D^{r-4}.$$
 (12)

Thus r = 4, $H = O_G$, and R = Q/2. If

$$C > 2^8 c_{14}{}^8 \doteq 1.817 \times 10^{63},\tag{13}$$

then $Q/2 > C^{17/8}/2 > c_{14}C^2$ contradicting (12). Hence the case $\rho = 2$ is ruled out under (13).

Next when $\rho = 1$, $Z \cap W$ has dimension 1, so $r \leq 3$. If H is nonsplit, then by [8, Lemma 2.2] there is an isogeny of degree at most $9\Delta^2$ between E and E^* . From (11) $\Delta < c_{13}D^3T^{-1} < 4.04 \times 10^7 C^{21}L^2$. Thus we get an isogeny of degree at most

$$9 \times (4.04 \times 10^7)^2 C^{42} L^4 = 1.469 \times 10^{16} C^{42} L^4.$$
 (14)

If H is split, we can not have r = 3 by the proof of [6, Proposition]. If $r \leq 2$, then R = Q/2 by [6, Lemma 5.2], and $R < c_{13}D^2T^{-1} < c_{14}C$. The assumption of no complex multiplication is used to prove [6, Lemma 5.2] in applying Kolchin's Theorem. Since $C > (2c_{14})^{8/9}$ from (13), $Q/2 > C^{17/8}/2 > c_{14}C$. Hence a contradiction.

Lastly when $\rho = 0$, then $Z \subset W$ and $r \leq 2$. If r = 2, then from the proof of [6, Proposition] $N \leq 9\Delta < 9c_{13}D^2 \leq 9c_{13}C^{40}L^4$, so the original isogeny φ satisfies the required estimate.

If r = 1, then by the proof of [6, Proposition] H is nonsplit, and there is an isogeny of degree at most $9\Delta^2$ between E and E^* . As by (11) $\Delta < c_{13}D \le c_{13}C^{20}L^2$, we get an isogeny of degree at most $9 \times (4.04 \times 10^7)^2 C^{40}L^4 \doteq 1.469 \times 10^{16}C^{40}L^4$.

Next we estimate C, the conditions for which are (10) and (13), for (10) implies (3). Let C_0 be the solution of the equation

$$C_0 = 5910d[290\log C_0 + 15.5\max\{\log(7.4d + 2.8), 38.4\} + 342.3].$$

Let $x_0 = \log C_0$, $A_1 = 5910 \times 290d$, $A_2 = 5910d[15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3]$, and $f(x) = e^x - A_1x - A_2$, so $f(x_0) = 0$. If $x_1 = \{A_2/(A_2 - A_1)\} \log A_2$, then $f(x_1) > 0$. As f(x) increases monotonously, $x_0 < x_1$, that is, $C_0 < \exp x_1 < A_2^{1.45}$.

Thus $C = \max\{A_2^{1.45}, 1.82 \times 10^{63}\}$ satisfies both (10) and (13). From (14) we have proved Main Proposition with $c_4(d) = 1.47 \times 10^{16} C^{42}$.

5 Proof of Theorem

We normalize the isogeny by Lemma 5 to apply Main Proposition.

Lemma 5. Given a positive integer d, there exists a constant c_{15} with the following property. Let k be a number field of degree at most d, let E and E_1^* be elliptic curves defined over k, and let φ be an isogeny from E to E_1^* of degree N. Suppose k' is the smallest extension field of k over which φ is defined. Then $[k':k] \leq 12$, and there is an elliptic curve E^* , defined over k' and isomorphic over k' to E_1^* , such that the induced isogeny from E to E^* is normalized. Further we have

 $w(E^*) < (11.4d + 54.3)w(E) + 13 \log N =: c_{15}w(E) + 13 \log N.$

Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is 11.4d + 54.3. q. e. d.

Now we give the proof of Theorem. Let N be the smallest degree of any isogeny between E and E'. By [6, Lemma 6.2] there is a cyclic isogeny from E to E' of degree N. According to Lemma 5 there are an extension k' of k with $[k':k] \leq 12$ and an elliptic curve E^* defined over k' and isomorphic to E' such that the induced isogeny φ from E to E^* is normalized and $w(E^*) < c_{15}\{w(E) + \log N\}$.

As φ is cyclic, by Main Proposition there is an isogeny between E and E^* whose degree N_1 satisfies

$$N_1 \le c_4(12d)\{w(E) + w(E^*) + \log N\}^4 < c_4(12d)(c_{15}+1)^4\{w(E) + \log N\}^4.$$

So there is an isogeny of degree N_1 between E and E', and

$$N \le N_1 < c_4(12d)(c_{15}+1)^4 \{w(E) + \log N\}^4$$

Thus $N < c_{16} \{w(E)\}^4$ for a constant c_{16} depending only on d.

Lastly we estimate c_{16} . Let $c_{17} = c_4(12d)(c_{15} + 1)^4$, w = w(E), N_0 satisfy $N_0 = c_{17}(w + \log N_0)^4$, and $c_{18} = N_0/w^4$. Then $N < N_0$, and $c_{18}w^4 = c_{17}(w + 4\log w + \log c_{18})^4$. Therefore

$$c_{18} = c_{17}(1 + 4\log w/w + \log c_{18}/w)^4 < c_{17}(5 + \log c_{18})^4.$$

Let c_{19} satisfy $c_{19} = c_{17}(5 + \log c_{19})^4$. Then $c_{18} < c_{19}$, and c_{19} is estimated similarly as C_0 in the proof of Main Proposition. So $c_{19} < 5^{20}c_{17}^5$, and

$$N < N_0 = c_{18}w^4 < c_{19}w^4 < 5^{20}c_{17}{}^5w^4 = 5^{20}\{c_4(12d)\}^5(c_{15}+1)^{20}w^4$$

Hence $c_{19} = 5^{20}\{c_4(12d)\}^5(c_{17}+1)^{20} < c(d)$

Hence $c_{16} = 5^{20} \{ c_4(12d) \}^5 (c_{15} + 1)^{20} < c(d)$.

Acknowledgements. The author is most grateful to Professor Takayuki Oda for helpful advice. He thanks Professor David W. Masser, Professor Sinnou David and Professor Noriko Hirata-Kohno for valuable advice about the estimation of heights.

References

[1] M. Anderson and D. W. Masser, Lower bounds for heights on elliptic curves, Math. Z. 174 (1980), 23-34.

[2] A. Baker, On the periods of the Weierstrass *p*-function, Symposia Math. Vol. IV, INDAM Rome 1968, Academic Press, London (1970), 155-174.

[3] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France **62** (1995).

[4] D. W. Masser, Counting points of small height on elliptic curves, Bull. Soc. Math. France, **117** (1989), 247-265.

[5] D. W. Masser and G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. **72** (1983) 407-464.

[6] D. W. Masser and G. Wüstholz, Estimating isogenies on elliptic curves, Invent. Math. 100 (1990), 1-24.

[7] D. W. Masser and G. Wüstholz, Isogeny estimates for abelian varieties, and finiteness theorems, Ann. Math. 137 (1993), 459-472.

[8] F. Pellarin, Sur une majoration explicite pour un degré d'isogenie liant deux courbes elliptiques, Acta Arithmetica C.3 (2001), 203-243.

[9] P. Philippon, Nouveaux lemmes de zéros dans les groupes algébriques commutatifs, Rocky Mountain J. Math. **26** (1996), 1069-