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1 Introduction

Let $E$ and $E’$ be isogenous elliptic curves defined over anumber
field $k$ of degree $d$ . Masser and Wiistholz [6] proved the existence
of aconstant $\mathrm{c}$ depending effectively only on $d$ such that there is an
isogeny between $E$ and $E’$ whose degree is at most $c\{w(E)\}^{4}$ , where
$\mathrm{w}\{\mathrm{E})=\max\{1, \mathrm{h}(\mathrm{g}\mathrm{s})\}\mathrm{h}(\mathrm{g}\mathrm{s})\}$ when $E$ is identified with its Weierstrass
equation $y^{2}=4x^{3}-g_{2}x$ -g$. Here $h$ denotes the absolute logarithmic
Weil height. But they did not give an explicit formula of $c$ . The purpose
of this paper is to express $c$ as an explicit function of $d$ bounded by a
polynomial when $E$ has no complex multiplication. The main result is

as follows.

Theorem. Given apositive integer $d$ , there exists aconstant $c(d)$

depending only on $d$ with the following property. Let $k$ be anumber
field of degree at most $d$ , and let $E$ be an elliptic curve defined over
$k$ without complex multiplication. Suppose $E$ is isogenous to another
elliptic curve $E’$ defined over $k$ .

(i) Then there is an isogeny between $E$ and $E’$ whose degree is at most
$c(d)\{w(E)\}^{4}$ , where

$c(d)$ $=$ $6.55 \cross 10^{94}\{\max(1.09\cross$ $10^{7}d^{1.45}[15.5 \max\{\log(88.8d+2.8)$ ,

38.4}+342.3$]$ , $1.82\cross 10^{63}$ ) $\}^{210}(11.4d+55.3)^{20}$ .

In particular the function $c(d)$ in $d$ increases as $1.9\cross 10^{1956}d^{325}$ when
$d$ goes to infinity,

(ii) $c(1)=$
.

$8.2\cross$ $10^{13415}$ when $d=1$ , $\mathrm{i}$ . $\mathrm{e}.$ , $k$ $=\mathrm{Q}$ .

We proceed along the line of [6]. Main devices in calculating $c$ are
as follows. First we distinguish five constants which are unified as $c_{3}$

in [6, Lemma 3.3.] and those in [6, Lemmas 3.4 and 4.4]. Secondly

we improve the relative degree of the field generated by the values of
Weierstrass pfunctions and their derivatives over $k$ from 81 to 36.
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Pellarin [8] found an upper bound of the form $4.2 \cross 10^{61}d^{4}\max\{1$ ,
$\log d\}^{2}h(E)^{2}$ , where $h(E)= \max\{1, h(j)\}+\max\{1, h(1, g_{2}, g_{3})\}$ and

$j$ is the $j$-invariant of $E$ . But his Lemme 3.2 seems to contain some mis-
takes, because the cardinality of $\mathrm{C}$-linear independent monic monomials
$\underline{X}^{\underline{\lambda}}$ on $G$ such that $\underline{\lambda}\leq\underline{D}$ , $M_{\underline{D}}$ , is $\prod_{n}(D_{n}+1)$ on line 21 of page 219.
This lemma is used in the proof of Proposition 3.1, and plays acrucial
role in the main estimate. We hope that his proof will be corrected.

2Preliminary estimates
Let $\Omega$ be alattice in the complex plane. Let $(\omega_{1}, \omega_{2})$ be abasis of

$\Omega$ such that $\tau=\omega_{2}/\omega_{1}$ belongs to the standard fundamental region for
the modular group. So $|\tau|\geq 1$ , $x={\rm Re}\tau$ satisfies $|x| \leq\frac{1}{2}$ , and $y={\rm Im}\tau$

satisfies $y \geq\frac{\sqrt{3}}{2}$ . Let $A$ be the area of the unit of $\Omega$ , which equals $y|\omega_{1}|^{2}$ .
Let $g_{2}$ and $g_{3}$ be the invariants of $\Omega$ , let $p(z)$ be the corresponding
Weierstrass function, and $\gamma=\max\{|\frac{1}{4}g_{2}|^{\frac{1}{2}}, |\frac{1}{4}g_{3}|^{\frac{1}{3}}\}$.

Lemma 2.1. There exists afunction $\theta_{0}(z)$ such that $\theta(z)=\gamma\theta_{0}(z)$

and $\tilde{\theta}(z)=p(z)\theta_{0}(z)$ are entire functions, with no common zeros, that
satisfy

$| \log\max\{|\theta(z)|, |\tilde{\theta}(z)|\}-\pi|z|^{2}/A|<10.5y$ .

for all complex $z$ .
Proof. This is [4, Lemma 3.1] except for the estimation of the constant

on the right-hand side of the inequality, which is 10.5. $\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .

Lemma 2.2. Let $z$ be acomplex number not in $\Omega$ , and $||z||$ be the

distance from $z$ to the nearest element of $\Omega$ . Then

$|p(z)-p(\omega_{2}/2)|<77244||z||^{-2}$ .

Proof. This is [6, Lemma 3.2] except for the estimation of the constant
on the right-hand side of the inequality, which is 77244. $\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .

Let $d$ be apositive integer, and $k$ be anumber field of degree at most
$d$ . Moreover, $g_{2}$ and $g\mathrm{s}$ are assumed to lie in $k$ , and $w= \max\{1$ , $h(g_{2})$ ,
$h(g_{3})\}$ .

Lemma 2.3. There are constants $c_{1,i}(1\leq i\leq 5)$ , depending only on
$d$ , such that

(i) $c_{1,1}-w\leq\gamma<c_{1,1^{w}}$ ,
(ii) $y<c_{1,2}w$ ,
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(iii) $A>c_{1,3}-w$ ,
(iv) $|\omega_{1}|>c_{1,4}-w$ ,
(v) $A^{-1}|\omega_{2}|^{2}<c_{1,5}w$ ,

where $\mathrm{c}1|5=2e^{0.5d}$ , $c_{1,2}=3.2d+1.2$ , $c_{1,3}=16.6e^{3.8d}$ , $c_{1,4}=4.37e^{1.9d}$ ,
and $\mathrm{c}1$ )$5=3.2d+1.5$ .

Proof. This is [6, Lemma 3.3] except for the estimation of the constants
$c_{1,i}(1\leq i\leq 5)$ . $\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .

Lemma 2.4. There are aconstant $c_{2}$ depending only on $d$ and a
positive integer $b<2.22^{w}$ with the following properties. Suppose $n$ is a
positive integer, $\zeta$ is an element of $\Omega/n$ not in $\Omega$ , and write $\xi=p(()$ .
Then

(i) $\xi$ is an algebraic number of degree at most $dn^{2}$ with $h(\xi)<8.55\mathrm{w}$ .
(ii) $bn^{2}\xi$ is an algebraic integer, and $|\xi|<c_{2^{w}}n^{2}$ ,

where $c_{2}=2.951$ $\cross 10^{6}\exp(3.8d)$ .

Proof. When $\frac{1}{4}g_{2}$ and $\frac{1}{4}g_{3}$ are algebraic integers, from the proof of [6,

Lemma 3.4] $\xi$ has degree at most $dn^{2}$ , and $n^{2}\xi$ is an algebraic integer. In
the general case we can find apositive integer $b_{0}\leq(\sqrt[3]{2}e^{\frac{1}{6}})^{w}$ such that
$\frac{1}{4}b_{0}^{4}g_{2}$ and $\frac{1}{4}b_{0^{6}}g_{3}$ are algebraic integers. These correspond to the lattice
$\Omega_{0}=\Omega/b\circ$ with Weierstrass function $p\mathrm{o}(z)=b0^{2}p(b_{0}z)$ . So $\xi 0=p\mathrm{o}(\zeta/b_{0})$

has degree at most $dn^{2}$ , and $n^{2}\xi_{0}$ is an algebraic integer. As $\xi=b_{0}^{-2}\xi 0$ ,
$n^{2}\xi_{0}=b_{0}^{2}n^{2}\xi$ is an algebraic integer, $b_{0}^{2}n^{2}\xi\leq(\sqrt[3]{4}e^{\frac{1}{3}})^{w}n^{2}\xi<2.22^{w}n^{2}\xi$,

and $\xi$ is an algebraic number of degree at most $dn^{2}$ .
The N\’eron-Tate height $q(P)$ of the point $P$ in $\mathrm{P}^{2}$ with projective

coordinates $(1, p(\zeta)$ , $p’(())$ satisfies $q(P)=0$ . By [3, Lemme 3.4] the
Weil height $h(P)$ satisfies $h(P)\leq q(P)+3w+8\log 2\underline{<}(3+8\log 2)w$ .
So $h(\xi)\leq h(P)<8.55w$ .

By Lemma 2.2
$|\xi|<|p(\omega_{2}/2)|+c_{3}||\zeta||^{-2}$ , (1)

where $c_{3}=77244$ . As $p(\omega_{2}/2)$ is aroot of $4x^{3}-g_{2}x-g_{3}=0$ , ffom

Cardano’s Formula $|p(\omega_{2}/2)|\leq(|g_{3}|+\sqrt{|g_{3}|^{2}+|g_{2}|^{3}/27})^{\frac{1}{3}}<(1.3e^{\frac{d}{2}})^{w}$ .
By Lemma 2.3(iv) $||\zeta||^{-2}\leq n^{2}|\omega_{1}|^{-2}<n^{2}c_{1,4^{2w}}$ . $\mathrm{R}\mathrm{o}\mathrm{m}$ $(1)$

$|\xi|\leq(1.3e^{\frac{d}{2}})^{w}+c_{3}c_{1,4^{2w}}n^{2}<\{2.951\mathrm{x}10^{6}\exp(3.8d)\}^{w}n^{2}=c_{2^{w}}n^{2}$ .
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3The Main Proposition: construction

Let $E$ and $E^{*}$ be elliptic curves defined over $\mathrm{C}$ , and $\Omega$ and $\Omega^{*}$ be their
period lattices respectively. Let $\varphi$ be an isogeny from $E^{*}$ to $E$ . It is
said to be normalized if it induces the identity on the tangent spaces.
Then $\Omega^{*}\subset\Omega$ , and $[\Omega$ : 0’ $]$ is the degree of $\varphi$ . It is said to be cydic if
its kernel is acyclic group.

Main Proposition, Given apositive integer $d$ , there exists acon-
stant $c_{4}(d)$ depending only on $d$ , with the following property. Let $k$ be a
number field of degree at most $d$ , and let $E$ and $E^{*}$ be elliptic curves de-
fined over $k$ without complex multiplication. Suppose there is anormal-
ized cydic isogeny $\varphi$ from $E^{*}$ to $E$ of degree $N$ . Then there is an isogeny
between $E$ and $E^{*}$ of degree at most $c_{4}(d)\{w(E)+w(E^{*})+\log N\}^{4}$ ,
where

$c_{4}(d)$ $=$ $1.47 \cross 10^{16}[\max\{(5910d[15.5\max\{\log(7.4d+2.8), 38.4\}$

$+342.3])^{1.45},1.82\cross 10^{63}\}]^{42}$ .

Before the proof of Main Proposition we need Lemmas 3.1-3.5. The
body of the proof is described in Section 4.

Let $(\omega_{1}, \omega_{2})$ and $(\omega_{1^{*}}, \omega_{2^{*}})$ be bases of $\Omega$ and $\Omega^{*}$ respectively such
that $\tau=\omega_{2}/\omega_{1}$ and $\tau^{*}=\omega_{2^{*}}/\omega_{1^{*}}$ lie in the standard fundamental
region. Then there are integers $m_{ij}(i, j=1,2)$ such that

$\omega_{1^{*}}=m_{11}\omega_{1}+m_{12}\omega_{2}$ , $\omega_{2^{*}}=m_{21}\omega_{1}+m_{22}\omega_{2}$ (2)

and $m_{11}m_{22}-m_{12}m_{21}=N$ . Write $h=w(E)+w(E^{*})\geq 2$ .
Lemma 3.1. We have $|m_{ij}|<(7.4d+2.8)N^{\frac{1}{2}}h$ $(i, j=1,2)$ .
Proof. This is [6, Lemma 4.1] except for the estimation of the constant

on the right-hand side of the inequality, which is $7.4d+2.8$ . $\mathrm{q}$. $\mathrm{e}$ . $\mathrm{d}$ .
Let $C$ be asufficiently large constant depending only on $d$ , $L=$

$h+$. $\log N$ , $D=[C^{20}L^{2}]$ and $T=[C^{39}L^{4}]$ . Let $p(z)$ and $p^{*}(z)$ be the
Weierstrass functions corresponding to $\Omega$ and $\Omega^{*}$ respectively. For $t>0$

and independent variables $z_{1}$ and $z_{2}$ let $D_{i}(t)$ be the set of differential
operators of the form

a $=(\partial/\partial z_{1})^{t_{1}}(\partial/\partial z_{2})^{t_{2}}(t_{1}\geq 0, t_{2}\geq 0, t_{1}+t2<t)$ .

Lemma 3.2. There is anonzero polynomial $P$ ( $X_{1}$ , $X_{2}$ , $X_{1^{*}}$ , X2”) of
degree at most $D$ in each variable, whose coefficients are rational integers
of absolute values at most $\exp(c_{5}TL)$ , such that the function

$f(z_{1}, z_{2})=P(p(z_{1}), p(z_{2}),$ $p^{*}(m_{11}z_{1}+m_{12}z_{2})$ , $p^{*}(m_{21}z_{1}+m_{22}z_{2}))$
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satisfies 0$f(\omega_{1}/2, \omega_{2}/2)=0$ for all ain $D_{i}(8T)$ , where

$c_{5}=156 \log C+12\max\{\log(7.4d+2.8), 38.4\}+251.3$ .
‘

Proof. Let $M$ denote any monomial of degree at most $D$ in each of
the four functions appearing in $f$ , that is,

$M=\{p(z_{1})\}^{d_{1}}\{p(z_{2})\}^{d_{2}}\{p^{*}(m_{11}z_{1}+m_{12}z_{2})\}^{d_{3}}\{p^{*}(m_{21}z_{1}+m_{22}z_{2})\}^{d_{4}}$

with $0\leq d_{i}\leq D(1\leq i\leq 4)$ , and let C7 be any operator of $D_{i}(8T)$ . Then
$\partial M$ can be written as apolynomial in the four numbers $m_{ij}(i, j=1,2)$

and the twelve functions obtained from the above four by replacing the
Weierstrass functions by their first and second derivatives. From Baker’s
Lemma [2, Lemma 3]

$\frac{d^{j}}{dz^{j}}\{p(z)\}^{k}=\sum u(t, t’, t^{J}, j, k)\{p(z)\}^{t}\{p’(z)\}^{t’}\{p’(z)\}^{t’}$ ,

where the sum is taken over nonnegetive integers $t$ , $t’$ and $t’$ which satisfy
$2t+3t’+4t’=\acute{J}+2k$ , and $u(t, t’, t’, j, k)$ are integers of absolute
values at most $j!4\dot{\Psi}(7!2^{8})^{k}$ . So the total degree of $\partial M$ is at most $3D+$

$8T-1+0.5\cross(8T-1)+D<12(D+T)$ . And its coefficients are integers
of absolute values at most $(8T-1)!48^{8T-1}(7!2^{8})^{D}<T^{8T}(2^{56}\cross 3^{8})^{D+T}$ .

By Lemma 3.1 we have $\log|m_{ij}|<(\log c_{6}+1)L/2$ , where $c_{6}=7.4d+$

$2.8$ . From (2) the twelve functions at $(z_{1}, z_{2})=(\omega_{1}/2, \omega_{2}/2)$ take the
values

$p^{(t)}(\omega_{j}/2)$ , $p^{*(t)}(\omega_{j^{*}}/2)(t=0,1, 2;j=1,2)$ .

By Lemma 2.4 $h(p(\omega j/2))$ and $h(p^{*}(\omega_{j^{*}}/2))$ are at most $8.55L$ . Both
$p’(\omega j/2)$ and $p^{*\prime}(\omega_{j^{*}}/2)$ are zero. And

$h(p’(\omega j/2))$ $=$ $h(6p(\omega_{j}/2)^{2}-g_{2}/2)$

$\leq$ $2h(p(\omega_{j}/2))+h(g_{2})+\log 12+\log 2<19.7L$ .

So does $h(p^{*\prime\prime}(\omega_{j^{*}}/2))$ . Thus $m_{\mathrm{i}j}$ and the values of the twelve functions
have heights at most $c_{7}L$ , where

$c_{7}= \max\{0.5+0.5\log(7.4d+2.8), 19.7\}$ .

As $p(\omega j/2)$ and $p^{*}(\omega_{j^{*}}/2)$ are roots of cubic equations with coefficients
in $k$ , and $p’(\omega_{j}/2)$ and $p^{*J;}(\omega_{j^{*}}/2)$ lie in the field generated by $p(\omega j/2)$

and $p^{*}(\omega j^{*}/2)$ over $k$ , these values lie in $k’$ whose degree is at most $36d$ .
The conditions of Lemma 3.2 amount to $R=4T(8T+1)$ homogeneous

linear equations in $S=(D+1)^{4}$ unknowns with coefficients in $k’$ . By
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Siegel’s Lemma [1, Proposition], if $S\geq 2\cross 36dR$ , these can be solved in
rational integers, not all zero, of absolute values at most $S\exp(c_{8})$ , where
$c_{8}$ is the height of linear equations. To satisfy the condition $S\geq 72dR$

it suffices that

$C^{80}L^{8}>2305dC^{78}L^{8}$ , so $C>48.1\sqrt{d}$ . (3)

Next we calculate $c_{8}$ . By Lemma 2.4 there is apositive integer $b\leq$

$2.22^{w}$ such that $4bp(\omega_{j}/2)$ is an algebraic integer. Since $p’(.\omega j/2)=$

$6p(\omega_{j}/2)^{2}-g_{2}/2$ , and there is apositive integer $b_{2}\leq e^{w}$ such that $b_{2}g_{2}$

is an algebraic integer, $16b^{2}b_{2}p’(\omega_{j}/2)$ is an algebraic integer. If we
multiply $\partial M$ at $(z_{1}, z_{2})=(\omega_{1}/2, \omega_{2}/2)$ by an integer at most (16 $\cross$

$2.22^{2L}e^{L})^{12(D+T)}$ , every term is an algebraic integer. As $h( \sum_{i=1}^{n}a_{i})\leq$

$\max h(a:)+\log n$ for algebraic integers $a_{i}$ ,

$S\exp(c_{8})$ $\leq$ $(D+1)^{4}(16\cross 2.22^{2L}e^{L})^{12(D+T)}{}_{13}H_{12(D+T)}$

$T^{8T}(2^{56}\cross 3^{8})^{D+T}\exp\{12c_{7}(D+T)L\}<\exp(c_{5}TL)$.

$\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .
Let $\theta_{0}(z)$ and $\theta_{0^{*}}(z)$ be the functions in Lemma 2.1 corresponding to

$p(z)$ and $p^{*}(z)$ respectively. So the function

$\ominus(z_{1}, z_{2})=\{\theta_{0}(z_{1})\theta_{0}(z_{2})\theta_{0^{*}}(m_{11}z_{1}+m_{12}z_{2})\theta_{0}^{*}(m_{21}z_{1}+m_{22}z_{2})\}^{D}$

is entire. Let $F(z_{1}, z_{2})=\Theta(z_{1}, z_{2})f(z_{1}, z_{2})$ .
Lemma 3.3. The function $F(z_{1}, z_{2})$ is entire. Further, for any

complex number $z$ and any operator ain $D_{i}(4T+1)$ we have

$|\partial F(\omega_{1}z, \omega_{2}z)|<\exp\{c_{9}L(T+D|z|^{2})\}$ ,

where

$c_{9}$ $=$ 234 $\log C+154.8d+2\log(7.4d+2.8)+12\max\{\log(7.4d+2.8)$ ,

38.4}+423.5.

Proof. Let $\gamma$ , $\gamma^{*}$ , $\theta$ , $\theta^{*},\tilde{\theta},\tilde{\theta}^{*}$ be as in Lemma 2.1 corresponding to
$p$, $p^{*}$ . Then $F(z_{1}, z_{2})$ can be expressed as apolynomial in the eight
functions

$\gamma^{-1}\theta(z:),\tilde{\theta}(z_{i})$ , $\gamma^{*-1}\theta^{*}(m_{i1}z_{1}+m:2z_{2}),\tilde{\theta}^{*}(m:1^{Z_{1}+m_{\dot{1}2}z_{2})}(i=1,2)$ ,
(4)

so it is entire. It is the quadrihomogenized version of $P$ in Lemma 3.2
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Let $M_{0}= \max|m_{ij}|$ , $A_{0}= \min(A, A^{*})$ , and $\delta=M_{0}^{-1}A_{0^{\frac{1}{2}}}$ , where
$A$ and $A^{*}$ are determinants of $\Omega$ and $\Omega^{*}$ respectively. For any complex
number $z$ let $z_{1}$ and $z_{2}$ be complex numbers satisfying

$|z_{i}-\omega_{i}z|=\delta(i=1,2)$ . (5)

We claim that $|F(z_{1}, z_{2})|<\exp\{c_{10}L(T+D|z|^{2})\}$ , where $c_{10}=$

$156 \log C+147.2d+12\max\{\log(7.4d+2.8), 38.4\}+404.3$. By Lemma
2.1

$\log\max\{|\theta(z_{i})|, |\tilde{\theta}(z_{\dot{1}})|\}$ $<$ $10.5y+\pi A^{-1}|z_{i}|^{2}$

$\leq$ 10.5 $(y+A^{-1}\delta^{2}+A^{-1}|\omega_{i}|^{2}|z|^{2})$ $(i=1, 2)$ .

As $A^{-1}\delta^{2}\leq M_{0}^{-2}\leq 1$ , from Lemma 2.3(i)(ii)(v) the first two functions
in (4) have absolute values at most

$c_{1,1^{L}}\exp\{10.5(c_{1,2}L+1+c_{1,5}L|z|^{2})\}<\exp\{(11.5c_{1,5}+5.25)L(1+|z|^{2})\}$,

for $c_{1,5}>c_{1,2}>\log c_{1,1}$ .
The last two expressions in (4) are estimated similarly. Prom (2) and

(5) $z_{i^{*}}:=m_{i1}z_{1}+m_{i2}z_{2}$ satisfy $|z_{i^{*}}-\omega_{i}’ z|\leq 2M_{0}\delta(i=1,2)$ . Thus

$\log\max\{|\theta^{*}(z_{i^{*}})|, |\tilde{\theta}^{*}(z_{i^{*}})|\}<10.5(y^{*}+4M_{0}^{2}A^{*-1}\delta^{2}+A^{*-1}|\omega_{i^{*}}|^{2}|z|^{2})$

$(i=1,2)$ .

By Lemma 2.3 the last two functions have absolute values at most

$c_{1,1^{L}}\exp\{10.5(c_{1,2}L+4+c_{1,5}L|z|^{2})\}<\exp\{(11.5c_{1,5}+21)L(1+|z|^{2})\}$ .

By Lemma 3.2

$|F(z_{1}, z_{2})|$ $<$ $\exp(c_{5}TL)\exp\{(46c_{1,5}+84)DL(1+|z|^{2})\}(D+1)^{4}$

$<$ $\exp\{c_{10}L(T+D|z|^{2})\}$ ,

which is the claim.
By the Cauchy Integral Formula

$|\partial F(\omega_{1}z, \omega_{2}z)|$ $=$ $| \frac{t_{1}!t_{2}!}{(2\pi i)^{2}}\oint\oint\frac{F(z_{1},z_{2})}{(z_{11}-\omega_{\wedge}z)^{t_{1}+1}(z_{2}-\omega_{2}z)^{t_{2}+1}}dz_{1}dz_{2}|$

$<$ $t_{1}!t_{2}!\delta^{-(t_{1}+t_{2})}\exp\{c_{10}L\langle T+D|z|^{2})\}$ ,

where the integrals are around the circles (5). From Lemma 2.3(iii) and

Lemma 3.1

$\delta$ $=M_{0}^{-1}A_{0^{\frac{1}{2}}}$ $>$ $(7.4d+2.8)^{-1}N^{-\frac{1}{2}}h^{-1}c_{1,3}^{-\frac{h}{2}}$

$>$ $\{6.72(7.4\mathrm{d}+2.8)^{\frac{1}{2}}\exp(1.9d)\}^{-L}=:c_{11}^{-L}$ .
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$|\partial F(\omega_{1}z, \omega_{2}z)|$ $<$ $(4T)!c_{11^{4LT}}\exp\{c_{10}L(T+D|z|^{2})\}$

$<$ $\exp\{c_{9}L(T+D|z|^{2})\}$ .

$\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .
Let $Q$ be the unique integral power of 2that satisfies

$C^{17/8}<Q\leq 2C^{17/8}$ .

Lemma 3.4. For any odd integer $q$ and $\zeta=q/Q$ , we have

$|\Theta(\omega_{1}\zeta, \omega_{2}\zeta)|>\exp(-84DLQ^{2})$ .

Further, for any ain $D_{i}(4T+1)$ such that $\partial f(\omega_{1}\zeta, \omega_{2}\zeta)\neq 0$, we have

$|\partial f(\omega_{1}\zeta, \omega_{2}\zeta)|>\exp(-c_{12}TLQ^{8})$ ,

where $c_{12}=16d[290 \log C+15.5\max\{\log(7.4d+2.8), 38.4\}+342.3]$ .
Proof. By Lemma 2.3(i) and Lemma 2.4(i)

$\max\{\gamma, |p(\omega_{j}\zeta)|\}<\exp(8.55dhQ^{2})(j=1,2)$ .

From Lemma 3.1 and Lemma 2.3(ii)

$|\theta \mathrm{o}(\omega j\zeta)|>\exp(-10.5y-8.55dhQ^{2})>\exp\{-10.5d(1+c_{1,2}/Q^{2})hQ^{2}\}$,

and the same bound holds for $|\theta_{0^{*}}(\omega_{j^{*}}\zeta)|(j=1,2)$ . Thus

$|\Theta(\omega_{1}\zeta, \omega 2\zeta)|>\exp\{-4D\mathrm{x}10.5d(1+c_{1,2}/Q^{2})hQ^{2}\}>\exp(-84DLQ^{2})$ ,

for by (3) $Q^{2}>C^{17/4}>48^{4}d^{2}>3.2d+1.2=c_{1,2}$ .
$\alpha:=\partial f(\omega_{1}\zeta, \omega_{2}\zeta)$ is estimated as in the proof of Lemma 3.2. $\alpha$

is apolynomial in the $m_{ij}$ $(i, j=1,2)$ and the twelve numbers
$p^{(t)}(\omega_{j}()_{:}p^{*(t)}(\omega_{j^{*}}\zeta)(j=1,2;t=0,1, 2)$. Let $\partial M$ be as in the
proof of Lemma 3.2, and $\partial$ be any operator of $D_{i}(4T+1)$ . From Baker’s
Lemma the total degree of $\partial M$ is at most $6(D+T)$ , and the absolute
values of its coefficients are at most $T^{4T}(2^{24}\mathrm{x}3^{4})^{D+T}$ .

By Lemma 2.4 there is apositive integer $b<2.22^{w}$ such that $bQ^{2}p(\omega_{j}\zeta)$

is an algebraic integer. Since $p’(\omega_{j}\zeta)^{2}=4p(\omega_{j}\zeta)^{3}-g_{2}p(\omega_{j}\zeta)-g_{3}$ , and
there is apositive integer $b_{3}\leq e^{w}$ such that $b_{3}g_{3}$ is an algebraic inte-
ger, $(b^{3}b_{2}b_{3})^{\frac{1}{2}}Q^{3}p’(\omega_{j}\zeta)$ is an algebraic integer. And $2b^{2}b_{2}Q^{4}p’(\omega j\zeta)$ is
an algebraic integer. If we multiply $\partial M$ at $(z_{1}, z_{2})=(\omega_{1}\zeta, \omega_{2}\zeta)$ by
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apositive integer at most $(2\cross 2.22^{2L}e^{1.5L}Q^{4})^{6(D+T)}$ , every term is an
algebraic integer. By Lemma 2.4 $h(p(\omega_{j}\zeta))$ and $h(p^{*}(\omega j^{*}\zeta))$ are at most
$8.55L$ ,

$h(p’(\omega_{j}\zeta))$ $\leq$ $\frac{1}{2}\{3h(p(\omega_{j}\zeta))+\log 4+h(g_{2})+h(p(\omega_{j}\zeta))+h(g_{3})$

$+\log 3\}<2\cross 8.55L+L+\log 3<19.7L$ ,

and $h(p^{*\prime}(\omega j^{*}\zeta))$ , $h(p’(\omega_{j}\zeta))$ and $h(p^{*\prime\prime}(\omega_{j^{*}}\zeta))$ are at most 19.7L. Thus
at $(z_{1}, z_{2})=(\omega_{1}\zeta, \omega_{2}\zeta)$ ,

$\exp(h(\partial M))$ $\leq$ $(2\cross 2.22^{2L}e^{1.5L}Q^{4})^{12(D+T)}1{}_{7}H_{6(D+T)}$

$T^{4T}(2^{24}\cross 3^{4})^{D+T}\exp\{6c_{7}(D+T)L\}$ .

$\alpha$ is alinear combination of $\partial M$ with rational integer coefficients whose
absolute values are at most $\exp(c_{5}TL)$ . So

$h(\alpha)$ $\leq$ $\log(D+1)^{4}+c_{5}TL+h(\partial M)$

$<$ $[290 \log C+15.5\max\{\log(7.4d+2.8), 38.4\} +342.3]TL$ .

Next we estimate the degree of $\alpha$ , $\deg\alpha$ . Since

$\mathrm{Q}(\alpha)$ $=$ $\mathrm{Q}(p^{(t)}(\omega_{j}\zeta), p^{*(t)}(\omega_{j^{*}}\zeta))(j=1, 2;t=0,1,2)$

$\subset$ $k(p(\omega_{j}\zeta), p^{*}(\omega_{j^{*}})$ , $p’(\omega_{j}\zeta)$ , $p^{*\prime}(\omega_{j^{*}}\zeta))$ ,

the degrees of $p(\omega j()$ and $p^{*}(\omega_{j^{*}}\zeta)$ are at most $dQ^{2}$ by Lemma 2.4(i),

and $[k(p(\omega_{j}\zeta), p’(\omega_{j}\zeta)) : k(p(\omega_{j}\zeta))]\leq 2$ ,

$\deg\alpha=[\mathrm{Q}(\alpha) : \mathrm{Q}]\leq d(Q^{2})^{4}2^{4}=16dQ^{8}$ .

Hence $|\alpha|\geq\exp\{-(\deg\alpha)h(\alpha)\}>\exp(-c_{12}TLQ^{8})$ . $\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .
Lemma 3.5. If $C$ satisfies $C>(256/\log 2)c_{12}$ with the constant $c_{12}$

in Lemma 3.4, then for any odd integer $q$ and any ain $D_{i}(4T+1)$ we
have $\partial f(q\omega_{1}/Q, q\omega 2/Q)=0$ .

Proof. Assume that there exist an odd integer $q$ and an operator a
in $D_{i}(4T+1)$ such that $\alpha=\partial f(\omega_{1}\zeta, \omega_{2}()\neq 0$ for $\zeta=q/Q$ . We can
suppose that $0<\zeta<1$ , and that

$\alpha\Theta(\omega_{1}\zeta, \omega_{2}\zeta)=G((), (6)$

where $G(z)=\partial F(\omega_{1}z, \omega_{2}z)$ and $\partial$ is of minimal order.
$G^{(t)}(z)$ is alinear combination of the $\theta f(\omega_{1}z, \omega_{2}z)$ for $y$ in $D_{i}(t+$

$1+4T)$ , so by Lemma 3.2 and periodicity

$G^{(t)}(s+1/2)=0$ (7)
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for any integer $t$ with $0\leq t<4T$ and any integer $s$ . We apply the
Schwarz Lemma to (7) for $0\leq s<S$ , where $S=[C^{18}L]$ . Then $|G(\zeta)|\leq$

$2^{-4TS}M_{1}$ , where $M_{1}$ is the supremum of $|G(z)|$ for $|z|\leq 5S$ . By Lemma
3.3 $M_{1}<\exp\{25c_{9}L(T+DS^{2})\}<\exp(50c_{9}LDS^{2})$ . If $C>(25/\log 2)c_{9}$ ,
then $\exp(50c_{9}LDS^{2})<2^{2TS}$ , so $|G(\zeta)|<2^{-2TS}$ . By (6) and Lemma 3.4

$|\alpha|<2^{-2TS}\exp(84DLQ^{2})<2^{-TS}$ , (8)

where the second inequality follows, because $C>(84/\log 2)^{4/131}$ . But

also from Lemma 3.4 we have the lower bound

$|\alpha|>\exp(-c_{12}TLQ^{8})$ . (9)

If

$C$ $>$ $(256/\log 2)c_{12}$

$=$
. $5909d[290 \log C+15.5\max\{\log(7.4d+2.8), 38.4\}$

$+342.3]$ , (10)

then $2^{TS}>\exp(c_{12}TLQ^{8})$ , which contradicts (8) and (9). As $256c_{12}>$

$25c_{9}$ , (10) implies that $C>(25/\log 2)c_{9}$ . $\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .

4Proof of Main Proposition: deconstruction

Let $G=E^{2}\cross$ $E^{*2}$ embedded i$\mathrm{n}$

$\mathrm{P}^{81}$ by Segre embedding. Let $\epsilon$ be the
exponential map from $\mathrm{C}^{4}$ to $G$ obtained from the functions $p(z_{1})$ , $p(z_{2})$ ,
$p^{*}(z_{1^{*}})$ , $p^{*}(z_{2^{*}})$ and their derivatives for independent complex variables
$z_{1}$ , $z_{2}$ , $z_{1^{*})}z_{2^{*}}$ . Define asubspace $Z$ of $\mathrm{C}^{4}$ by the equations

$z_{1^{*}}=m_{11}z_{1}+m_{12}z_{2}$ , $z_{2^{*}}=m_{21}z_{1}+m_{22}z_{2}$ .

Write $Oc$ for the zero of $G$ , and let)and $\Sigma_{0}$ be the sets of even and
odd multiples of the point $\sigma=\epsilon(\omega_{1}/Q, \omega_{2}/Q, \omega_{1^{*}}/Q, \omega_{2^{*}}/Q)$ in $G$

respectively. We use Philippon’s zero estimate.
Lemma 4. There is aconnected algebraic subgroup $H=\epsilon(W)\neq G$

of $G$ such that
$T^{\rho}R\Delta<c_{13}D^{r}$ , (11)

where $W$ is asubspace of $\mathrm{C}^{4}$ , $\rho$ is the codimension of $Z\cap W$ in $Z$ , $R$ is
the number of points in)distinct modulo $H$ , $\Delta$ is the degree of $H$ , $r$ is
the codimension of $H$ in $G$ , and $c_{13}=4.032$ $\cross 10^{7}$ .
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Proof. By Lemma 3.5 there is apolynomial, homogeneous of degree
$D$ , that vanishes to order at least $4T+1$ along $\epsilon(Z)$ at all points of
So, but does not vanish identically on $G$ . Let $\Sigma(4)=\{\sum_{i=1}^{4}\sigma_{i}|\sigma_{i}\in$

$\Sigma\}$ , so $\Sigma_{0}=\sigma+\mathrm{S}(4)$ . From [5, Lemma 1] translations on an elliptic

curve are described by homogeneous polynomials of degree 2. Accroding

to Philippon’s zero estimate [9, Theoreme 1], there exists aconnected
algebraic subgroup $H=\epsilon(W)\neq G$ of $G$ such that

$T^{\rho}R\Delta\leq\deg G\cross 2^{\dim G}(2D)^{r}$ .

As $\deg$ $Ci=3^{2\dim G}\cross 4!=2^{3}\cross 3^{9}$ and $r\leq 4$ , $T^{\rho}R\Delta<c_{13}D^{r}$ . $\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .
Now we can give the proof of Main Proposition. We want to find a

nontrivial graph subgroup of an isogeny $Earrow E^{*}$ of small degree. We
consider the three cases $\rho=2$ , 1, 0 in (11).

When $\rho=2$ , $T^{2}R\Delta<c_{13}D^{f}$ . So

$R<c_{13}D^{r}T^{-2}<4.04\mathrm{x}10^{7}C^{2}D^{r-4}=:c_{14}C^{2}D^{\mathrm{r}-4}$ . (12)

Thus $r=4$, $H=O_{G}$ , and $R=Q/2$ . If

$C>2^{8}c_{14^{8}}=$
. 1.817 $\cross 10^{63}$ , (13)

then $Q/2>C^{17/8}/2>c_{1}{}_{4}C^{2}$ contradicting (12). Hence the case $\rho=2$

is ruled out under (13).
Next when $\rho=1$ , $Z\cap W$ has dimension 1, so $r\leq 3$ . If $H$ is nonsplit,

then by [8, Lemma 2.2] there is an isogeny of degree at most $9\Delta^{2}$ between
$E$ and $E^{*}$ . Prom (11) $\Delta<c_{13}D^{3}T^{-1}<4.04\cross 10^{7}C^{21}L^{2}$ . Thus we get

an isogeny of degree at most

$9\cross$ $(4.04\cross 10^{7})^{2}C^{42}L^{4}=$
. 1.469 $\cross 10^{16}C^{42}L^{4}$ . (14)

If $H$ is split, we can not have $r=3$ by the proof of [6, Proposition].

If $r\leq 2$ , then $R=Q/2$ by [6, Lemma 5.2], and $R<c_{13}D^{2}T^{-1}<c_{14}C$ .
The assumption of no complex multiplication is used to prove [6, Lemma

5.2] in applying Kolchin’s Theorem. Since $C>(2c_{14})^{8/9}$ from (13),
$Q/2>C^{17/8}/2>c_{14}C$ . Hence acontradiction.

Lastly when $\rho=0$ , then $Z\subset W$ and $r\leq 2$ . If $r=2$ , then from the

proof of [6, Proposition] $N\leq 9\Delta<9c_{13}D^{2}\leq 9c_{13}C^{40},L^{4}$ , so the original

isogeny $\varphi$ satisfies the required estimate.
If $r=1$ , then by the proof of [6, Proposition] $H$ is nonsplit, and there

is an isogeny of degree at most $9\Delta^{2}$ between $E$ and $E^{*}$ . As by (11)
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$\Delta<\mathrm{C}13\mathrm{D}\leq c_{13}C^{20}L^{2}$ , we get an isogeny of degree at most $9\cross(4.04\cross$

$10^{7})^{2}C^{40}L^{4}=$
. 1.469 $\cross 10^{16}C^{40}L^{4}$ .

Next we estimate $C$ , the conditions for which are (10) and (13), for
(10) implies (3). Let $C_{0}$ be the solution of the equation

$C_{0}=5910d[290 \log C_{0}+15.5\max\{\log(7.4d+2.8), 38.4\}+342.3]$ .

Let $x_{0}=\log C_{0}$ , $A_{1}=5910$ $\cross 290d$ , $A_{2}=5910d[15.5 \max\{\log(7.4d+$

$2.8)$ , 38.4}+342.3], and $\mathrm{f}\{\mathrm{x}$ ) $=e^{x}-A_{1}x$ -A2, so $f(x_{0})=0$ . If $x_{1}=$

$\{A_{2}/(A_{2}-A_{1})\}\log A_{2}$ , then $f(x_{1})>0$ . As $f(x)$ increases monotonously,
$x_{0}<x_{1}$ , that is, $C_{0}<\exp x_{1}<A_{2}^{1.45}$ .

Thus $C= \max\{A_{2}^{1.45},1.82\cross 10^{63}\}$ satisfies both (10) and (13). From
(14) we have proved Main Proposition with $c_{4}(d)=1.47\mathrm{x}10^{16}C^{42}$ .

5Proof of Theorem

We normalize the isogeny by Lemma 5to apply Main Proposition.
Lemma 5. Given apositive integer $d$ , there exists aconstant C15 with

the following property. Let $k$ be anumber field of degree at most $d$ , let
$E$ and $E_{1}^{*}$ be elliptic curves defined over $\mathrm{k}$ , and let $\varphi$ be an isogeny
ffom $E$ to $E_{1}^{*}$ of degree $N$ . Suppose $k’$ is the smallest extension field
of $k$ over which $\varphi$ is defined. Then $[k’ : k]$ $\leq 12$ , and there is an elliptic
curve $E^{*}$ , defined over $k’$ and isomorphic over $k’$ to $E_{1^{*}}$ , such that the
induced isogeny from $E$ to $E^{*}$ is normalized. Further we have

$w(E^{*})<(11.4d+54.3)w(E)+13\log N=:c_{15}w(E)+13\log N$.

Proof. This is [6, Lemma 3.2] except for the estimation of the constant
on the right-hand side of the inequality, which is $11.4d+54.3$ . $\mathrm{q}$ . $\mathrm{e}$ . $\mathrm{d}$ .

Now we give the proof of Theorem. Let $N$ be the smallest degree
of any isogeny between $E$ and $E’$ . By [6, Lemma 6.2] there is acyclic
isogeny from $E$ to $E’$ of degree $N$ . According to Lemma 5there are an
extension $k’$ of $k$ with $[k’ : k]\leq 12$ and an elliptic curve $E^{*}$ defined over
$k’$ and isomorphic to $E’$ such that the induced isogeny $\varphi$ ffom $E$ to $E^{*}$

is normalized and $w(E^{*})<c_{15}\{w(E)+\log N\}$ .
As $\varphi$ is cyclic, by Main Proposition there is an isogeny between $E$ and

$E^{*}$ whose degree $N_{1}$ satisfies

$N_{1}\leq c_{4}(12d)\{w(E)+w(E^{*})+\log N\}^{4}<c_{4}(12d)(c_{15}+1)^{4}\{w(E)+\log N\}^{4}$ .
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So there is an isogeny of degree $N_{1}$ between $E$ and $E’$ , and

$N\leq N_{1}<c_{4}(12d)(c_{15}+1)^{4}\{w(E)+\log N\}^{4}$ .

Thus $N<c_{16}\{w(E)\}^{4}$ for aconstant $c_{16}$ depending only on $d$ .
Lastly we estimate $c_{16}$ . Let $c_{17}=c_{4}(12d)(c_{15}+1)^{4}$ , $w=w(E)$ , $N\circ$

satisfy $N_{0}=c_{17}(w+\log N_{0})^{4}$ , and $c_{18}=N_{0}/w^{4}$ . Then $N<N_{0}$ , and
$c_{18}w^{4}=c_{17}(w+4\log w1 \log c_{18})^{4}$ . Therefore

$c_{18}=c_{17}(1+4\log w/w+\log c_{18}/w)^{4}<c_{17}(5+.\log c_{18})^{4}$ .

Let $c_{19}$ satisfy $c_{19}=c_{17}(5+\log c_{19})^{4}$ . Then $c_{18}<c_{19}$ , and $c_{19}$ is estimated
similarly as $C_{0}$ in the proof of Main Proposition. So C19 $<5^{20}c_{17^{5}}$ , and

$N<N_{0}=c_{18}w^{4}<c_{19}w^{4}<5^{20}c_{17^{5}}w^{4}=5^{20}\{c_{4}(12d)\}^{5}(c_{15}+1)^{20}w^{4}$ .

Hence $c_{16}=5^{20}\{c_{4}(12d)\}^{5}(c_{15}+1)^{20}<c(d)$ .
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