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LATTICE VERTEX OPERATOR ALGEBRA V33, AND AN ALGEBRA
OF MIYAMOTO OF CENTRAL CHARGE ;+ %

CHING HUNG LAM*

ABSTRACT. Motivated by a work of Miyamoto [17], we construct a vertex operator alge-
bra U of central charge 3 + 2L which has the full automorphism group isomorphic to the
symmetry group S;. Actually, we show that the lattice vertex operator algebra V g,

contains a subalgebra isomorphic to a tensor product of unitary Virasoro vertex opera-
tor algebras T = L(%,0) ® L(,0) ® L(%,0) ® L(£,0) ® L(%,0) ® L(33,0) ®L(3,0)0
L(Z,09L(3,0) L(ZL,0) and U is a certain coset subalgebra of V. 5, We also show
that U contains exactly 3 conformal vectors of central charge 1/2 and the inner product
between any two of them is 1/28.

1. INTRODUCTION

This work is motivated by a recent article of Miyamoto [17]. In [17], Miyamoto studied
a class of vertex operator algebra(VOA) generated by two rational conformal vectors e
and f of central charge 1/2. Among other things, he showed that if the inner product
(e, f) is equal to 5 35, then the vertex operator algebra U generated by e and f is of central
charge 16/11 and U contains a subalgebra isomorphic to L(3,0) ® L( £2,0). Moreover,
dim U, = 3 and the full automorphism group of U is isomorphic to the symmetry group
Ss. In this paper, we shall construct explicitly a VOA

UmL( 0)®L( O)eBL( 0)®L(§; 8)

21 45
11 217 11 Ll

@L(§,5)®L(22 5O LG5) ®Llgg: 3)
21 31 1 1 21 175
@L(2 16)®L(22 16)®L(2 16)®L(22 16)

in the lattice VOA V55, and show that U satisfies all the properties mentioned in [17].
In fact, we shall show that the lattice VOA V55, contains a subalgebra isomorphic to a
tensor product of the unitary Virasoro VOAs

=1, o>®L( 0)®L( 0@ LE,0®Li5,0

11

®L(12

)®L( ,0)® ( 0)®L( 0)®L( ,0),
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and obtain a complete decomposition of V. 55 into a direct sum of irreducible T-modules.
The VOA U is actually a certain commutant (or coset) subalgebra associated with the
above decomposition. We also notice that an automorphism of order 3 obtained from the
abelian group v/2Es,~v/2Az induces a natural Zg-action on U. This action together with
the usual involution 8 induced by —1 will form a group S;3 inside the automorphism group
of U. In addition, we determine all conformal vectors of central charge 1/2 inside U and
show that the inner of any two of them is 1/2® as mentioned by Miyamoto.

2. LATTICE VERTEX OPERATOR ALGEBRA V 55

2.1. The lattice v/2Es. Let o°...,08 be vectors in R® such that (o, ;) = 26;; for
any 4,7 = 0,...,8 and L = Za® ® Za'! @ --- ® Za®. Then L is isomorphic to the
orthogonal sum of 9 copies of the root lattice A;. Let 8; = —a;-1+0a4,¢=1,...,8. Then
N =spang{fy,..., 5} is isomorphic to the lattice v/2As. Let

1
'y=§(2a°+2a1+2a2—a3—a4—a5—a6—a7—a8). (2.1)

Then 7 belongs to the dual lattice N* = {z € Q®z N| (z,y) € Z for all y € N} of N and
the lattice K generated by v and N is of rank 8. Moreover, we have

Lemma 2.1. K =~ /2E;

Proof. First, we shall note that (y,7) =4 and K =<v,N >= NU(y+ N)U(—-y+ N).
Moreover, K/N = Zj; as an abelian group.
Let 6; = %,@i = %(—ai_l + 0y) f01f i=1,...,7and 6 = %7. Then

(6;,6;) =2 fori=1,...8,

(0;-1,0) =—-1  fori=2,...7,
(63,08) = —1, and

6:;,0,) =0 for all other 1 < 1,5 < 8.

In other words, {61, ...,03} is a set of simple roots of the root lattice Fs and hence
K > spang{B, B2, Bs, B, Bs, Be, Br, v} = V/2Es.
Since |K/N| = 3 = |V2Es/v/2As|, K = spang {1, 2, B3, B, Bs, Be, Br, 7} = V/2Es. d
Hence we also know that the vertex operator algebra

Vg, = Vk=Vn o Vytn ® V_qin.



2.2. Conformal vectors in V5, . In this section, we shall study some conformal vectors
in V,55,. We shall show that the Virasoro element of the VOA V5, can be decomposed
into a sum of 10 mutually orthogonal conformal vectors @', ..., @'° and the central charge
of c(&') of &' are given by

6

M =1- o——r  for1<i<8,
(@) =1 TG or1<i<
21
e(@°) = %, and c(@"0) = 55"

First, let us recall a construction of certain conformal vectors in V 54, from Dong et.
al.[4]. Let ® be the root system of 4; and ®* and ®~ the set of all positive roots and
negative roots, respectively. Then

d=0TUd =0T U(-D").
Consider a chain of root systems
o=9,2>2%_,D---0%9
such that ®; is a root system of type A;. For any ¢ =1,2,...,l, define

D Y CorMEEE CAETagY)
aed}

1

and )
— — 2-
w__2(l+1) Z+a( 1)%. 1.
aEd;

It was shown by Dong et. al.[4] that the elements
w! =s!, Ww=s -1 2<i <, Wt =w—§ (2.2)

are mutually orthogonal conformal vectors in V,5,,. The subalgebra Vir(w?) of the vertex
operator algebra V 5,4, generated by w® is isomorphic to the Virasoro vertex operator
algebra L(c(w'), 0) which is the irreducible highest weight module for the Virasoro algebra
with central charge c(w’) and highest weight 0 and the central charge c(w?) of w* are given
by

- 6 ‘ S 2
N — 1 —_—— <73 <L +1 — .
c(w?) D) for1<i<!l and c(w) )
Since w?!, w?, ..., w't! are mutually orthogonal, the subalgebra T of V.5, generated by

these conformal vectors is a tensor product of Vir(w®)’s, namely,
T = Vir(w!) ® - - - ® Vir(w'*?)
2 L(c(@"),0)® -+ ® L(e(w'™),0).

Moreover, V54, is completely reducible as a T-module.
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For [ = 8, there are 9 mutually orthogonal conformal vectors w',...,w® in V5 4, and
1 9 1 7 46 25 11 14 52 16 i
the central charge of w',...,w’ are 3,5, 5,3, 5, 13> 15» 3¢ and 77, respectively. In other

words, V,/3,, contains a subalgebra isomorphic to

4 2

1 7 6
11 14 52 16

The following lemma can be obtained by direct calculation.

Lemma 2.2. Let y be defined as in (2.1) and let

a' = Z e €V, vax, ond

a€(v+Vv2Ag),
{a,a)=4

2
a = Z e* € V—'Y+\/§As'

O‘E(_7+‘/2—A8):
{a,a)=4

Then a* and a® are both highest weight vectors of weight (0,0,0,0,0,0,0,0, 2) with respect
to the action of T.

Lemma 2.3. Let u = a' + a? = Y ae(rviay), (€% + €7%). Then
(a,ax)=4

&9—Hw9+—1—u and @' =—w’'——u
T 32 32 32 32

are mutually orthogonal conformal vectors of central charge 1/2 and 21/22, respectively.

Moreover, they are orthogonal to W', ... w8

Proof. First, we shall note that for any o, 8 with square norm 4,

e +h if (o, B) = =2
(€)1’ = a(-1)? ifa=-4 (2.3)

0 otherwise

and
1 ifa=-p4

(2.4)
0 otherwise

(e*,¢”) = (e*)se’ = {
Then by direct computation, we have
wu = 2(2310° + 10u), ww®=2w® and wiu=2u.

Now, it is easy to verify that both &° and @'° are conformal vectors.



Since v/2A4s has exactly 72 vectors of square norm 4 and 7 + v/24s and —y + V24
each has 84 vectors of square norm 4, we also have

8

(W, w°) = L (W u) =0, and (u,u)=168. (2.5)
Therefore,

9 ~oy _ 1 ~9 ~10 ~10 ~10y _ 21

(@ ,w)=Z, (@, =0, and (@@ >=ZZ

and hence @° and &'° are mutually orthogonal conformal vectors of central charge 1/2 and
21/22. By the definition, it is also clear that &° and &' are orthogonal to {w',...,w®}
as w® and u are orthogonal to {w!,...,w?}.

As a corollary, we have

Corollary 2.4. The lattice VOA V, 55, contains a subalgebra isomorphic to
7

T = ( 0)®L(10 0)® ( 0)®L( 0)®L(28 0)
11
®L(12 )®L( )®L( 0)®L( 0)®L( ,0),
Proof. Let &@* = w' fori=1,2,...,8. Then {GJ ,o.., 00} is a set of mutually orthogonal
conformal vectors of central charge 3, &,%,8,2, 1 14, 82 1 and 2, respectively. Hence,
the subalgebra generated by {@?,...,&'} is isomorphic to . O

Remark 2.5. Note that the vector v = a' — a? is a highest weight vector of weight
(0,0,0,0,0,0,0,1/16,31/16) with respect to .

2.3. Decomposition of V 55 as T-submodules. Next, we shall study the decompo-
sition of V55, as a direct sum of T-modules. First, let us recall the following theorem
from [13].

Theorem 2.6. The lattice VOA V54, can be decomposed as

Vi W @ Licy, hhgpipsr) ® - Liet, Bpyrn,) ®W(ks), (26

0<k <j+1,
0 .8,
k —-0 mod 2

where W(0) is a simple VOA, known as parafermion algebra or W-algebra, of central
charge 16/11 and W (k),k = 0,2, 4,6, 8, are irreducible W (0)-modules.

Since V,, /54, and V_ | s, are irreducible V34 -modules and both of them contain
highest weight vectors of weight (0,0,0,0,0,0,0,0,2) with respect to T, we also have
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VY+\/§AB = @ L(Cl’ h'llco+1,k1+1) Q- L(cl’ h‘27+1,ks) ® P(ks)’ (27)
0gk; <]+1 ‘
j= 0
hJ“O mod2
V yivaas & @ L(ct, Py sapr1) © -+ Lt by y1ks) © Q(Rs), (2.8)
0Sk; <j+1,

J:O,“.,B,
k;=0 mod 2

where P(k;) and Q(k;) are irreducible W (0)-modules whose structure are yet to be deter-
mined.

Now, let U = U(0) = {V € V55, | (W*)1v =0 for i=1,2,...,8}. Then, U is a VOA
of central charge 16/11 and by combining Corollary 2.4 and (2.6 2.8), we have

Theorem 2.7. The lattice VOA V. gy, can be decomposed as

V\/iEg = @ L(C]_, h}t‘o-{-l,kl-}-l) - L(C[, h}c'(-}-l,ks-}-l) ® U(kS)? (2'9)

0<k i <i+1,

0 W8,
k~—0 mod 2

where U(k) = W (k) + P(k) + Q(k), £ =0,2,4,6,8, are U(0) — modules.
Remark 2.8. Let o be an automorphism of V55, defined by
2ni
o(u) =e3 P forany ue€ M(1)®e€f CV g,

and let 8 be an automorphism of V, 5, induces by the isometry B — —f of V/2Es. Then
the subgroup generated by o and 6 is isomorphic to S;. Moreover, ¢ and # induce some
nontrivial automorphisms of order 3 and order 2 on the subVOA U(0) respectively. In fact,
they induce automorphisms of order 3 and order 2 on the submodules U(k), k = 0, 2,4, 6, 8,
also. By abuse of notation, we shall still denote them by o and 6.

Note also that the automorphism o is in fact induced from the order 3 symmetry among

the 3 cosets of v/2A4g in V/2FEj.

Next let us determine the structure of U(0). Since L(},0) ® L(%,0) is rational and
contained in U(0), U(0) and U(k),k = 2,4,6,8, are direct sum of irreducible L(},0) ®

L(Z,0)-modules. On the other hand,
1 21 21 1 1 21 7
11 21 45 1 1 21 31 21 175
L(E’E)‘X’L(z_z"'é’)’ (2 16)®L(22 16) d L(z 16 L(22 16)



are the only irreducible modules of L(%,0) ® L(%},0) which have integral weights.

Hence,
21 1
U(0) = AlL( 0)®L(22 0) @ A2L(3, )®L(22 8)
21 7 1 1 21 45
@AaL( )®L(22 5) © AL(3,35) ® g5 5)
1 1 21 31 11 21 175
® AsL(3; 16)®L(22 16)®A6L(2 16)®L '2_2’T6_)’
where A, ..., Ag are the multiplicities of the irreducible summands.
Similarly, we also have
21 13 21 35
U(2) B1L( 0)®L(22 ll)EBBzL( 0)®L(22 11)
21 15 21 301
@BSL( )®L(22 22) B4L(— —)®L(§2‘ E)
21 21 11 21 901
GBB5L(2 16)®L(22 176)69B6 (2 16)®L(22 176)
1 21 50 21 6
U4) = C’L(§,0)®L(22 ll)GBCgL( 0)®L(22 11)
11 21 1 11 21 155
® CsL(5,3) ® L(z3, 35) ® Cal(5:5) @ L(gg, 53)
1 1 21 85 11 21 261
& CsL(3, 6 ® L(z5 176)6306 5 16)® (ﬁ’f'z—s)’
21 111 21 1
U = DiL(;,0) ® L(z, —ﬁ‘)@DzL( 0)®L<22 )
1 1 21 35 21 57
@DaL(2,2)®L(22 22)€BD4L( )®L(22 22)
21 533 5
EBDSL(z 16) L(§§’176) Ds (2 16)® (22 176)
and
21 196 1 21 20
UE) = BL(; 00 Ly 1) B30 Ly =)
21 117 21 7
E
© Es ( )®L(22 55 O Bal(y ( )®L(22 %)
21 1365 21 133
EBEﬁ"L(z 16)®L(22 176)@E6L(2 16) L(ii’ﬁé)’

for some suitable B;, C;, D; and E;. Note that the weights of U(2),U(4),U(6), and U(8)

are 2/11+Z,6/11 + Z,1/11 + Z, and 9/11 + Z, respectively.

- Now by comparing the characters of the left and the right hand sides of (2.9), we find

that all A,’s, B;’s,Ci’s,D;’s, and E;’s are equal to 1.
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Hence we have

U(O)%L(; O)®L(5§ 0)® L(> O)®L(22, 8)
21 7 21 45

® Liz13) ® Lizz3) 0 L, )@L(z2 7

1 1 21 31 21 175

S L(5 ® (2 16 ® L5516

2’16) (22 16) )

91 13 91 35
v =10 e L, u)eL( 92 i
1 1 91 15 21 301
GL(E §)®L 22’ 22)61’( ) L('z_z"?z")
11 91 21 21 901
® L5 76) ® Lz 176)@L(2 16) L% 176"
91 50 21 6
UM) = L ~,0)® L(55, 11)@L(2 0)®L(-2—2— =)
1 1 91 1 91 155
8 L(3,3) ® L(5;, zz)EBL( )®L(22 22
11 21 85 21 261
o L5 16) ® Lig;: 176)€BL(2 16) L35 776
1 21 111 1
11 91 35 91 57
®L(3,3)® L(g;, 22)@1’( )®L(22 2
11 91 533 11 91 5
& L(5, 15) ® Lzg 176) @ L5 16) @ L35 175
and
1 21 196 1 91 20
>~ L - ==
V=100 Ly 110 G0 9 LU )
11 91 117 1 21 7
@L(z 2)®L(2_2 22953 oL ® L(3539)
21 1365 21 133
@L(E 1_6)® (22 176) (5 E) (22’ﬁ6')’

Theorem 2.9. U is a simple VOA and U(k) for k = 0,2, 4,6, 8 are irreducible U-modules.
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Proof. Since

U(O) = L(3,0)® Lz, o>+L(§ ;>®L<§§,42—5>

21 17
+L( 0)®L(22 )+L(—2— —)®L(—2-,§
1 1 21 31 11 21 175
216 ® Loy 1e) T L3 19 © L 16)
as an L(},0) ® L(Z,0)-module, by the fusion rules, U is clearly simple.
Now, by the fusion rules and the decomposition, it is also clear that U (k) for k =

0,2,4,6,8, are irreducible as U-modules. 0

+L(:

3. CONFORMAL VECTORS IN U

In this section, we shall compute all the conformal vectors in U. First, we shall note
that dim U = 3 and {@ = w®, u,v} forms a basis of Us.

Theorem 3.1. There are ezactly 7 conformal vectors in U, namely, the Virasoro element
@ of U, 3 conformal vectors of central charge 1/2 and 3 conformal vectors of central charge
21/22.

Proof. First we shall note that U, is spanned by {@,u,v}. Let z = a@ + bu + cv be
a conformal vector in U,. Then z;z = 2z. Since 0,0 = 20, &u = 2u, v = 20,
wu = 2(231& + 10u), wjv = —20v, and vv = 2(—231@ + 10u), by direct computation,
we know that

a? + 2318% — 231¢? = a,

2ab + 106° + 10c> = b, and (3.1)

2ac — 20bc = c.

Solving the above equations, we obtain 7 non-trivial solutions, namely,

{a=1,b=0,c =0},

11 1 21 -1
== —.,Cc= =—pb=—,c=0
lo=gpb=g3c=0h le=gb=g5pc=0
11 -1 V=3 21 1 v-3
le=g3b=%p°= a1 {“”ﬁ’b_@’c_ 64
11 -1 -v-3 1 -3
le=gpb=%p°= 6 » la= 32 3= 60°7 "64
When {a =1,b=0, c—O},m—wls the Virasoro element of U.
When {a = &,b6=4,c=0}, {a = 5,0 = 5,c= % Y3} or {a = 8,b=F,c=

=1/4 and z is a conformal vector of central charge 1/2.
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When{a—gé,b—gzl,c—()} {a—gé,b-— g C= }or{a—gl =51Z’c::_6_4ﬁ},

(x,z) = 21/44 and z is a conformal vector of central charge 21/22. O
=3

Lemma 3.2. Let ¢! = v’ + Fu, € = u’ — Gu+ ‘/_v, and 3 = Zw® — u— %v

be the three rational conformal vectors of centml charge 1 3 mU. Then (€}, &%) -2% if
i .
Proof. By (2.4), it is easy to show that

(W W) = %, (u,u) = 168, (v,v) = —168,

and

(W, u) = (W%, v) = (u,v) =0.
Thus, we have
1/2%  ifi#j,
1/4  ifi=j,

as desired. 0

(e',e7) =

Theorem 3.3. Let U, be the Griess algebra of U. Then Aut U, = Ss.

Proof. Let g be an element of AutU;. Then it will induce a permutation on the three
conformal vectors e!, e and e3. Since U, is generated by e, e? and €3, Aut U, must itself
a permutation subgroup on {e!,e?,¢%}. On the other hand, by our construction, Aut U,
already contains elements of order 3 and order 2, namely o and 8. Thus AutU; = S;. O

Theorem 3.4. The full automorphism group of U is isomorphic to Ss.
Proof. Let g € AutU and let G be the subgroup of Aut U generated by o and 6. Since
AutU, = {hly, | h € G},

there exists an h € G such that gh~!|y, = idy,. In particular, p = gh~! will fix the
conformal vectors @, @° and thus fixes the subVOA L(1/2,0) ® L(21/22,0). Hence p
will map highest welght vectors to highest weight vectors of the same type. Moreover in
U highest weight vectors are unique (up to scalar multiple) and p preserves their inner
product. Hence p must fix U. Thus g =h € G and AutU = G = 5. O

Remark 3.5. Recall from Miyamoto [14] that for each conformal vector e of central charge
1/2, one can define an automorphism 7, by

1  on the summands isomorphic to L(1/2,0) or L(1/2,1/2),
T, =
‘ —1 on the summands isomorphic to L(1/2,1/16).

168
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In the VOA U, 7.1 actually corresponds the permutation e® <> € and 7,2 corresponds
e! <> €3. On the other hand, the order 3 automorphism o corresponds to the cyclic

permutation e! — e — e — e'. Hence we have

N =

10.

11.

12.

13.

14.

15.

16.

17.

18.

O = Te2Tel.
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