
THREE LECTURES ON FEWNOMIALS
AND NOETHERIAN INTERSECTIONS

A. KHOVANSKII

The goal of these lectures is to give an introduction to atheory of Neotherian
functions (such atheory still is very incomplete). First lecture deal with the theory
of fewnomials which could be considered as areal global version of atheory of
Neotherian functions. In the second lecture we discuss integration over Euler char-
acteristic which turns out to be very useful. In lecture 3we will present the first
solved (by A.Gabrielov and A.Khovanskii) problem about Noetherian intersections.

LECTURE 1. FEWNOMIALS

The ideology of fewnomials implies that real varieties, defined by “simple” (not
too complicated) sets of equations, must have asimple topology. Of course, this is
not always true. The fewnomial ideology, however, is helpful in finding anumber
of rigorous results (see [1-5]).

The classical Bezout theorem states that the number of complex solutions of aset
of $k$ polynomial equations in $k$ unknowns can be estimated in terms of their degrees
(it equals the product of the degrees). In this lecture we will deal with the real and
the transcendental analogues of this theorem: for awide class of real transcendental
equations (including all real algebraic ones) the number of solutions of aset of $k$

such equations in $k$ real unknowns if finite and can be explicitly estimated in terms
of the “complexity” of the equations. Amore general result involves aconstruction
of aclass of transcendental real varieties resembling algebraic varieties.

These results provide new information about real polynomial equations (see Sec-
tion 1) and level sets of real elementary functions (see Section 2). The whole theory
based on avery simple Rolle-Khovanskii theorem (see Section 3). In Section 4we
will consider separating solutions of ordered systems of Pffaf equations and will
defined characteristic sequences for such systems. In Section 5we will discuss
the main extimations under extra assumptions connected with compactness and
transversality. In Section 6we will get rid of the extra assumptions.

1. Real algebraic geometry. The topology of geometric objects determined by
algebraic equations (real algebraic curves, surfaces, singularities, etc.) gets more
and more complex as the degree of the equation increase. As recently found com-
plexity of the topology depends only on the number of monomials contained in the
equations rather than on their degrees: the following Theorems 1and 2assess the
complexity of the topology of geometrical objects in terms of the complexity of
equations determining the object.

We begin with the following well-known
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Descartes rule. The number of positive roots of a polynomial in a single real vari-

able does not exceed the number of sign alter nation in the sequence of its coefficients
(null coefficients are deleted from the sequonce).

Corollary (the Descartes estimate). The number of positive roots a polynomial is
less than the number of its terms.

A. G. Kushnirenko proposed to call polynomials with asmall number of terms
fewnomials. The Descartes estimate shows that independently of the degree of a
fewnomial (which may be as large as we wish) the number of its positive roots is
small.

The following Theorems 1and 2generalize the Descartes estimate to the case of
systems of polynomial equations in multidimensional real space.

Denote by $q$ the number of monomials appearing with nonzero coefficients in at
least one of the polynomials of the system.

Theorem 1. The number of non-degenerate solutions of a systems of $k$ polynomial
equations in $k$ positive real unknowns is less than $2^{q(q-l)/2}(k+1)^{q}$ .
Theorem 2. The sum of Betti numbers of a non-singular algebraic manifold de-
fined in $R^{k}$ by a non-degenerate system of polynomial equations is not greater than
an explicitly expressed function of $k$ and $q$ . The number of connected components
of a singular algebraic variety can also be estimated from above in terms of $k$ and $q$ .

The known estimates of the sum of Betti numbers and of the number of con-
nected components in Theorem 2, as well as the estimate of the number of roots in
Theorem 1contain an unpleasant factor of order $2^{q^{\underline{9}}/2}$ . Apparently, these estimates
are far from being exact.

The arguments proving Theorems 1and 2are not only useful in algebra. Let us
state aresult related to the theory of elementary functions

2. Level surfaces of elementary functions. We begin with definitions. Here is
alist of principal elementar$ry$ functions: the exponent, the logarithm, trigonometric
functions $(\mathrm{s}\mathrm{i}\mathrm{n}, \mathrm{c}\mathrm{o}\mathrm{s}, \mathrm{t}\mathrm{a}\mathrm{n}, \cot)$ and their inverse functions. The function defined in a
domain in $R^{n}$ which can be represented as acomposition of afinite number of
algebraic functions and principal elementary functions is called elementary. An
elementary manifold is the transversal intersection of non-singular level surfaces of
several elementary functions. Amap of degree $\leq m$ of an elementary manifold
in $R^{n}$ is the restriction to the manifold of such amap of $R^{n}$ into $R^{k}$ that all its
components are polynomials of degree $\leq m$ .

Choose acompact subset $K$ in some $k$-dimensional elementary manifold.

Theorem 3. In any regular value $in$ $R^{k}$ of a map of degree $m$ of a k-dimensional
elementary manifold, the number of points in the inverse image contained $ir\iota$ $K$

is less than $cmr$ . In this estimate the constant $r$ depends only on the elementary
manifold, while the constant $C$, depends on the choice of the set $K$ as well.

One can definite also s0-called non-Oscilating elementary functions. The defini-
tioll is similar to the definition of elementary functions, but from the list of principal
elementary functions one should delete all oscilating functions $(\mathrm{s}\mathrm{i}\mathrm{n}, \mathrm{c}\mathrm{o}\mathrm{s}, \mathrm{t}\mathrm{a}\mathrm{n}, \cot)$ ,
keeping their inverse functions. Complexity of non-Oscilating elementary function
is afollowing asequence of integral numbers: anumber of principal non-0scilating
elementary functions used in representation of the function, anumber of arithmeti$\mathrm{c}$

43



THREE LECTURES ON FEWNOMIALS AND NOETHERIAN INTERSECTIONS

operations and alist of degrees of algebraic functions used in this representation.
Complexity of non-Oscilating elementary manifold is the list of complexities of non
-0scilating elementary functions used in the system of equations which definite this
manifold.

Theorem 4. In any regular value in $R^{k}$ of a map of degree $m$ of a k-dimensional
elementary non-Oscilating manifold, the number of points in the inverse image is
finite and can be estimated explicitly via the complexity of the manifold and the
degree $m$ .
3. Separating solutions and Rolle-Khovanskii theorem. Let $M$ be asmooth
manifold (possibly disconnected, non-0riented and infinite-dimensional) and let $a$

be a1-form on it. Of great significance for the sequel is the following definition.

Definition. Asubmanifold of co dimension one in $M$ is said to be aseparating
solution of the Pfaff equation $a=0$ if

(a) the restriction of the form $a$ to the submanifold is identically zero;
(b) the submanifold does not pass through the singular points of the equation

(i.e., at each point of the submanifold the form $\alpha$ does not vanish on the tangent
space);

(c) the submanifold is aboundary of adomain in $M$ and its coorientation defined
by the form coincides with the coorientation of the domain boundary (i.e., on the
vectors, applied at the submanifold points and outgoing from the domain, the form
$\alpha$ is positive).

Example. The surface H $=c$ of anon-singular level of the function H is asepa-
rating solution of the equation dH $=0$ (it bounds the domain H $<c$).

APfaff hypersurface in $R^{n}$ is aseparating solution of the equation $\alpha=0$ where a
is a1-form in $R^{n}$ with polynomial coefficients. An algebraic hypersurface is aPfaff
hypersurface (see the example). The Pfaff hypersurface resembles an algebraic
one in many ways. Suppose $\beta$ is the restriction of the 1-form with polynomials
coefficients to the Pfaff hypersurface. Aseparating solution of the equation $\beta$ $=0$

on the Pfaff hypersurface also possesses properties similar to those of an algebraic
manifold. This process may be continued. We obtain awide class of manifolds
resembling algebraic ones. The formal definition of this class can be found in [4].

Here we will dwell on acertain property of separating solutions. For such solu-
tions we have the following multidimensional variant of Rolle’s theorem.

Rolle-Khovanskii theorem. Between two intersection points of a connected smooth
curve with a separating solution of a Pfaff equation there is a point of contact $i.e.$ ,
a point at which the tangent vector to the curve lies in hyperplane $\alpha=0$ .

The proof is especially easy in the case where the curve intersects the separating
solution transversally. In this case, at the neighbouring points of intersection, the
values of the form $\alpha$ on the tangent vectors orienting the curve have different signs.
Therefore, the form $\alpha$ vanishes at acertain intermediate point.

To demonstrate the significance of the usual Rolle’s theorem, we consider asimple
transcendental generalization of the Descartes estimate.

Proposition (Laguerre). The number of real roots of a linear coml $q$ tion of ex-

ponents $\sum_{i=1}^{q}\lambda:\exp(a_{\dot{\iota}}t)$ is less than the number of exponents $q$ .
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The Descartes estimate of the number of positive roots of apolynomial follows
from the Laguerre proposition by substitution $x=\exp t$ . The proposition is proved
by induction. Let us divide the linear combination by one of its exponents and
differentiate the quotient. The derivative contains fewer exponents. According to
Rolle’s theorem, the number of zeroes of the function does not exceed the number
of zeroes of the derivative plus 1.

Fewnomials theory is something of amultidimensional generalization of this sim-
ple argument which instead of the Rolle’s theorem uses the Rolle-Khovanskii the0-
rem (unidimensional generalization can be found in [6]).

4. Ordered systems of Pfaff equations, their separating solutions and
characteristic sequences. In this section we define separating solutions and char-
acteristic sequences of ordered systems of Pfaff equations.

Acoooriented submanifold $\Gamma$ of codimention 1in an ambient manifold $M$ is
called aseparating submanifold if there exists asubmanifold with boundary, $M_{-}$ ,
of codimension 0in the ambient manifold $M$ , whose cooriented boundary is the
submanifold $\Gamma$ . Then $M_{-}$ is called afilm spanning the separating submanifold $\Gamma$ .
The closure of the complement to the spanning film $M_{-}$ is amanifold with bound-
ary, $M_{+}$ . The boundary of $M_{+}$ coincides with $\Gamma$ , and its coorientation, as the
coorientation of aboundary, is opposite to the coorintation of the submanifold $\Gamma$ .
The intersection of $M_{-}$ with $M_{+}$ is the submanifold $\Gamma$ , and their union is $M$ .
Proposition 1. A cooriented submanifold separates a manifold $M$ if and only if
there is a function $f:Marrow \mathbb{R}^{1}$ for which:

(a) the zero level set is nonsingular ($i.e.$ , if $f(a)=0$ then $df(a)\neq 0$), and
(b) the cooriented submanifold coincides with the zero level set $f=0$ of the

function $f$ , cooriented by the form $df$ .
In one direction this proposition is obvious: the nonsingular zero level set $f=0$ ,

cooriented by the form $df$ , can be spanned by the film $f\leq 0$ . The converse
statement also is simple.

Achain of inclusions of submanifolds
$M=\Gamma^{0}\supset\cdots\supset\Gamma^{k}$

is called aseparating chain provided for each $i>0$ , the manifold $\mathrm{p}$:is aseparating
submanifold in the preceding manifold $\Gamma^{\dot{\iota}-1}$ . Each submanifold in aseparating
chain inherits, in the original manifold $M$ , the composite coorientation.
Proposition 2. Let $f:Narrow M$ be a map from the manifold $N$ into the manifold
$M$ , which is transversal to each submanifold of the separating chain of submanifolds

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{k}$ .
Then the chain of preimages

$N=f^{-1}( \Gamma^{0})\supset\cdots\supset\int^{-1}(\Gamma^{k}.)$ ,

in which each of the manifolds has the induced coorientation in the preceding, is $a$

separating chain in $N$ .

Proof. The set $f^{-1}(\Gamma^{i})$ is asubmanifold of codimension $i$ in $N$ . This fact follows
from the transversality of $f$ to $\Gamma^{i}$ . If $\Gamma_{-}^{i-1}\subset\Gamma^{i-1}$ is aspanning film for the
submanifold $\Gamma^{i}$ , then $f^{-1}(\Gamma_{-}^{i-1})$ is aspanning film for the submanifold $f-1(\Gamma:)$ .
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Example. Consider the chain of inclusions of linear spaces

$L=L^{0}\supset\cdots\supset L^{k}$ ,

in which $L$ is a $k$-dimensional space with coordinate functions $x_{1}$ , $\ldots$ , $x_{k}$ and each
$L^{i}$ is asubspace of co dimension $i$ in $L$ determined by the equations

$x_{k}=\cdots=x_{k-i+1}=0$ ,

cooriented in the preceding space $L^{i-1}$ as the boundary of the half-space $x_{k-i+1}\leq 0$ .
The chain is aseparating chain having $k$ separating manifolds.

The following proposition shows that an arbitrary separating chain with $k$ sep-
arating sub manifolds is the preimage under atransversal map of the separating
chain in the previous example.

Proposition 3. A chain consisting of $k$ embedded submanifolds of the manifold $M$

is separating if and only if there is a sequence of $k$ functions $f_{k}\ldots$ , $f_{1}$ such that:
(a) for each natural number $i\leq k$ the common zero level set of the first $i$ functions

is nonsingular ($i.e.$ , if
$f_{k}=\cdots=f_{k-i+1}=0$ ,

then the differentials $df_{k}$ , $\ldots$ , $dfk-i+1$ are linearly independent),
(b) the $ith$ manifold in the chain is the common zero level set of the first $i$

functions ($i.e.$ , it is determined by the equations $f_{k}=\cdots=f_{k-:+1}=0$), cooriented
in the preceding manifold as the boundary of the film $f_{k-i+1}\leq 0$ .

Proof. According to Proposition 1, the first manifold in the chain is anondegenerate
zero level set of some function $f_{k}$ . By the same proposition, the second manifold
in the chain is anondegenerate zero level set of some function $f_{k-1}$ defined on the
first manifold of the chain, and so on. To finish the proof, it remains to extend
arbitrarily to the whole manifold the functions defined on the submanifolds.

Let $\alpha_{1}\ldots$ , $\alpha_{k}$ be an ordered set of 1-forms on $M$ . We say that adecreasing
sequence of submanifolds

$M=\Gamma^{0}\sim\neg\cdots\supset\Gamma^{k}$

is aseparating chain of integral manifolds (a separating chain, for short) for the
system of Pfaff equations

$\alpha_{1}=\cdots=\alpha_{k}=0$ ,

if
(1) for each $i$ the submanifold $\Gamma^{i}$ is anonsingular integral submanifold of the

system of Pfaff equations
$\alpha_{1}=\cdots=\alpha:=0$ ,

i.e., the restriction to the manifold $\Gamma^{i}$ of the forms $\alpha_{1}\ldots$ , $\alpha_{i}$ is identically equal
to zero, the manifold $\Gamma^{i}$ has codimension $i$ , and the forms $\alpha_{1}\ldots$ , $\alpha$:are linearly
independent at each point of the manifold $\Gamma^{i}$ ;

(2) the manifold $\mathrm{p}:$ , equipped with the coorientation i$\mathrm{n}$

$\mathrm{p}:-1$ determined by the
1-form that is the restriction to $\Gamma^{i-1}$ of the form $\alpha_{i}$ is aseparating submanifold.

In other words, the chain

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{k}$
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of inclusions of submanifolds is aseparating chain of integral manifolds for the
ordered Pfaff system of equations $\alpha_{1}=\cdots=\alpha_{k}=0$ , if $\Gamma^{0}$ is equal to $M$ and, for
each $i>0$ , $\Gamma^{i}$ is aseparating solution of the Pfaff equation $\tilde{\alpha}_{i}=0$ on the preceding
manifold $\Gamma^{i-1}$ , where $\tilde{\alpha}_{i}$ is equal to the restriction to $\Gamma^{i-1}$ of the form $\alpha_{i}$ .

Two ordered systems of equations

$\alpha_{1}=\cdots=\alpha_{k}=0$ and $\tilde{\alpha}_{1}=\cdots=\tilde{\alpha}_{k}=0$

are said to be equivalent if there exist lower triangular $k\cross k$ matrix functions on
the manifold, $\varphi_{i,j}$ , $\varphi_{i,j}\equiv 0$ for $i<j$ , such that, on the main diagonal, $\varphi>0$ , and
such that

$\tilde{\alpha}:=\sum\varphi_{i,j}\alpha_{j}$ .

Proposition 4. Each separating chain of integral submanifolds (together with the
chain of spanning films of these subma nifolds) of an ordered system of Pfaff equa-
tions is a separating chain of integral manifolds (with chain of spanning films) of
any equivalent ordered system of Pfaff equations.

Proof The restriction of the first $i$ forms of the system to the $i\mathrm{t}\mathrm{h}$ manifold of the
separating chain is identically equal to zero. Therefore, the restriction of the first $i$

forms of any equivalent system are also identically equal to zero on that manifold.
The restriction of the $(i+1)\mathrm{s}\mathrm{t}$ form of the equivalent system differs from the $(i+1)\mathrm{s}\mathrm{t}$

form of the given system only by apositive multiplier.

The singular points of an ordered system of Pfaff equations

$\alpha_{1}=\cdots=\alpha_{k}=0$ ,

i.e., the points in the tangent space at which the forms $\alpha_{1}\ldots$ , $\alpha_{k}$ are linearly
dependent, form aclosed set. In the complementary open set in the tangent space
to each point, the ordered system

$\alpha_{1}=\cdots=\alpha_{k}=0$

determines aflag of linear subspaces

$TM\supset L^{1}\supset\cdots\supset L^{k}$ ,

in which each subspace $L^{:}$ has codimension $i$ and is determined by the equations

$\alpha_{1}=\cdots=\alpha:=0$ .

For each $i>0$ , the space $L^{i}$ is cooriented in the preceding space $L^{i-1}$ , the coorien-
tation being given by tllc restriction of the form $\alpha$:to the space $L^{i-1}$ . For each $i$ ,
tllG space $L^{i}$ is equipped with the composite coorientation in the tangent space to
the manifold.

The characteristic chain of an ordered system of Pfaff equations

$\alpha_{1}=\cdots=\alpha_{k}=0$
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is by definition the system of decomposable forms $\beta_{1}$ , $\ldots$ , $\beta_{k}$ defined by

$\beta_{1}=\alpha_{1}$ ,
$\beta_{2}=\alpha_{2}\Lambda\alpha_{1}$ ,

.$\cdot$

.

$\beta_{k}=\alpha_{k}\Lambda\cdots\Lambda\alpha_{1}$ .

The form $\beta_{i}$ gives the composite coorientation on the space $L^{\dot{\iota}}$ in the tangent space
to the manifold.

For equivalent Pfaff systems,
(1) the sets of singular points coincide,
(2) the coorientations of the spaces of flags and distributions of flags coincide on

the open set that is the complement to the set of singular points,
(3) the characteristic sequences differ only by apositive multiplier.
The characteristic sequence of forms has the following properties: the $i\mathrm{t}\mathrm{h}$ form

in the sequence has degree $i$ , each following form is divisible by the preceding. On
the other hand, each sequence of forms that has the above properties is the char-
acteristic sequence of some ordered system of Pfaff equations, determined uniquely
up to equivalence.

Asubmanifold $\Gamma$ of codimension $k$ in the manifold $M$ is called aseparating
solution of the ordered system of Pfaff equations

$\alpha_{1}=\cdots=\alpha_{k}=0$

if there is aseparating chain of submanifolds for that system,

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{k}$ ,

in which the last manifold $\Gamma^{k}$ is the submanifold $\Gamma$ .
How do separating solutions of ordered systems of Pfaff equations behave under

maps of manifolds? The answer to this question is given by the following:

Proposition 5. Let $f:Narrow M$ be a map from the manifold $N$ into the manifold
$M$ , which is transversal to each submanifold of the separating chain of integral
submanifolds

$M=\Gamma^{0}\supset\ldots$ I $k$

of the ordered system of Pfaff equations

$\alpha_{1}=\cdots=\alpha_{k}=0$ .

Then the manifolds
$N=f^{-1}(\Gamma_{0})\supset f^{-1}(r\Gamma_{1})\supset\cdots\supset f^{-1}(\Gamma_{k})$

form a separating chain of integral submanifolds for the ordered system of Pfaff
equations

$f^{*}(\alpha_{1})=\cdots=f^{*}(\alpha_{k})=0$

on the manifold $N$ .

The proof follows from Proposition 2.
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5. the main estimations under extra assumptions. The central question is
the estimate of the number of points in azer0-dimensional separating solution of
an ordered system of $n$ Pfaff equations on an $\mathrm{n}$-dimensional manifold.

Here is one such estimate. We omit the technical details connected with the
compactification and bringing into general position, and we will assume that all
manifolds that we encounter are compact, all equations are nondegenerate, etc. So,
consider the following situation:

Let $M$ be acompact $n$-dimensional manifold and

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{n}$

aseparating chain of submanifolds of maximal length, i.e., consisting of $\mathrm{n}$ separating
submanifolds (the manifold $\Gamma^{n}$ is zer0-dimensional). Let $\beta_{1}\ldots$ , $\beta_{n}$ be achain of
forms on the manifold $M$ in which the $i\mathrm{t}\mathrm{h}$ form has degree $i$ and gives the composite
coorientation on the submanifold $\Gamma^{i}$ in the manifold M. (For example,

A# $=\Gamma^{0}\supset\cdots\supset\Gamma^{n}$

is aseparating chain of integral submanifolds of an ordered system of Pfaff equa-
tions, and $\beta_{1}$ , $\ldots$ , $\beta_{n}$ is acharacteristic sequence of forms for this system.) Assume
that:

(1) the form $\beta_{n}$ on $M$ has anondegenerate set of zeroes, $\Sigma_{n-1}$ , the restriction
of the form $\beta_{n-1}$ to the manifold $\Sigma_{n-1}$ has anondegenerate set of zeroes, $\Sigma_{n-2}$ ,
etc., the restriction of the form $\beta_{1}$ to the manifold $\Sigma_{1}$ has anondegenerate set of
zeroes, $\Sigma_{0}$ ;

(2) each submanifold in the chain

$\Sigma_{n-1}\supset\cdots\supset\Sigma_{0}$

is transversal to each submanifold in the chain

$\Gamma^{n}\supset\cdots\supset\Gamma^{0}=M$.

Under these conditions the following holds.

Proposition 6. The number of points in the zerO-dimensional manifold I $n$ does
not exceed the number of points in the zerO-dimensional manifold $\Sigma_{0}$ .

One can prove this proposition by induction using at each step Rolle-Khovanskii
theorem [4]. One can get rid of the compactness and transversality assumptions.

We comment on versions of the definitions and claims in this section. They
concern the following situation: in the separating chain of integral manifolds of
an ordered Pfaff system some of the manifolds are level sets of si mple functions
(e.g. apolynomial). Such is the case, for example, when, for the study of a system
of Pfaff equations on auonco mpact manifold, asimple compactifying equation
is added. Then these simple functions may be used to estimate the number of
points in azer0-dimensional separating solution. This is the reason for introducing
the following versions of the definitions and claims. We note that in the most
general situation the separating solutions are level sets (cf. Proposition 3). But
in the general situation, the functions one encounters are complicated, and their
use to estimate the number of points in azer0-dimensional separating solution in
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the framework of the claims that follow leads to tautologies (namely, the original
problem consisted of finding the complexity of the level sets of such functions and
the intersections of such level sets; the estimate uses not the functions themselves,
but the Pfaff equations that they satisfy).

Let $q_{1}$ , $\ldots$ , $q_{k}$ be an ordered set consisting of 1-forms and functions on the man-
ifold $M$ . We say that the chain of inclusions of submanifolds

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{k}$

is aseparating chain of integral manifolds for the ordered system of Pfaff equations
if the manifold $\Gamma^{0}$ coincides with the manifold $M$ , and for each $i>0$ :

(1) if $q$:is afunction, say $f_{i}$ , then the manifold $\Gamma^{i}$ is the zero nonsingular level
submanifold of the restriction of the function $f_{i}$ to the preceding submanifold $\Gamma^{i-1}$ ,

(2) if $q_{i}=\alpha_{i}$ is a1-fo, then the manifold $\Gamma^{i}$ is aseparating solution of the
Pfaff equation $\alpha:=0$ on the preceding manifold $\Gamma^{i-1}$ .

Asubmanifold $\Gamma$ of codimension $k$ in the manifold $M$ is called aseparating
solution of the ordered system of Pfaff equations and functional equations

$q_{1}=\cdots=q_{k}=0$

if, for this system, there exists aseparating chain of submanifolds

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{k}$ ,

the last submanifold being equal to $\Gamma$ .
We assign to each sequence $q_{1}\ldots$ , $q_{k}$ , consisting of 1-forms and functions, a

corresponding sequence of 1-forms $\alpha_{1}\ldots$ , $\alpha_{k}$ as follows: if $q$:is afunction, then $\alpha_{i}$

is defined to be the 1-form $dq_{i}$ ; if $q_{i}$ is a1-form, then $\alpha$:is defined to be $q_{\dot{1}}$ .
Each separating solution of an ordered system of Pfaff equations and functional

equations
$q_{1}=\cdots=q_{k}=0$

is clearly aseparating solution of the corresponding ordered system of Pfaff equa-
tions

$\alpha_{1}=\cdots=\alpha_{k}=0$ .
(The converse claim is not true.)

The character istic sequence of the ordered system of Pfaff equations and func-
tional equations

$q_{1}=\cdots=q_{k}=0$

is defined as the sequence $\omega_{1}$ , $\ldots$ , $\omega_{k}$ consisting of 1-forms and functions on the
manifold as follows: if $q_{i}$ is afunction, then $\omega_{i}$ is equal to $q_{i}$ and if $q_{i}$ is a1-forms
then $\omega$:is the $\mathrm{i}$-form $\alpha_{1}\Lambda\cdots$ $\Lambda\alpha$:(the forms $\alpha_{j}$ were defined above).

Let
$M=\Gamma^{0}\supset\cdots\supset \mathrm{I}^{k}$

be aseparating chain of integral manifolds for an ordered system of Pfaff equations
and functional equations. If the $i\mathrm{t}\mathrm{h}$ equation in the system is afunctional equation,
then the $i\mathrm{t}\mathrm{h}$ term of the characteristic sequence of the system is afunction on whose
zero level set lies the integral manifold $\Gamma^{i}$ . If the $i\mathrm{t}\mathrm{h}$ equation is aPfaff equation,

50



A. KHOVANSKII

then the zth term of the characteristic sequence is a1-form giving the composite
coorientation of the submanifold rl in the manifold $M$ .

Let $M$ be acompact $n$-dimensional manifold and let

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{n}$

be aseparating chain of submanifolds of maximal length $n$ . Let $\omega_{1}\ldots$ , $\omega_{n}$ be a
chain of forms and functions on $M$ such that for each $i$ either $\omega_{i}$ is an $i$-form giving
the composite coorientation of $\Gamma^{i}$ or $\omega_{i}$ is afunction and $\Gamma^{i}$ is the nonsingular zero
level set of the restriction of that function to the preceding submanifold $\Gamma^{i-1}$ (for
example: $M=\Gamma^{0}\supset\cdots\supset\Gamma^{n}$ is aseparating chain of integral manifolds of an
ordered system of Pfaff equations and functional equations, and $\omega_{1}$ , $\ldots$ , $\omega_{n}$ is the
characteristic sequence of that system).

Assume that:
(1) the yzth term of the sequence, $\omega_{n}$ (which is either an $n$-form or afunction on

the manifold A#), has anondegenerate set of zeroes, $\Sigma_{n-1}$ ; the restriction of the
$(n-1)\mathrm{s}\mathrm{t}$ term of the sequence, $\omega_{n-1}$ (which is either an $(n-1)$ -form or afunction
on the manifold $M$), to the sub manifold $\Sigma_{n-1}$ has anondegenerate set of zeroes,
$\Sigma_{n-2}$ , etc., the restriction of the first term of the sequence, $\omega_{1}$ (which is either a
1-form or afunction on the manifold At), has anondegenerate set of zeroes, $\Sigma_{0_{1}}$

.
(2) each submanifold in the chain

$\Sigma_{n-1}\supset\cdots\supset\Sigma_{0}$

is transversal to each manifold in the chain

$\Gamma^{n}\subset\cdots\subset\Gamma^{0}$ .

Proposition 7. The number of points in the zerO-dimensional manifold I $n$ does
not exceed the number of points in the zerO-dimensional manifold $\Sigma_{0}$ .

The proof of this proposition 7as well as the proof of proposition 6use Rolle-
Khovanskii theorem [4].

6. Estimate of the number of points in azer0-dimensional separating s0-
lution of an ordered system of Pfaff equations, via the generalised num-
ber of zeroes of the characteristic sequence of the system. Propositions 6
and 7in are fundamental for the estimate of the number of points in azer0-

dimensional separating solution. In order to formulate this estimate, we need to
introduce the notion of generalised number of zeroes of the characteristic sequence
of an ordered system of Pfaff equations and functional equations, of generalised
number of points in amanifold $\Sigma_{0}$ , which are defined only under so me nondegen-
eracy conditions.

Asequence $g_{1}$ , $\ldots$ , $g_{r}$, consisting of functions and forms on an n-dimensional
manifold is called acomplete divisorial sequence if its $i\mathrm{t}\mathrm{h}$ term is either aform of
degree $i$ or afunction. The characteristic sequence of an ordered system of $n$ Pfaff
equations and functional equations on an $n$-dimensional manifold is an example of
acomplete divisorial system. As each term $g_{j}$ of the sequence is either aform or a
function, we can talk about the restriction of the term $g_{n}$ to the submanifold and
about aneighbourhood of this term in the $\mathbb{C}^{\infty}$ topology. Aterm $g_{j}$ of acomplete
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divisorial system is said to be nonsingular provided: in the case that $g_{n}$ is afunction,
the zero level set of this function is nonsingular; in the case that $g_{n}$ is an n-form,
the set of zeroes of this form is nonsingular (i.e., if the section of the canonical
fibre bundle, determined by this form, is transversal to the zero section). In either
case, the set $O(g_{n})$ of zeroes of the term $g_{n}$ is asubmanifold of codimension 1or is
empty.

There are various functional on the collection of complete divisorial sequences
whose values we will call generalised number of zeroes of the complete divisorial
sequence. Each such functional satisfies, by definition, the Axioms 1-4 stated below.
As we will see later, each such functional gives rise to an estimate of the number
of points in the separating solutions. In [4] one can find adescription of aseries
of such functional (among them the “virtual number of zeroes” functional which
gives the best estimate).

Axiom 1. A generalised number of zeroes is defined for each complete divisorial
sequence on each manifold and is equal to either a nonnegative integer or the symbol
$+\infty$ . (The convention is $that+\infty$ is greater than any number.)

We note that adivisorial sequence with an infinite number of zeroes does not
lead to meaningful estimates. (The only reason for introducing them is to shorten
the statements of some theorems.)

Axiom 2. A generalised number of zeroes of a 1-form(function) on a manifold is
no smaller than the number of sign changes of that 1-form(function).

Axiom 3. Assume that a generalised number of zeroes of a complete divisorial
sequence $g_{1}$ , $\ldots$ , $g_{n}$ on an $n$ -dimensional manifold is equal to N. Then in each
neighbourhood in the $\mathbb{C}^{\infty}$ topology of the $tem$ $g_{n}$ there exists a nonsingular term $\tilde{g}_{n}$

such that if the manifold $O(\tilde{g}_{n})$ of zeroes of $\tilde{g}_{n}$ is nonempty, then any generalised
number of zeroes of the restriction of the sequence $g_{1}\ldots$ , $gn-1$ to this manifold does
not exceed $N$ .

In the Axiom 4that follows, we state acondition that is more stringent than the
one in Axiom 3(which is included in the list only in order to make the understanding
of Axiom 4easier). In Axiom 4we require that the term $\tilde{g}_{n}$ referred to in Axiom 3
can be deformed in such away that the manifold $O(\tilde{g}_{n})$ becomes transversal to a
given finite collection of submanifolds.

Axiom 4. Let a generalised number of zeroes of a complete divisorial sequence
$g_{1}\ldots$ , $g_{n}$ on an $n$ -dimensional manifold be equal to N. Then for each finite col-
lection of submanifolds and for each neighbourhood in the $\mathbb{C}^{\infty}$ topology of the term
$g_{n}$ there exists a nonsingular term $\tilde{g}_{n}$ such that if the manifold $O(\tilde{g}_{n})$ of its zeroes
is nonempty, then $O(\tilde{g}_{n})$ is transversal to the given collection of submanifolds, and
any generalised number of zeroes of the restriction of the sequence $g_{1}$ , $\ldots$ , $g_{n-1}$ to
the manifold $O(\tilde{g}_{n})$ is at most $N$ .
Remark 1. The axioms 1-4 can be modified. One can allow the dependence of the
generalised number of zeroes on some structure (such as avolume form) on the
manifold. Then one should modify Axioms 3and 4: one should require that the
manifold $O(\tilde{g}_{n})$ of zeroes have astructure for which the generalised number of zeroes
of the restriction of the sequence $g_{1}$ , $\ldots$ , $g_{n-1}$ to the manifold $O(\tilde{g}_{n})$ does not exceed
the number $N$ . The modified generalised number of zeroes thus obtained is usefu
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in estimating the number of points in separating solutions of ordered systems of
Pfaff equations and functional equations on manifolds equipped with this structure.
The proof of this fact coincides with the proof given below (cf. Theorems 5and
6) of the analogous fact for ageneralised number of zeroes. In [4] we define the
upper number of zeroes of complete divisorial sequences on manifolds equipped
with avolume form. This upper number of zeroes satisfies the modified axioms and
is useful for estimating the number of points in separating solutions on manifolds
equipped with avolume form.

Theorem 5. On a compact $n$ -dimensional manifold, the number of points in any
separating zerO-dimensional solution of an ordered system of $n$ Pfaff equations and
functional equations does not exceed a generalised number of zeroes of the charac-
teristic sequence of that system.

In the statement of Theorem 5“a generalised number of zeroes” means any
generalised number of zeroes that satisfies Axioms 1-4. The statement of the the-
orem is meaningful provided the generalised number of zeroes of the characteristic
sequence of the system is finite.

Proof. Induction over the dimension. For 1-dimensional manifolds the theorem is
simple, since according to Axiom 2any generalised number of zeroes of al-form
on a1-dimensional manifold is no smaller than the number of sign changes of this
1-form(the case of one functional equation on a1-dimensional manifold is obvious:
the number of nondegenerate zeroes of afunction is no greater than the number
of sign change of this function; according to Axiom 2any generalised number of
zeroes of afunction is no smaller than the number of sign changes of this function).
Assume that Theorem 1is proved for all compact $(n-1)$-dimensional manifolds.
Let

A# $=\mathrm{I}^{0}\supset\cdots\supset\Gamma^{n}$

be aseparating chain of integral manifolds for the ordered system

$q_{1}=\cdots=q_{n}=0$

of Pfaff equations and functional equations on the manifold $M$ . Let ageneralised
number of zeroes of the characteristic sequence $g_{1}$ , $\ldots$ , $g_{n}$ of this system be equal
to $N$ . According to Axiom 4, in each neighbourhood of the term $g_{n}$ in the $\mathbb{C}^{\infty}$

topology there exists anonsingular term $\tilde{g}^{n}$ such that the manifold $O(\tilde{g}_{n})$ of the
zeroes of $\tilde{g}_{n}$ is transversal to the chain of submanifolds

$\Gamma^{1}\supset\cdots\supset\Gamma^{n-1}$

and any generalised number of zeroes of the restriction of the sequence 91, $\ldots$ , $g_{\mathrm{z}\iota-1}$

to the manifold $O(\tilde{g}_{n})$ does not exceed $N$ . We will show that the llu11lber of in-
tersection points of the manifold $O(.\tilde{q}_{\iota},)$ and the curve $\Gamma^{n-1}$ does not exceed $N$ .
If the manifold $O(\tilde{g}_{n})$ is empty then there is nothing to prove. Otherwise, the
$(n-1)$-dimensional manifold $O(\tilde{g}_{n})$ is transversal to the intersection of the chain
of submanifolds

$\Gamma^{1}\supset\cdots\supset\Gamma^{n-1}$ .

Therefore the set $\Gamma^{n-1}\cap O(\tilde{g}a_{n})$ is aseparating solution of the restriction of the
system $q_{1}=\cdots=\mathrm{g}\mathrm{n}-\mathrm{i}=0$ to the $(n-1)$-dimensional manifold $O(\tilde{g}_{n})$ . By the
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inductive hypothesis, the number of points in that separating solution does not ex-
ceed any generalised number of zeroes of the restriction of the sequence $g_{1}$ , $\ldots$ , $g_{n-1}$

to the $(n-1)$-dimensional manifold $O(\tilde{g}_{n})$ . We now finish the proof of Theorem 5.
Two cases are possible: the last equation $q_{n}=0$ may be either aPfaff equation,
or afunctional equation. In the first case, the set $\Gamma_{n}$ is aseparating solution on
the compact curve $\Gamma^{n-1}$ (the curve $\Gamma^{n-1}$ is compact since it is asubmanifold in
the compact manifold $M$), and the form $g_{n}$ gives the composite coorientation of
the set $\Gamma^{n}$ in the manifold $M$ . By what was proved, in each neighbourhood in
the Coo topology of the form $g_{n}$ there exists aform $\tilde{g}_{n}$ whose set of zeroes inter-
sects the compact curve $\Gamma^{n-1}$ in at most $N$ points. Therefore, according to Rolle
theorem, the set $\Gamma^{n}$ contains at most $N$ points. In the second case, the set $\Gamma^{n}$

is the nonsingular zero level set of the restriction of the function $g_{n}$ to the curve
$\Gamma^{n-1}$ . By what was proved, in each neighbourhood of the function $g_{n}$ in the $\mathbb{C}^{\infty}$

topology there exists afunction $\tilde{g}_{n}$ whose set of zeroes intersects the curve $\Gamma^{n-1}$ in
at most $N$ points. It therefore follows obviously that the set $\Gamma^{n}$ contains at most
$N$ points (if one could choose an $(N+l)\mathrm{s}\mathrm{t}$ point in the set $\Gamma^{n}$ then each sufficiently
close function $\tilde{g}_{n}$ would be equal to zero at apoint close to the $(N+l)\mathrm{s}\mathrm{t}$ point, a
contradiction). This proves Theorem 5.

Theorem 5remains valid in the situation of Proposition 7from which the ad-
ditional transversality assumptions are omitted. Namely, let $M$ be acompact n-
dimensional manifold and let

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{n}$

be aseparating chain of submanifolds of $M$ , of length $n$ . Let $\omega_{1}\ldots$ , $\omega_{n}$ be achain of
forms and functions on $M$ such that for each $i>0$ either $\omega_{i}$ is an $i$-form giving the
composite coorientation of the manifold $\Gamma$ , or $\omega_{i}\mathrm{i}$ is afunction and the submanifold
$\Gamma^{i}$ is anonsingular level set of the restriction of this function to the preceding sub
manifold $\Gamma^{:-1}$ .
Theorem 5’. The number of points in the zerO-dimensional manifold $\Gamma$ does not
exceed any generalised number of zeroes of the sequence $\omega_{1}$ , $\ldots$ , $\omega_{n}$ .

The proof repeats the proof of Theorem 5. Here is one more equivalent formu-
lation of this theorem.

Theorem $5’$ . Let
$M=\Gamma^{0}\supset\ldots$ I $n$

be a separating chain of integral manifolds of an ordered system of Pfaff equations
and functional equations on a compact manifold M. Let $\omega_{1}$ , $\ldots$ , $\omega_{n}$ be a sequence
of for$rms$ and functions on $M$ such that, at the points of the manifold $\Gamma^{i}$ , the form
or function $\omega_{i}$ differs from the $ith$ term of the characteristic sequence of this system
only by a positive multiplier. Then the number of points in the separating solution

$\Gamma^{n}$ does not exceed any generalised $n$ number of zeroes of the sequence $\omega_{1}\ldots$ , $\omega_{n}$ .
Remark. Assume, under the conditions of the theorem, that $\omega_{i}$ is an $i$ form The
form $\omega_{i}$ is automatically decomposable at the points of the manifold $\Gamma^{i}$ . At the
other points of $M$ the form need not be decomposable.

Let an ordered system of $k$ Pfaff equations and functional equations

$q_{1}=\cdots=q_{k}=0$
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be given on acompact $n$-dimensional manifold. Let the submanifold I $k$ b $\mathrm{e}$ asepa-
rating solution of this system. How can one estimate the number of nondegenerate
roots on $\Gamma^{k}$ of the system of equations

$f_{1}=\cdots=f_{n-k}=0$ ,

where $f1$ , $\ldots$ , $f_{n-k}$ are functions defined on the manifold $M$?To answer this ques-
tion consider the extended system of $n$ Pfaff equations and functional equations

$q_{1}=\cdots=q_{k}=q_{k+1}=\cdots=q_{n}=0$

on the given $n$-dimensional manifold $M$ , where

$q_{1}=\cdots=q_{k}=0$

is the old system of equations, and for each $i=1$ , $\ldots$ , $n-k$ , $qk+|$
. $=f_{i}$

Theorem 6. The number of nondegenerate roots of the system of equations

$f_{1}=\cdots=f_{n-k}=0$

on each separating solution of a system of $k$ Pfaff equations and Junctional equa-
tions defined on an $n$ -dimensional manifold $M$ does not exceed any generalised
number of zeroes on $M$ of the characteristic sequence of the extended system.

Proof. For $k=n$ Theorem 6coincides with Theorem 5. We will use induction on
the number $(n-k)$ . Let

$M=\Gamma^{0}\supset\cdots\supset\Gamma^{k}$

be aseparating chain of integral manifolds for the ordered system of Pfaff equations
and functional equations

$q_{1}=\cdots=q_{k}=0$ .
Let $\tilde{f}_{n-k}$ be any function with nonempty nonsingular zero level set, whose zero
level set $O(\tilde{f}_{n-k})$ intersects transversely the chain of submanifolds $\Gamma^{0}\supset\cdots\supset \mathrm{p}_{k}$ .
Then the number of nondegenerate roots of the system

$f_{1}=\ldots f_{n-k-1}=0$

on the manifold $O(\tilde{f}_{n-k})\cap\Gamma^{k}$ , by the inductive hypothesis, does not exceed any
generalised number of zeroes of the restriction to the manifold $O(\tilde{f}n-k)$ of the
characteristic sequence of the system

$q_{1}=\cdots=q_{n-1}=0$ .

Indeed, the manifold $O(\tilde{f}_{n-k})\cap\Gamma^{k}$ is aIseparating solution of the restriction to
the manifold $O(\tilde{f}_{r\iota-k})$ of tlle system

$q_{1}=\cdots=q_{k}=0$ ,

and the system of functional equations

$f_{1}=\cdots=f_{n-k-1}=0$
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contains $n-k-1$ equations. We now finish the proof of the theorem. Assume
that the generalised number of zeroes of the characteristic sequence of the extended
system is equal to $N$ , and that the number of nondegenerate roots of the system

$f_{1}=\cdots=f_{n-k}=0$

on the manifold $\Gamma^{k}$ is greater than $N$ . Choose $(N+1)$ nondegenerate roots of the
system

$f=\cdots=f_{n-k}=0$

on the manifold $\Gamma^{k}$ . There exists aneighbourhood of the function $\tilde{f}_{n-k}$ in the $\mathbb{C}^{\infty}$

topology such that for each function $\tilde{f}_{n-k}$ in that neighbourhood, whose restriction
to the manifold $\Gamma^{k}$ has anonsingular zero level set, the restriction of the system

$f_{1}=\cdots=f_{n-k-1}=0$

to the manifold $O(\tilde{f}_{n-k})\cap\Gamma^{k}$ of this zero level set has at least $(N+1)$ nondegenerate
roots. This fact follows ffom the implicit function theorem-for each root of the old
system there is anearby root of the new system. On the other hand, by Axiom 4,
there exists afunction $\tilde{f}_{n-k}$ in this neighbourhood such that

(1) the zero level set of $\tilde{f}_{n-k}$ is nonsingular and the zero level manifold $O(\tilde{f}_{n-k})$

is transversal to each submanifold in the chain

$\Gamma^{0}\supset\cdots\supset\Gamma^{k}$

(2) if the zero level manifold $O(\tilde{f}_{n-k})$ is nonempty, then the generalised number
of zeroes of the restriction to that manifold of the characteristic sequence of the
system

$q_{1}=\cdots=q_{n-1}=0$

does not exceed $N$ .
The manifold $O(\tilde{f}_{n-k})$ cannot be empty because the system

$f_{1}=\cdots=f_{n-k-1}=0$

has at least $(N+1)$ nondegenerate roots on the manifold $O(\tilde{f}_{n-k})\cap\Gamma^{k}$ (and $N+1>$
$0)$ . Further, by the inductive hypothesis, this system has at most $N$ nondegenerate
roots on the manifold $O(\tilde{f}_{n-k})\cap\Gamma^{k}$ . This contradiction proves the theorem.

Theorems 5and 6apply to compact manifolds only. The estimate of the num-
ber of separating solutions on anoncompact manifold reduces to the estimate on
compact manifolds. We describe this fact.

Fix aproper positive function $p$ on the manifold $M$ . Consider the Cartesian
product $M\cross \mathbb{R}^{1}$ of $M$ with the real line $\mathbb{R}^{1}$ together with the function $\tilde{p}$ on $M\cross \mathbb{R}^{1}$

defined by $\tilde{p}(x,y)=p(x)+y^{2}$ . Denote by $\pi$ the projection of $M\cross \mathbb{R}^{1}$ onto the first
coordinate: $\pi(x, y)=x$ .
Claim. Let A denote the number of nondegenerate roots of the system

$f_{1}=\cdots=f_{n-k}=0$
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on each separating solution of the ordered system of Pfaff equations and functional
equations

$q_{1}=\cdots=q_{k}=0$

defined on the (noncompact) $n$ -dimensional manifold M. Then $A$ does not exceed
half of the maximum over the set of regular values $a$ of the function $p$ of any
generalised number of zeroes of the restriction of the characteristic sequence of the
system

$\pi^{*}q_{1}=\cdots=\pi^{*}q_{k}=\pi*f_{1}=\cdots=\pi*f_{k}=0$

to the manifold defined by the equation $\tilde{\rho}=a$ in the Cartesian product Af $\cross \mathbb{R}^{1}$ .

Proof. Denote by $M_{a}$ the submanifold in $M\cross \mathbb{R}^{1}$ defined by the equation $\tilde{\rho}=a$ ,
where $a$ is aregular value of the function $\rho$ . Denote by $\pi_{a}$ the restriction of the
projection $\pi$ to the manifold Ma. Each point of the set $\rho<a$ in $M$ has exactly two
inverse images in $M_{a}$ under the map $\pi_{a}$ : $M_{a}arrow M$ . For almost all values $a$ the
map $\pi_{a}$ : $M_{a}arrow M$ is transversal to afixed separating chain of integral manifolds

$M=\Gamma^{0}\supset\ldots\Gamma^{k}$

of the system
$q_{1}=\cdots=q_{k}=0$

on $M$ . For such values of the parameter $a$ the manifold $\pi^{-1}(\Gamma^{k})$ is aseparating
solution of the restriction of the system

$\pi^{*}q_{1}=\cdots=\pi^{*}q_{k}=0$

to the manifold $M_{a}$ . To each nondegenerate root of the system

$f_{1}=\cdots=f_{n-k}=0$

in the region $\rho<a$ on the solution $\Gamma^{k}$ there correspond exactly two nondegenerate
roots of the system

$\pi^{*}f_{1}=\cdots=\pi f_{n-k}=0$

on the manifold $\pi_{a}^{-1}(\Gamma^{k})$ . Each finite set $Z\subset\Gamma^{k}$ , for asufficiently large value of
the parameter $a$ , lies in the region $\rho<a$ , as the function $\rho$ is positive and proper.
Therefore, if there were more non-degenerate roots of the system

$f_{1}=\cdots=f_{n-k}=0$

on the manifold $\Gamma^{k}$ than stated in the proposition this would contradict Theorem
6applied to the restriction of the system

$\pi^{*}q_{1}=\cdots=\pi^{*}q_{k}=\pi^{*}f_{1}=\cdots=\pi^{*}f_{n-k}=0$

to the manifold $M_{a}$ .
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LECTURE 2. INTEGRATION OVER EULER CHARACTERISTIC
The integral over the Euler characteristic turns out to be very useful. For our

purposes the most important application is aComplex Variant of the Rolle theorem
(see Example 2.1 below). The modern formalization of the theory and alot of it’s
of applications to classical problems were found by O.Va. Viro [1] (see also [2, 3] for
numerous applications of this technique to the theory of convex polytopes and [4]
for applications to the Neotherian intersections). The following presentation based
on [5].

The Euler characteristic has some properties of ameasure. Let us consider two
typical situations.

(1) Let $X_{1}$ , $X_{2}$ and $X_{1}\cap X_{2}$ be compact finite subcomplexes of a CW complex X.
Then $X_{1}\cup X_{2}$ is also acompact subcomplex and there is the Mayer-Vietor is
exact sequence \cdots $arrow H^{i}(X_{1}\cup X_{2})arrow H^{:}(X_{1})\oplus H^{i}(X_{2})arrow H^{i}(X_{1}\cap X_{2})arrow$

$H^{i+1}(X_{1}\cup X_{2})arrow\ldots$ (for example, with integral coefficients). Thus for the
Euler characteristic

$\chi(\cdot)=\sum_{i=0}^{\infty}(-1)^{i}rkH^{i}(\cdot)$

we get the additivity $\chi(X_{1}\cup X_{2})+\chi(X_{1}\cap X_{2})=\chi(X_{1})+\chi(X_{2})$ . Besides, for
finite $CW$-complexes $\mathrm{Y}$ and $Z$ , $\chi(\mathrm{Y}\cross Z)=\chi(\mathrm{Y})\chi(Z)$ .

(2) For another example let $X$ be asmooth connected manifold, Xl, $X_{2}$ and $X_{1}\cap X_{2}$

its open submanifolds of finite type [6]. Then for cohomology with compact
support there is the Mayer-Vietoris sequence $\cdotsarrow H_{c}^{\dot{l}}(X_{1}\cap X_{2})arrow H_{c}^{\dot{\iota}}(X_{1})\oplus$

$H_{c}^{i}(X_{2})arrow H_{c}^{\dot{1}}(X_{1}\cup X_{2})arrow H_{c}^{i+1}(X_{1}\cap X_{2})$ whereof we get the additivity of the
Euler characteristic again. The Euler characteristic with respect to cohomology
with compact support also multiplies when the direct product is taken.
These examples show that the Euler characteristic looks very much like amea-

sure, and the corresponding integration theory is going to be afull-fledged one in
the sense of Fubini-type theorems –because of the multiplicativity of the Euler
characteristic. But examples given above immediately point out the main obstacles
to construction of the theory of integration over the Euler characteristic. There
are two points of trouble: first, in both situations considered above the “measure”
$\chi(\cdot)$ is defined for acertain system of subsets of the ambient space closed with
respect to finite intersections and unions, whereas for an integration theory this
system should be extended to an algebra of subsets. So the question is whether
the topological Euler characteristic can be extended to ameasure on this algebra.
Then, in both situations there are certain conditions of finiteness which make sure
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that the Euler characteristic does exist, and this is avery strong restriction for an
algebra of measurable sets. Asituation when two algebras of $\chi$-measurable sets are
not both contained in any $\chi$-measurable algebra, is typical (in particular there can
be no universal algebra of $\chi$-measurable sets). At the same time, the x-measure$\mathrm{s}$

of aset belonging to both algebras coincide.
The first of the two difficulties can be easily overcome. But the second is a

non-avoidable feature of the theory of integral over the Euler characteristic: every
application of the theory should be preceded by pointing out asystem of sets and
verification of its “permissibility”. In practice, though, this verification is usually
trivial.

1. Construction of integral.

Definition 1. Let $X$ be atopological space.
A) If $X$ is compact then astructure of afinite CW-compact

$X=\cup\cup e_{i}^{q}q\in \mathrm{z}_{+}:\in I_{q}$

is said to be aregular $CW$-structure if the following conditions are satisfied:
(i) the characteristic mapping of any cell is ahomeomorphism of the closed ball

onto its closure,
(ii) the boundary of any cell falls apart into aunion of cells of smaller dimension.

The sets representable as aunion of cells are said to be cellular.
B) If $X$ is arbitrary then the following data is said to be aregular CW-structure

on $X$ :
(i) adense injection $X\subset\tilde{X}$ , where $\tilde{X}$ is compact,

(ii) aregular $CW$ structure on $\tilde{X}$ such that $X$ is an open cellular subset. The
definition of cellular subsets of $X$ is evident.

C) We define afinitely-additive measure $\chi$ on the algebra of cellular subsets of a
space $X$ with aregular $CW$-structure setting for an open cell $e\subset X\mathrm{x}(\mathrm{e})=$

$(-1)^{\dim e}$ . This measure is said to be the Euler characteristic.

Proposition 1. Let $Z\subset X$ be a subset with compact closure $\overline{Z}$ and suppose that
there exists at least one regular $CW$-structure on $X$ such that $Z$ is cellular. Then the
Euler characteristic $\mathrm{x}\{\%$ ) does not depend on the choice of a regular CW-stmcture.

Proof. Suppose at first that $Z$ is compact. If $Z$ is cellular it is easy to see that $\chi(Z)$

in the sense of Definition 1is the same as $\sum_{i=0}^{\infty}(-1)^{i}\dim H^{:}(Z, \mathbb{R})$ and thus does not
depend on the choice of aregular $CW$-structure. If $Z$ is not necessarily compact, let
us construct the following series of cellular (with respect to afixed regular structure)
sets $Z^{(n)}$ , $n\in \mathbb{Z}+:Z^{(0)}=Z$, $Z^{(:+1)}=\overline{Z}^{(i)}\backslash Z^{(i)}$ . Evidently, $\overline{Z}^{(:)}$ are compact and
$Z^{(:)}=\emptyset$ for $i\gg \mathrm{O}$ , because $Z^{(i+1)}$.consists of cells of dimension smaller than the
maximum of dimensions of cells in $Z^{(i)}$ . Thus $\mathrm{x}(\mathrm{e})=\sum_{\dot{\iota}=0}^{\infty}(-1)^{i}\chi(\overline{Z}^{(i)})$ , but for $\overline{Z}^{(:)}$

the invariance of $\chi$ has been already proved.

Definition 2. Let $X$ be atopological space with aregular $CW$-structure, $A$ be an
Abelian group. Afunction $f:Xarrow A$ is said to be cellular if $F^{-1}(a)$ is acellular
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set for any $a\in A$ . In particular, $f$ is finite-valued. The integral of $f$ over the Euler
characteristic is set to be equal to

$\int_{X}fd\chi=\sum_{a\in A}\chi(f^{-1}(a))$ , $a\in A$ .

Definition 3. Afunction $f:Xarrow A$ where $X$ is atopological space, $A$ is an
Abelian group, is said to be permissible, if it is cellular with respect to some regular
$CW$ structure on $X$ .
Corollary 1(from Proposition 1). For a permissible function $f:Xarrow A$ with $a$

compact support its integral over the Euler character istic $\int_{X}fd\chi$ does not depend on

the choice of a regular $CW$ -stmcture on $X$

Example 1. Let $V\cong \mathbb{R}^{n}$ be areal vector space, $\mathcal{P}(V)$ be the set of (compact)
convex polytopes in $V$ . Afunction cx : $Varrow \mathbb{Z}$ representable as

$\alpha=\sum_{\dot{l}\in I}n_{i}\mathrm{I}_{A}$
where

$\# I<\infty$ , $n_{i}\in \mathbb{Z}$ , $A_{i}\in \mathcal{P}(V)$ , $\mathrm{I}_{A}$ denotes the indicator of the set $A$ , is said to be a
(convex) chain. The additive group of chains is denoted by $Z(V)$ . Evidently chains
are permissible and for awritten out above

$\int_{V}\alpha d\chi=\sum_{i\in I}n_{i}$ .

In particular the latter integer does not depend on the representation of the chain.
As in [2] we call it the degree and denote by $\deg\alpha$ .

2. Fubini theorem. In the notations of Sec. 1let $f:Xarrow A$ be apermissible
function, $\Phi:Xarrow \mathrm{Y}$ be acontinuous mapping of topological spaces. Suppose that
for each fiber $X_{y}=\Phi^{-1}(y)$ , $y\in \mathrm{Y}$ , aregular $CW$-structure is given, such that
$f_{y}=f|_{X_{y}}$ is cellular. Then the “direct image” of $\mathrm{f}$ is defined as follows:

$\Phi_{*}f:\mathrm{Y}arrow A$ ,
$\Phi_{*}f:yarrow\int_{X_{y}}fd\chi$.

This operation makes sense if $\Phi_{*}f$ is permissible too.

Definition 1.
A) Acontinuous mapping $\Phi:Xarrow \mathrm{Y}$ of spaces with regular $CW$-structures is said

to be cellular if $\Phi$ maps each cell $e\subset X$ surjectively onto acell $h\subset \mathrm{Y}$ .
B) The direct product of spaces with regular $CW$-structure is defined by taking

direct product of cells.
C) Let $\Phi:Xarrow \mathrm{Y}$ be acontinuous mapping of spaces with regular CW-structures.

The following data is said to be afibration structure for $\Phi$ :for each cell $e\subset \mathrm{Y}$

aspace $F_{e}$ with aregular $CW$-structure and ahomeomorphism $\Phi_{e}$ : $\Phi^{-1}(e)arrow$

$F_{e}\cross e$ such that $\Phi_{e}$ and $\Phi_{e}^{-1}$ are cellular.
D) Acellular function $f:Xarrow A$ is said to be compatible with the fibration struc-

ture for 0, if for each cell $e\subset \mathrm{Y}$ there is acellular function $f_{e}$ : $F_{e}arrow A$ such
that $f|_{\Phi^{-1}(e)}=f_{e}\circ pr_{1}\circ\Phi_{e}$ .
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Theorem 1(Pubini theorem). In the situation described in $C$) and $D$) of the last
definition the function $\Phi_{*}f:\mathrm{Y}arrow A$ ,

$\Phi_{*}f:yarrow\Phi^{-1}(y)\mathrm{J}^{\cdot}fd\chi=\int_{F_{\mathrm{e}}}f_{e}d\chi$
, $y\in e\subset \mathrm{Y}$ ,

is cellular and

$\int_{Y}\Phi_{*}fd\chi=\int_{X}fd\chi$ .

In other words, integration of a function over the Euler characteristic can be reP-
resented as the composition of tevo operations: first, its integration over the fibers
of the mapping, second, integration of the resulting function over the base.

The proof of the theorem is evident.
Clearly, the “direct image” operation is connected with adefinite fibration struc-

ture in the existence aspect only, while its result does not depend on the fibration
structure (Proposition 1).

Definition 2. Apermissible function is said to be compatible with the map
$\Phi:Xarrow \mathrm{Y}$ if there exists afibration structure for $\Phi$ such that $f$ is compatible
with it.

Example 1. The Riemann-Hurwitz theorem.
Let $C,\tilde{C}$ be compact Riemann surfaces of genuses $g$ and $\tilde{g}$ , respectively, $\pi:\tilde{C}arrow$

$C$ be aholomorphic covering of the degree $m$ , $B\subset C$ be the ramification divisor (a
point $b\in\tilde{C}$ comes into $B$ with multiplicity $k$ if $k+1$ sheets of the covering meet
in $b$ ). The classic Riemann-Hurwitz theorem asserts that

$2\tilde{g}-2=m(2g-2)+\deg B$ .

The standard topological proof [7] of the theorem can be interpreted as acompu-
tation of certain integral over the Euler characteristic [1]: let $f:\tilde{C}arrow \mathbb{Z}$ be equal
to 1identically then by the Fubini theorem

$\chi(\tilde{C})=\int_{\tilde{C}}fd\chi=\int_{C}\pi_{*}fd\chi$
.

But $\pi_{*}f(c)=\#\pi^{-1}(c)$ for $c\in C$ , whereof we get the theorem.

Example 2. Complex Rolle theorem (or Multidimensional Riemann-Hurwitz the-
orern).

Complex Rolle Theorem. Let $Z$ be an analytical $n$ -dimensional space, let $B$ be
an open ball in $\mathbb{C}^{n}$ , let $\pi$ : $Zarrow B$ be an analytical map. Assume that $\pi$ is a finite
$\mu$-fold ramified covering (counting the multiplicities). Denote by $Z_{q}$ a subset in $Z$

which contains all points $p$ such that multiplicity of $\pi$ at $P$ $is\geq q$ . Then

$\mu=\sum_{q\geq 1}\chi(Z_{q})$
.

On one hand this theorem looks like usual Rolle theorem because it estimate the
number of preimages of apoint under amap in terms of topology of asource space
and topology of sets of critical points. On the other hand for $n=1$ this theorem is
aparticular case of the Riemann-Hurwitz theorem (see example 1)
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Proof. Let $f_{q}$ : $Zarrow \mathbb{Z}$ be afunction which value at apoint $x$ is equal to the number
of points $p\in Z$ such that $\pi(p)=x$ and multiplicity of $\pi$ at $p$ is $\geq q$ . By definition
$f_{1}+\ldots+f_{\mu}=\mu$ . So

$\int_{B}f_{1}d\chi+\cdots+\int_{B}f_{\mu}d\chi=\int_{B}\mu d\chi=\mu\cdot 1=\mu$
.

But by Fubini theorem

$\int_{B}f_{q}d\chi=\chi(\mathbb{Z}_{q})$ .

3. Radon transform, Let $X=\mathbb{R}P^{n}$ , $X^{*}=\mathbb{R}P^{n*}$ be the dual projective space,
so that points of $X^{*}$ correspond to hyperplanes in $X$ , and vice versa, $Z\subset X\cross X$ ’

be the graph of the incidence correspondence: $\{(x, h)|x\in h\}$ . We say that a
permissible function $f:Xarrow A$ permits the Radon transform if the funcion $\mathrm{r}\mathrm{e}\mathrm{s}z$

$\circ$

$pr_{1}^{*}(f):Zarrow A$ is compatible with the fibration $pr_{2}$ : $Zarrow X$ ’. If that is the case,
the function $f^{*}:$ $X^{*}arrow A$ ,

$f^{*}=(pr_{2})_{*}\circ \mathrm{r}\mathrm{e}\mathrm{s}z\circ pr_{1}^{*}(f)$ ,

(so that $f^{*}(h)= \int_{h}fdx$ for ahyperplane $h\subset X$ ) is said to be the Radon transform

of $f$ (with respect to the integration over the Euler characteristic).

Theorem 1. If $f$ , $f^{*}$ permit the Radon transform, then the following identity
holds: $f^{**}+f= \int_{X}fd\chi=\int_{x*}f^{*}d\chi$ for even $n=\dim X$ and $f^{**}=f$ for odd $n$ .

Proof. For $x\in X$ set

$W_{x}=\{(y, h)\in X\cross X^{*}|y\in h, x\in h\}$ .
Evidently,

$f^{**}(x)= \int_{\{h\in X^{*}|x\in h\}}f^{*}(h)d\chi(h)=\int_{\{h\in X^{*}|x\in h\}\{y\in}\int_{X|y\in h\}}f(y)d\chi(y)d\chi(h)$
.

By the Fubini theorem, $f^{**}(x)= \int_{W_{\mathfrak{B}}}pr_{1}^{*}(f)d\chi$ . On the other hand, the projection
onto the first factor $pr_{1}$ : $W_{x}arrow X$ is afibration over $X\backslash \{x\}$ with the fiber $\mathbb{R}P^{n-2}$

and $pr_{1}^{*}(f)$ is evidently constant on the fibers of $pr_{1}$ . Finally, $pr_{1}^{-1}(x)\cong \mathbb{R}P^{n-1}$ .
Applying Fubini theorem again, now to the map $pr_{1}$ : $W_{x}arrow X$ , we get

$f^{**}(x)= \int_{W_{x}\backslash pr_{1}^{-1}(x)}pr_{1}^{*}(f)d\chi+\int_{pr_{1}^{-1}(x)}pr_{1}^{*}(f)d\chi=$

$= \chi(\mathbb{R}P^{n-2})\int_{X\backslash \{x\}}f(y)d\chi(y)+\chi(\mathbb{R}P^{n-1})f(x)=$

$= \chi(\mathbb{R}P^{n-2})\int_{X}fd\chi+(\chi(\mathbb{R}P^{n-1})-\chi(\mathbb{R}P^{n-2}))f(x)$ .

For even $m\chi(\mathbb{R}P^{m})=1$ , for odd $m$ –zero, Q.E.D

62



A. KHOVANSKII

Example 1. Finite covers of $\mathbb{R}P^{2}$ .
Let $S$ be asmooth connected compact (real) surface, $\pi:Sarrow \mathbb{R}P^{2}$ be afinite

map unramified over $\mathbb{R}P^{2}\backslash C$ , where $C$ is asmooth (possibly non-connected) curve,
having the simple fold over $C$ . In other words, for the branch curve $B\subset S\pi:Barrow$

$C$ is an isomorphism and for any point $b\in B$ there are local parameters $x$ , $y$ in $b$

and $u$ , $v$ in $p=\pi(b)\in C$ such that $\pi$ can be written locally as $u=x$ , $v=y^{2}$ . For a
point $p\subset C$ which is not apoint of inflexion, we define the index $i(p)$ , setting it to

be equal to +1, if (in the notations above) the tangent vector $\frac{\partial}{\partial v}$ and the curve $C$

lie on the same side of the tangent line $T_{p}C$ near $p$ , and to (-1), in the other case.
Theorem 2. Suppose that $x\in \mathbb{R}P^{2}$ does not lie on the union of tangent lines to
$C$ in all the points of inflexion. Then

$\chi(S)=\#\pi^{-1}(x)+\sum_{x\in T_{p}C}i(p)$
.

Proof. Define afunction $f:\mathbb{R}P^{2}arrow \mathbb{Z}$ , setting $f(p)=\#\pi^{-1}(p)$ . If the line $L$ is not
tangent to $C$ , then $\pi^{-1}(L)\subset S$ is asmooth compact one-dimensional variety, i.e.,
adisjoint union of loops; consequently, $\chi(\pi(L))=0$ . Thus $f^{*}$ vanishes outside the
curve dual to $C$ . If $L$ is tangent to $C$ in the points $pj5$ $j\in J$ , which are not points of
inflexion, then it checks easily that $\chi(\pi^{-1}(L))=\sum_{j\in J}i(p_{j})$ . Now apply Theorem 1.
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LECTURE 3. NOETHERIAN FUNCTIONS

Adifferential ring of analytic functions in several complex variables is called a
ring of Noetherian functions if it is finitely generated as aring and contains the
ring of all polynomials. In this lecture, we will discuss an effective bound on the
multiplicity of an isolated solution of a system of $?\mathrm{t}$ equations $f_{i}=0$ where $f_{i}$ belong
to aring of Noetherian functions in n complex variables. In the one-dimensional
case, such an estimate is known and has applications in number theory and in
control theory. First, we will present avery simple proof of the one-dimensional
estimate. Multi-dimensional case provides asolution of arather old problem con-
cerning finiteness properties of transcendental functions defined by algebraic partial
differential equations. Second, we will discuss the proof in the multi-dimensional
case. Apresentation of the material is based on [GKh]
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1. The main result. Aring $K$ of analytic functions in an open domain $U\subset \mathbb{C}^{n}$

is called aring of Noetherian functions in $U$ if
1) $K$ contains the ring $\mathbb{C}[x_{1}, \ldots, x_{n}]$ of polynomials and is finitely generated over

that ring;
2) $K$ is closed under differentiation. In other words, for each $f\in K$ , all partial

derivatives $\partial f/\partial x_{i}$ belong to $K$ . In particular, $K$ is aNoetherian ring, which is
the origin of the notation “Noetherian function” introduced by Tougeron [T].
Aset of $m$ functions $\psi$ $=\{\psi_{1}, \ldots, \psi_{m}\}$ is called aNoetherian chain of order $m$ if

these functions generate $K$ over $\mathbb{C}[x_{1}, \ldots, x_{n}]$ . Afunction $\phi$ in $K$ is called aNoe-
therian function of degree $\beta$ relative to aNoetherian chain $\psi$ if there exists apolyn0-
mial $P$ of degree not exceeding $\beta$ in $n+m$ variables such that $\phi$ $=P(x, \psi(x))$ . The
Noetherian chain $\psi$ has degree not exceeding $\alpha$ if each partial derivative $\partial\psi:/\partial x_{j}$

is aNoetherian function of degree $\alpha$ relative to $\psi$ .
Standard Noetherian arguments allow one to prove that the multiplicity of an

isolated intersection of Noetherian functions is bounded by acertain function of
discrete parameters $n$ , $m$ , $a$ , and $\beta$ . As usual, these arguments do not provide any
effective method of computation of such function. Such computation was done in
the paper [GKh]. The main result of this paper is the following

Theorem 1. Let $\phi_{1}$ , $\ldots$ , $\phi_{n}$ belong to a ring $K$ of Noetherian in $U\subset \mathbb{C}^{n}$ . Suppose
that all $\phi_{i}$ have degree not exceeding $\beta$ relative to a common Noetherian chain $\psi$

of order $m$ and degree $\alpha\geq 1$ . Then the multiplicity of any isolated solution of the
system of equations $\phi_{1}=\cdots=\phi_{n}=0$ does not exceed maximum of the following
two numbers:

$\frac{1}{2}Q((m+1)(\alpha-1)[2\alpha(n+m+2)-2m-2]^{2m+2}+2\alpha(n+2)-2)^{2(m+n)}$ ,

$\frac{1}{2}Q(2(Q+n)^{n}(\beta+Q(\alpha-1)))^{2(m+n)}$ , where $Q=en( \frac{e(n+m)}{\sqrt{n}})^{\ln n+1}(\frac{n}{e^{2}})^{n}$

2. Pfaff systems with polynomial coefficients. Rings of Noetherian functions
and Noetherian chains can be defined in terms of systems of Pfaff equations. This
approach is more geometric, and will be used in the proof of the main result.

Definition 1. An analytic $n$-dimensional distribution in an open domain $U\subset$

$\mathbb{C}^{n+m}$ is defined by

(1) $dz:= \sum_{j=1}^{n}g_{\dot{|}j}(x, z)dx_{j}$ , for $i=1$ , $\ldots$ , $m$

where $x\in \mathbb{C}^{n}$ , $z\in \mathbb{C}^{m}$ , and $g_{ij}$ are analytic functions in $U$ . An integral manifold
of an analytic distribution (1) is a $n$-dimensional submanifold $\Lambda\subset U$ tangent to
(1), i.e.,

$(dz_{\dot{l}}- \sum_{j=1}^{n}g_{\dot{\iota}j}(x, z)dx_{j})|_{\Lambda}\equiv 0$ , for $i=1$ , $\ldots$ , $m$ .

Locally, an integral manifold can be represented as agraph of an analytic vector-
function $z=\psi(x)=(\psi_{1}(x), \ldots, \psi_{m}(x))$ satisfying

(2) $\frac{\partial\psi_{i}}{\partial x_{j}}=g_{\dot{|}j}(x, \psi(x))$ , for $i=1$ , $\ldots$ , $m$ and $j=1$ , $\ldots$ , $n$ .
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ANoetherian chain of order $m$ and degree ais an analytic function $\psi(x)$ satisfying
(2) where $g_{ij}(x, z)$ are polynomials in $(x, z)\in \mathbb{C}^{n+m}$ of degree not exceeding $\alpha\geq 1$ .
ANoetherian function of degree $\beta$ relative to aNoetherian chain $\psi$ is an analytic
function $\phi(x)=P(x, \psi(x))$ , where $P(x, z)$ is apolynomial in $(x, z)$ of degree not
exceeding $\beta$ .
3. Theory of fewnomials and local conjectures. Suppose that the system
(2) of Pfaff equations is triangular, i.e., that functions $g_{ij}(x, \psi)$ depend only on $x$

and $\psi_{1}$ , $\ldots$ , $\psi_{i}$ (but do not depend on $\psi_{i+1}$ , $\ldots$ , $\psi_{m}$ ). Suppose, in addition, that
all functions $\psi_{i}$ and polynomials $g_{ij}$ are real. In this case, $\psi$ is called aPfaffian
chain, and Noetherian functions $P(x, \psi(x))$ where $P$ is areal polynomial are called
Pfaffian functions relative to $\psi$ . Real solutions of systems of equations with Pfaffian
functions have global finiteness properties resembling the finiteness properties of
real algebraic sets (see Lecture 1). These systems, studied in [$\mathrm{K}\mathrm{h}\mathrm{l},\mathrm{K}\mathrm{h}2$, Kh3], have
many applications in real algebraic geometry, computational complexity, control
theory, and model theory. For these finiteness properties, both requirements (that
system (2) is triangular and all functions are real) are essential. For example, the
simplest Noetherian functions $\sin$ and $\cos$ have infinite number of real zeros, and a
simple Pfaffian function $\exp x-1$ has infinite number of complex zeros.

In the beginning of the 80-ies, Iconjectured that local finiteness properties re-
main valid for non-triangular systems, also in the complex domain. Here are three
variants of this conjecture, in decreasing order of generality.

Let $\phi_{1}(x, a)$ , $\ldots$ , $\phi_{l}(x, a)$ be aset of 1analytic functions in avicinity of apoint
$(x_{0}, a_{0})\in \mathbb{C}^{n+k}$ . Suppose that, for each value of parameters $a$ , functions $\phi_{i}(x, a)$ ,
considered as analytic functions in $x$ , belong to aring $K$ of Noetherian func-
tions. Let us fix aNoetherian chain of order $m$ and degree $\alpha$ in $K$ , and let
$\phi_{1}($ ., $a)$ , $\ldots$

$\phi_{l}($ ., $a)$ be Noetherian functions of degree not exceeding $\beta$ relative to
this Noetherian chain, for all values of $a$ .

Conjecture 1. There exists an explicit function $F(n, m, \alpha, \beta, l)$ with the following
property. For any small positive $\epsilon$ , there exists a positive $\delta$ such that, for any fixed
value of $a$ with $|a-a_{0}|<\delta$ , the sum of Betti numbers of the set

$\phi_{1}(x, a)=\cdots=\phi_{l}(x, a)=0$ , $|x-x_{0}|<\epsilon$

does not exceed $F(n, m, \alpha, \beta, l)$ .
Conjecture 2. Let $\phi_{1}$ $($ ., $a)=\ldots$ , $\phi_{n}(., a)=0$ be a system of $n$ equations in $n$

variables depending on parameters $a$ . Suppose that, for a fixed value of $a$ , functions
$\phi_{i}$ are Noetherian of degree not exceeding $\beta$ relative to a Noetherian chain of order
$m$ and degree $\alpha$ . The number of isolated solutions of this system converging to $x_{0}$

as $aarrow a_{0}$ can be effectively estimated from above in terms of $n$ , $m$ , $a’$ , $\beta$ . Note that
$x_{0}$ can be a non-isolated solution of $\phi_{1}$ $($ ., $\alpha_{0})=\cdots=\phi_{n}(., a_{0})=0$ .

Conjecture 3. Multiplicity of an isolated solution of a system of equations with
Noetherian functions with a common Noetherian chain can be effectively estimated
from above in terms of the number of variables, order and degree of the Noetherian
chain, and degrees of the Noetherian functions.

Theorem 1below proves Conjecture 3. Conjectures 1and 2remain open prob-
lems. In fact these two conjectures are equivalent. For Pfaffian functions (triangula
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systems (2), also in the complex domain) proof of Conjecture 2was given in [G1].
It is important for us that Conjectures 2and 3are true in one-dimensional case.

To prove Theorem 1, we need four preliminary steps:

(1) One-dimensional case. For $n=1$ , aNoetherian function is arestriction
of apolynomial on atrajectory of avector field $\partial/\partial x+\sum_{i}g_{i}(x, z)\partial/\partial z_{i}$ with
polynomial coefficients. This case is in interesting by itself and relatively
simple.

(2) Gabrielov’s reduction to an integrable system. Union of all solutions
of (2) for given polynomials $gij$ is an algebraic set. Complexity of this set
is estimated. Here we will just present Gabrielov’s results without proofs.

(3) The Milnor fibers. For aone-parametric deformation of a(possibly non-
isolated) intersection, we define the “Milnor fiber” $Z_{q}$ as follows: For a
small nonzero value of parameter of the deformation, $Z_{q}$ consists of those
points where the intersection is isolated and its multiplicity is at least $q$ .
Multiplicity of an isolated intersection equals the sum over $q$ of the Euler
characteristics of $Z_{q}$ Complex Rolle theorem”)

(4) Maximal multiplicity in ageneric family. We present an estimate for
the maximal value of $q$ such that $Z_{q}$ is nonempty in ageneric family. This
estimate allows to bound the number of nonzero terms in the formula for
the multiplicity in terms of Euler characteristics, and the values of these
nonzero terms.

4. One-dimensional case. The problem in one-dimensional case was first formu-
lated and solved by Nesterenko [N]. His motivation came from number theory, and
his results have important applications in this area (see [W]). Later this problem
was $\mathrm{r}\mathrm{e}$-discovered by Risler [R], in connection with non-holonomic dynamics and
control theory. He was interested in degree of nonholonomy of control systems.
Solution of this problem was given by Gabrielov [G2]. Later, Gabrielov found a
new solution [G3], more simple and with abetter estimate. Then Istrongly simpli-
fied Gabrielov’s solution , using integration over Euler characteristics. This made
solution so simple that it could be generalized to several variables.

Noetherian chains in one-dimensional case are exactly trajectories of vector fields
with polynomial coefficients, and Noetherian functions are polynomials restricted
to trajectories of such vector fields.

Let $x\in \mathbb{C}$ , $z=$ $(z_{1}, \ldots, z_{m})\in \mathbb{C}^{m}$ , and let $\gamma=\{z=\psi(x)\}$ be agerm of a
trajectory through 06 $\mathbb{C}^{m+1}$ of avector field $\xi=\partial/\partial x+\sum_{i}g_{i}(x, z)\partial/\partial z_{i}$ , where
$g$:are germs of analytic functions at $0\in \mathbb{C}^{m+1}$ . Let $P(t, z)$ be agerm of an
analytic function at $0\in \mathbb{C}^{m+1}$ , and let $\phi(t)=P(t, \psi(t))$ be arestriction of $P(t, z)$

to $\gamma$ . Suppose that $\phi(t)\not\equiv 0$ , and let $\mu$ be the order of azero of $\phi$ at $t=0$ . Let
$S(t, z, \epsilon)$ be aone-parametric deformation of $P$ , i.e., agerm of an analytic function
at $0\in \mathbb{C}^{m+2}$ such that $S(t, z, \mathrm{O})=P(t, z)$ . We write $S_{\epsilon}(t, z)$ for $S(t, z, \epsilon)$ considered
as afunction in $\mathbb{C}^{m+1}$ , with afixed value of $\epsilon.$ .
Definition 2. For apositive integer $\mathrm{g}$ , the Milnor fiber $Z_{q}(\xi, S)$ of the deformation
$S$ relative to the vector field $\xi$ is the intersection of aball $||(t, z)||\leq\delta$ in $\mathbb{C}^{m+1}$ with
aset $S_{\epsilon}=\xi S_{\epsilon}=\cdots=\xi^{q-1}S_{\epsilon}=0$ , for asmall positive $\delta$ and acomplex nonzero $\epsilon$

much smaller than $\delta$ . According to [Le], the homotopy type of $Z_{q}$ depends only on
the deformation $S$ and on the vector field 4. Let $\chi(Z_{q})$ be the Euler characteristics

66



A. KHOVANSKII

Theorem 2. Let $S$ be $a$ one-parametric deformation of an analytic function $P$ ,
and let $Z_{q}=Z_{q}(\xi, S)$ be the Milnor fibers of $S$ relative to an analytic vector field 4.
Suppose that $P$ restricted to a trajectory of 4through 0has a zero of order $\mu<\infty$

at 0. Let $Q= \max\{q:Z_{q}\neq\emptyset\}$ . Then

(3) $\mu=\sum_{q=1}^{Q}\chi(Z_{q})$ .

Proof. (See also [G3, Theorem 1].) Let $(t, y_{1}, \ldots, y_{m})$ be asystem of coordinates
in $\mathbb{C}^{m+1}$ where $\xi=\partial/\partial t$ , and let $\pi$ be projection $\mathbb{C}^{m+1}arrow \mathbb{C}^{m}$ along the t-axis.
Let $B_{r}$ be aclosed ball of radius $r$ in $\mathbb{C}^{m}$ centered at the origin. We can choose a
norm $||.||$ in $\mathbb{C}^{m+1}$ so that $\{||(t, y)||\leq\delta\}=\{y\in B_{f}, |t|\leq\delta\}$ , where $r=r(\delta)$ , and
projection $\pi$ : $\{S_{\epsilon}=0\}arrow B_{r(\delta)}$ is afinite $\mu$-fold ramified covering (counting the
multiplicities).

For asmall $\delta>0$ and asmall nonzero $\epsilon$ much smaller than $\delta$ , projection $\pi$ : $Z_{q}arrow$

$B_{r}$ is finite. For $y\in B_{r}$ , aset $\pi^{-1}y\cap Z_{q}$ is finite. Hence its Euler characteristics
$\zeta_{q}(y)=\chi(\pi^{-1}y\cap Z_{q})$ equals the number of points in it (not counting multiplicities).
Then $\sum_{q=1}^{Q}\zeta_{q}(y)\equiv\mu$ does not depend on $y$ . Standard “integration over Euler
characteristic” arguments [V] show that

$\int_{B_{r}}\zeta_{q}(y)d\chi=\chi(Z_{q})$ , and $\int_{B_{r}}\sum_{q=1}^{Q}\zeta_{q}(y)d\chi=\int_{B_{r}}\mu d\chi=\mu$ .

This proves (3).

Lemma 1. Let $c_{0}$ , $\ldots$ , $c_{m}$ be ageneric set of $m+1$ complex numbers. For a
deformation $S(t, z, \epsilon)=P(t, z)+\epsilon\sum_{i=0}^{m}c_{i}t^{i}$ , the sets $Z_{q}$ are nonsingular, for $q=$
$1$ , $\ldots$ , $m+1$ , and empty for $q>m+1$ .

Proof. This is aspecial case of Thorn’s transversality theorem. See also [G3,
Lemma 1].

Corollary. For the deformation in Lemma 1,

(4) $\mu=\chi(Z_{1})+\cdots+\chi(Z_{m+1})$ .

Theorem 3. Let 4be a vector field defined by $dzi/dt$ $=g:(t, z)$ where $g_{\dot{l}}$ are poly-
nomials of degree not exceeding $\alpha\geq 1$ , and let $P$ be a polynomial of degree not
exceeding $\beta\geq m$ . Suppose that $P$ does not vanish identically on the trajectory $\gamma$ of

$\xi$ through the origin. Then the multiplicity $\mu$ of a zero of $P|_{\gamma}$ does not exceed

$\frac{1}{2}\sum_{k=0}^{n\iota}[2\beta+2k(\alpha-1)]^{2m+2}$ .

Proof. This follows from (4) and from an estimate [M] of the Euler characteristics of
the set $Z_{q}$ defined by polynomial equations of degree not exceeding $\beta+(q-1)(\alpha-1)$ .
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5. Gabrielov’s reduction to an integrable system. Using arguments from
control theory Gabrielov found two following results [GKh],

Lemma 2. Let $x\in \mathbb{C}^{n}$ , $z\in \mathbb{C}^{m}$ , and let $g_{ij}(x, z)$ be analytic functions in $U\subset$

$\mathbb{C}^{n+m}$ . The union of all integral manifolds of (1) is an analytic subset of $U$ .
Theorem 4. Let $g_{ij}$ in (1) be polynomials of degree not exceeding $\alpha\geq 1$ , and let
$\mathrm{Y}$ be the union of all integral manifolds of (1). Then $\mathrm{Y}$ can be defined by a system

of algebraic equations of degree not exceeding

(7) $d_{\mathrm{Y}}(m, n, \alpha)=\frac{(m+1)(\alpha-1)}{2}[2\alpha(n+m+2)-2m-2]^{2m+2}+\alpha(n+2)-1$ .

6. The Milnor fibers. Let $g_{ij}(x, z)$ be germs of analytic functions at $0\in \mathbb{C}^{n+m}$ ,
and let $\{z=\psi(x)\}$ be agerm of an integral manifold of (1) through 0. Let
$P(x, z)=(P_{1}(x, z)$ , $\ldots$ , $P(x, z))$ be agerm of an analytic vector-function at 0,
and let $\phi_{i}(x)=P_{i}(x, \psi(x))$ . Let $S(x, z, \epsilon)=(S_{1}(x, z, \epsilon), \ldots, S_{m}(x, z, \epsilon))$ be aone-
parametric deformation of $P(x, z)$ , i.e., agerm of an analytic vector-function at $0\in$

$\mathbb{C}^{n+m+1}$ such that $S(x, z, \mathrm{O})=P(x, z)$ . We write $S_{\epsilon}(x, z)$ for $S(x, z, \epsilon)$ considered
as afunction in $\mathbb{C}^{n+m}$ , with afixed value of $\epsilon$ .

Let $\mathrm{Y}$ be the union of all integral manifolds of (1). Due to Lemma 2, $\mathrm{Y}$ is agerm
of an analytic set. For $(x, z)\in \mathrm{Y}$ , let $\mu_{\epsilon}(x, z)$ be the multiplicity of the intersection
$S_{1,\epsilon}|\Lambda=\cdots=S_{n,\epsilon}|\Lambda=0$ at $(x, z)$ , where Ais an integral manifold of (1) through
$(x, z)$ .
Definition 3. For apositive integer $q$ , the Milnor fiber $Z_{q}$ of the deformation $S$

relative to the distribution (1) is the intersection of aclosed ball $B_{\delta}=\{||(x, z)||\leq\delta\}$

with aset of those points $(x, z)\in \mathrm{Y}$ where $\mu_{\epsilon}(x, z)\geq \mathrm{g}$ , for asmall positive $\delta$ and a
complex nonzero $\epsilon$ much smaller than $\delta$ . According to [Le] and Lemma 3below, the
homotopy type of $Z_{q}$ depends only on the deformation $S$ , and on the coefficients
$g_{ij}$ in (1). Let $\chi(Z_{q})$ be the Euler characteristics of $Z_{q}$ .

Lemma 3. Let $W_{q}$ be the set of small $(x, z, \epsilon)\in \mathbb{C}^{n+m+1}$ such that $(x, z)\in \mathrm{Y}$ , and
$\mathrm{P}(\mathrm{x}, z)\geq q$ . Then $W_{q}$ is a germ of an analytic set.

Proof One can choose asystem of coordinates $(x, y)$ in the neighborhood of $0\in$

$\mathbb{C}^{n+m}$ so that each integral manifold of (1) through apoint $(x_{0}, y_{0})\in \mathrm{Y}$ is defined
by $y=y_{\mathrm{O}}$ .

Due to [AGV, Lemma 5.5], the condition $\mu_{\epsilon}(x_{0}, y_{0})\geq q$ depends only on the
Taylor expansion $\check{S}_{i}$ in $x$ of $S_{i}$ at $(x_{0}, y_{0}, \epsilon)$ of order $q-1$ . The coefficients of $\check{S}.\cdot$ are

(8) $\frac{\partial^{|\nu|}S_{\dot{*}}}{\partial x^{\nu}}(x_{0}, y_{0}, \epsilon)$ ,

which are analytic in $x_{0}$ , $y0$ , $\epsilon$ .
Let $K=(_{n}^{q+n-1})$ be the number of monomials in $n$ variables of degree less than

$q$ . Consider $\check{S}_{i}$ as avector in $\mathbb{C}^{K}$ . For any multi-index $\nu=(\nu_{1}, \ldots, \nu_{n})$ , with
$|\nu|=\nu_{1}+\cdots+\nu_{n}<\mathrm{g}$ , consider $(x-x_{0})^{\nu}\check{S}_{i}$ as avector in $\mathbb{C}^{K}$ , disregarding terms
of order $q$ and higher in $x-x_{0}$ .

Condition $\mu_{\epsilon}(x_{0}, y_{0})\geq q$ means that rank of the set of $Kn$ vectors $x^{\nu}\check{S}_{\dot{1}}$ i$\mathrm{n}$

$\mathbb{C}^{K}$

is at most $K-q$ . This means vanishing of all $(K-q+1)$-minors of a $(K\cross Kn)-$

matrix composed of these vectors. As the elements of this matrix are the partial
derivatives (8), which are analytic in $(x_{0}, y_{0}, \epsilon)$ , this, in combination with equations
for $\mathrm{Y}$ , provides asystem of analytic equations for $W_{q}$ .
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Theorem 5. Let $P=$ $(P_{1}(x, z)$ , $\ldots$ , $P_{n}(x, z))$ be a germ of an analytic function
at 0in $\mathbb{C}^{n+m}$ . Let $\psi$ $=$ $(\psi_{1}(x), \ldots, \psi_{m}(x))$ be a germ of an analytic function at
0in $\mathbb{C}^{n}$ satisfying (2), and let $\phi_{i}(x)=Pn(x, \psi(x))$ . Suppose that the intersection
$\phi_{1}(x)=\cdots=\phi_{n}(x)=0$ is isolated at $x=0$ , with the multiplicity $\mu$ . Let $S(x, z, \epsilon)$

be $a$ one-parametric deformation of $P$ , let $Z_{q}$ be the Milnor fibers of $S$ relative to
the distribution { $\mathrm{I})$ , and let $Q= \max\{q:Z_{q}\neq\emptyset\}$ . Then

(9) $\mu=\sum_{q=1}^{Q}\chi(Z_{q})$ .

Proof. The arguments essentially repeat the arguments in the proof of Theorem 2,
except an additional restriction to the set $\mathrm{Y}$ of all integral manifolds of (1).

Let asystem of coordinates $(x, y)$ in $\mathbb{C}^{n+m}$ be chosen, as in the proof of Lemma 3,
so that each integral manifold of (1) through $(\mathrm{x}\mathrm{o}, y\mathrm{o})\in \mathrm{Y}$ is defined by $y=y_{0}$ . Let
$\pi$ be projection $\mathbb{C}^{n+m}arrow \mathbb{C}^{n}$ . Then $\pi$ : $\{S_{\epsilon}=0\}\cap \mathrm{Y}arrow\pi \mathrm{Y}$ is afinite $\mu$-fold ramified
covering (counting the multiplicities). Let $\zeta_{q}(y)=\chi(\pi^{-1}y\cap Z_{q})$ be the number of
preimages of apoint $y$ in $Z_{q}$ , not counting multiplicities. Then $\sum_{q=1}^{Q}\zeta_{q}(y)\equiv\mu$

does not depend on $y$ . We have

$\int_{\pi \mathrm{Y}}\zeta_{q}(y)d\chi=\chi(Z_{q})$ , and $\int_{\pi \mathrm{Y}}\sum_{q=1}^{Q}\zeta_{q}(y)d\chi=\int_{\pi \mathrm{Y}}\mu d\chi=\mu$.

The last equality holds because $\pi \mathrm{Y}$ is aclosed contractible set, hence its Euler
characteristics equals 1(compare with the Complex Rolle theorem , Example 2,
Lecture 2).

Theorem 6. Let $g_{ij}$ in (1) be polynomials of degree not exceeding $\alpha$ , and let $S_{\dot{l}}$ be
polynomials in $(x, z)$ of degree not exceeding $\beta$ . Then the Milnor fiber $Z_{q}$ of $S$ can
be defined by polynomial equations of degree not exceeding maximum of (7) and

(10) $d(n, q, \alpha, \beta)=(K-q+1)[\beta+(q-1)(\alpha-1)]$ , where $K=(\begin{array}{ll}q+n -1n \end{array})$ .

Proof. Let us fix asmall nonzero $\epsilon$ . According to the arguments in the proof of
Lemma 3, condition $(x_{0}, z_{0})\in Z_{q}$ is equivalent to vanishing of all $(K-q+1)$-minors
of amatrix composed of the partial derivatives (8) of $S_{\epsilon}$ of order $\nu<q$ , in asystem
of coordinates $(x, y)$ where integral manifolds of (1) are rectified.

Let us define agerm of the integral manifold Aof (1) through $(x_{0}, z_{0})$ by afunc-
tion $\psi(x)$ satisfying (2). Equations (2) allow one to represent apartial derivative (8)
as apolynomial in $(\# 0, z_{0})$ of degree not exceeding $\beta+\nu(\alpha-1)$ . Hence the elements
of our matrix are polynomials in $(x_{0}, z_{0})$ of degree not exceeding $\beta+(q-1)(\alpha-1)$ ,
and its $(K-q+1)$-minors are polynomials in $(x_{0}, z_{0})$ of degree not exceeding
$(K-q+1)[\beta+(q-1)(\alpha-1)$ . These polynomials, in combination with equations
for $\mathrm{Y}$ , provide asystem of equations for $Z_{q}$ .
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Corollary. Under conditions of Theorem 6, the absolute value of the Euler char-
acteristics of $Z_{q}$ does not exceed

(11) $\frac{1}{2}\max(2d_{Y}(m, n, \alpha), 2d(n, q, \alpha, \beta))^{2(m+n)}$ ,

where $d_{Y}(m, n, \alpha)$ and $d(m, n, q)$ are defined in (7) and (10), respectively.

Proof. This follows from an estimate [M] of the Euler characteristics of the set $Z_{q}$

defined by polynomial equations of degree not exceeding maximum of (7) and (10).

7. Maximal multiplicity in ageneric family.

Theorem 7. For an analytic mapping $P=$ $(P_{1}, \ldots, P_{n})$ : $\mathbb{C}^{n}arrow \mathbb{C}^{n}$ and a non-
negative integer $r$ , let

(12) $P^{c}=(P_{1}^{c}, \ldots, P_{n}^{\mathrm{c}})$ where $P_{j}^{c}(x)=Pj(x)+. \sum_{i.|i|\leq r}c_{i,j^{X^{:}}}$
.

Here $i=$ ( $i_{1}$ , $\ldots$ , in) is a sequence of nonnegative integers, $|i|=i_{1}+\cdots+i_{n}$ , and
$x^{:}=x_{1}^{i_{1}}\cdots x_{n}^{i_{n}}$ .

For $0\leq m\leq r$ , the set of those $(x, c)$ where the multiplicity of $P^{c}$ at $x$ exceeds

(13) $Q(m, n)=( \frac{n+m}{1+\cdots+1/n})^{1+\cdots+1/n}\prod_{k=1}^{n}(\frac{(k-1)!}{k})^{1/k}$

has codimension greater than n $\mathit{1}-$ m.

Corollary. Let $P_{z}(x)=(P_{z,1}(x), \ldots, P_{z,n}(x))$ be a generic family of analytic map-

pings $\mathbb{C}^{n}arrow \mathbb{C}^{n}$ depending on parameters $z\in \mathbb{C}^{m}$ . Then the multiplicity of $P_{z}$ , at
any point $x\in \mathbb{C}^{n}$ and for any $z$ , is less than (13).

To prove Theorem 7we need the following

Definition 4. For an analytic set $V$ of codimension $r$ , we define the order $\mathrm{o}\mathrm{r}\mathrm{d}_{x_{\mathrm{O}}}P|v$

of an analytic function $P$ on the set $V$ at $x_{0}\in V$ as amaximal integer $\nu$ such that,

for ageneric $(\mathrm{r}+1)\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$ plane $L$ , $P(x)=o(|x-x_{0}|^{\nu-1})$ , for all $x$ in at least
one of irreducible components of $V\cap L$ . If such anumber does not exist (i.e., when
$P$ vanishes identically on an irreducible component of $V$ through $x_{0}$ ) we define
$\mathrm{o}\mathrm{r}\mathrm{d}_{x_{0}}P|_{V}=\infty$ . For $V=\mathbb{C}^{n}$ , $\mathrm{o}\mathrm{r}\mathrm{d}_{x_{0}}P|_{V}=\mathrm{o}\mathrm{r}\mathrm{d}_{x_{0}}f$ is the usual vanishing order of
$P$ at $x_{0}$ .

For example, let $V=\{x_{1}^{2}=x_{2}^{3}\}$ and $x_{0}=(0,0)$ . Then $\mathrm{o}\mathrm{r}\mathrm{d}_{0}x_{1}|_{V}=2$ and
$\mathrm{o}\mathrm{r}\mathrm{d}_{0}x_{2}|_{V}=1$ .

Lemma 4. Let r $\geq 0$ , and let $P^{c}$ be defined as in (12). For a sequence $\nu_{1}\leq\cdots\leq$

$\nu_{n}\leq r$ of nonnegative integers, let $X_{\nu_{1},\ldots,\nu_{n}}$ be the set of (x, c) where

$\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{1}^{c}=\nu_{1}$ , $\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{2}^{c}|_{P_{1}^{c}=0}=\nu_{2}$ , $\ldots$ , $\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{n}^{c}|_{P_{1}^{\mathrm{c}}=\cdots=P_{n-1}^{c}=0}=\nu_{n}$ ;

$\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{j}^{c}\geq\nu_{1}$ , for $j>1$ , $\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{j}^{c}|_{P_{1}^{\mathrm{c}}=0}\geq\nu_{2}$ , for $j>2$ , $\ldots$ ,
$\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{n}^{c}|_{P_{1}^{c}=\cdots=P_{1}^{\mathrm{c}}=0},-\underline{1}\geq\nu_{\nu\iota-1}$ .
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The codimension of $X_{\nu_{1},\ldots,\nu_{n}}$ is not less than

(14) $\nu_{1}$
$(\begin{array}{l}\nu_{1}+n-2n-1\end{array})$ $+\nu_{2}$ $(\begin{array}{l}\nu_{2}+n-37l-2\end{array})$ $+\cdots+\nu_{n}$ ,

and the multiplicity of $P^{c}$ at any point of $X_{\nu_{1},\ldots,\nu_{n}}$ is less than $\nu_{1}\cdots$ $\nu_{n}$ .

Proof. The condition $\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{j}^{c}\geq\nu_{1}$ , for all $j$ , means that the values of $-c_{i,j}$ , for
$|i|<\nu_{1}$ , coincide with the coefficients of the Taylor expansion of $P_{j}$ at $x$ of the
order $\nu_{1}-1$ . This gives $n(\begin{array}{l}\nu_{1}+n-1n\end{array})$ independent conditions on Cij.

Let us fix $P_{1}^{c}$ and consider aone-dimensional linear subspace $l$ outside the tangent
cone to $\{P_{1}^{c}=0\}$ at $x$ . We can choose coordinates so that $l$ is the $x_{n}$-axis. Let us fix
all the terms in $P_{j}^{\mathrm{c}}$ , for $j>1$ , except those that do not contain $x_{n}$ . The condition
$\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{j}^{c}|_{P_{1}^{\mathrm{c}}=0}\geq\nu_{2}$ , for $j>1$ , defines at most one possible value for each of the

remaining terms. This gives us at least $(n-1)$ $[(\begin{array}{l}\nu_{2}+n-2n-1\end{array})$ – $(\begin{array}{l}\nu_{1}+n-2n-1\end{array})]$ additional
independent conditions on $c_{i,j}$ . The same arguments allow one to prove that the
codimension of $X_{\nu_{1},\ldots,\nu_{d}}$ is not less than

$n$ $(\begin{array}{ll}\nu_{1}+n -1n \end{array})+(n-1)[$ $(\begin{array}{l}\nu_{2}+n-2n-1\end{array})-(\begin{array}{l}\nu_{1}+n-2n-1\end{array})$ $]+\cdots+[$ $(\begin{array}{l}\nu_{n}1\end{array})-(\begin{array}{l}\nu_{n-1}1\end{array})$ $]$ .

Applying the identity $k(_{k}^{\nu_{1}+k-1}’-k+1)-(k-1)$ $(\begin{array}{l}\nu_{n-k-+1}+k-2k-1\end{array})=\nu_{n-k+1}(_{k-1}^{\nu_{n-k+1}+k-2})$ ,
we obtain (14).

To estimate the multiplicity $\mu$ of $f_{c}$ at apoint $x\in X_{\nu_{1},\ldots,\nu_{n}}$ , we have to
count the number of zeros (with their multiplicities) of asystem of equations
$P_{1}^{c}=\cdots=P_{n-1}^{c}=P_{n}^{c}-\epsilon=0$ converging to $x$ as $\epsilonarrow 0$ . Due to the con-
dition $\mathrm{o}\mathrm{r}\mathrm{d}_{x}P_{n}^{c}|_{P_{1}^{c}=\cdots=P_{n-1}^{\mathrm{c}}=0}=\nu_{n}$, this nuntber is less than $\nu_{n}$ multiplied by the
multiplicity $\mu’$ of $\{P_{1}^{c}=\cdots=P_{n-1}^{c}=s=0\}$ at $x$ , where $s$ is ageneric linear
function. The same arguments show that $\mu’$ is less than $\nu_{n-1}$ multiplied by the
multiplicity of $\{P_{1}^{c}=\cdots=P_{n-2}^{\mathrm{c}}=s_{1}=s_{2}=0\}$ at $x$ , where $s_{1}$ and $s_{2}$ are generic
linear functions. Repeating these arguments, we obtain the necessary estimate
$\mu<\nu_{1}\cdots\nu_{n}$ .

Proof of Theorem 7. Due to Lemma 4, we have to estimate maximal possible
value of $\nu_{1}\cdots\nu_{n}$ over the sequences $(\nu_{1}, \ldots, \nu_{n})$ such that (14) does not exceed
$nfr$ . Replacing $(_{k-1}^{\nu_{n-k+1}+k-2})$ by $\nu_{n-k+1}^{k-1}/k-1!$ , we see that (14) is not less than
$\sum_{k=1}^{n}\nu_{n-k+1}^{k}/(k-1)!$ . Thus it is enough to maximize $\nu 1\ldots$ $\nu_{n}$ when $\sum_{k=1}^{n}\nu_{n-k+1}^{k}/(k$

$1)!=n+r$ . Substituting $u_{k}=\nu_{n-k+1}^{k}$ , we have to maximize $\prod_{k=1}^{n}u_{k}^{1/k}$ when
$\sum_{k=1}^{n}u_{k}/(k-1)!=n+r$ . The maximum (13) is achieved when

$u_{k}= \frac{(k-1)!(n+r)}{k(1+\cdots+1/n)}$ .

8. Proof of Theorem 1. Consider adeformation $S(x, z, \epsilon)$ of the polynomial
$P(\prime \mathrm{J}\mathrm{i}, Z)$ defined by

$S_{j}(x, z, \epsilon)=P_{j}(x, z)+\epsilon\sum_{i:|i|\leq m}c_{\dot{1},j}x:$
,

where Ci $j$ are generic complex numbers. Prom Theorem 7, the Milnor fibers $Z_{q}$ of
this deformation are empty for $q\geq Q(m, n)$ , where $Q(m, n)$ is defined in (13)
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According to (9),

(15) $\mu=\sum_{q=1}^{Q(m,n)}\chi(Z_{q})\leq Q(m, n)q\leq Q(m,n)\max|\chi(Z_{q})|$ .

From (11), the right side of (15) does not exceed

$\frac{1}{2}Q(m, n)\max(2d_{\mathrm{Y}}(m, n, \alpha), 2d(n, Q(m, n), \alpha, \beta))^{2(m+n)}$ ,

where $d_{Y}$ and $d$ are defined in (7) and (10), respectively. The value of $d(n, q, \alpha, \beta)$

in (10) does not exceed

$(q+n-1)(\mathrm{a}+(q-1)(\alpha-1))<(q+n)^{n}(\beta+q(\alpha-1))$ .

The statement of Theorem 1follows now from the following estimate for $Q(m, n)$

which one can obtain from the theorem 7:

Proposition 1. The value of $Q(m, n)$ in (13) does not exceed

(16) en $( \frac{e(n+m)}{\sqrt{n}})^{\ln n+1}(\frac{\mathit{7}l}{e^{2}})^{n}$
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