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This note is asurvey of the author’s results given in [7].
Let $\Sigma$ be aclosed orientable surface of genus greater than one. We fix ahyper-

bolic structure on $\Sigma$ for convenience, and set II $=\mathrm{p}\mathrm{n}(\mathrm{Z})$ . In [3], $\mathrm{J}\phi \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}$ and
Marden gave an example of faithful representations $\rho_{n}$ : $\mathbb{Z}arrow \mathrm{P}\mathrm{S}\mathrm{L}2(\mathrm{C})$ with $\rho_{n}(1)$

loxodromic such that the cyclic Kleinian groups $\mathrm{p}\mathrm{n}(\mathrm{Z})$ converge geometrically to a
rank two parabolic group. This is one of typical phenomena which appear in geo
metric limits. In fact, Kerckhoff and Thurston [4] considered the cyclic action on
the Bers slice $B_{\sigma}+\mathrm{a}\mathrm{t}$ $\sigma_{+}\in \mathrm{T}\mathrm{e}\mathrm{i}\mathrm{c}\mathrm{h}(\mathrm{E})$ generated by the Dehn twist $\varphi$ on 1along a
simple closed geodesic $l$ . Then, they showed that any geometric accumulation point
of the cyclic orbit $\{(\varphi_{*}^{n}(\sigma_{-}), \sigma_{+})\}\subset B_{\sigma}+\mathrm{i}\mathrm{s}$ aKleinian group $G$ such that $\mathbb{H}^{3}/G$ is
homeomorphic to $\Sigma \mathrm{x}(0,1)-l\mathrm{x}\{1/2\}$ . Then, atubular neighborhood of $l\mathrm{x}\{1/2\}$

in $\Sigma \mathrm{x}(0,1)$ corresponds to a $\mathbb{Z}\mathrm{x}\mathbb{Z}$-cusp of $\mathbb{H}^{3}/G$ where $\mathrm{J}\phi \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}$ Marden phe-
nomenon occurs, see Fig. 1(a). By using this method iteratively, it is also possible

01
(b)

FIGURE 1. The dot in (a) represents $l\mathrm{x}\{1/2\}$ in the model of $\mathbb{H}^{3}/G$ .
The vertical bold segment in (b) represents $H\mathrm{x}\{1/2\}$ in the model
of $\mathbb{H}^{3}/G’$ .

to construct an example of ageometric limit $G’$ of quasi-Fuchsian groups such that
$\mathbb{H}^{3}/G’$ has infinitely many $\mathbb{Z}\mathrm{x}\mathbb{Z}-$-cusps. In particular, $G’$ is infinitely generated.
Another important example of geometric limits of quasi-Fuchsian groups is given by
Brock [2]. He considered the cyclic action on aBers slice generated by a $\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}\succ$

morphism $\psi$ : $\Sigmaarrow\Sigma$ such that $\psi|\mathrm{h}\mathrm{t}H$ : $\mathrm{I}\mathrm{n}\mathrm{t}Harrow \mathrm{I}\mathrm{n}\mathrm{t}H$ is pseudo Anosov for a
proper subsurface $H$ of Iand $\psi|(\Sigma-\mathrm{I}\mathrm{n}\mathrm{t}H)$ is the identity. Then, any geometric
accumulation point of the cyclic orbit $\{(\psi_{*}^{n}(\sigma_{-}), \sigma_{+})\}\subset B_{\sigma}+\mathrm{i}\mathrm{s}$ aKleinian group $G’$

such that $\mathbb{H}^{3}/G’$ is homeomorphic to 0 $\mathrm{x}(0,1)-H\mathrm{x}\{1/2\}$ , see Fig. 1(b). However,
all of these examples are very special ones. In this talk, we will present what kinds
of topological types appear generally in geometric limits of quasi-Fuchsian groups.

Let $p$ : $\Sigma \mathrm{x}Iarrow\Sigma$ and $q$ : $\Sigma \mathrm{x}Iarrow I$ be the projections onto the first and
second factors, where I is the closed interval $[0, 1]$ . For any $y\in I$ , the preimag
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$\Sigma_{y}=q^{-1}(y)$ is supposed to have the hyperbolic structure so that $p|\Sigma_{y}$ : $\Sigma_{y}arrow\Sigma$

is isometric. Acompact connected subsurface $F$ of $\Sigma_{y}$ with geodesic boundary is
called anon-pant geodesic subsurface if $F$ is not homeomorphic to agenus-zero
surface with three boundary components, apair of pants. Note that the interior of
anon-pant geodesic subsurface contains asimple closed geodesic.

For aclosed subset $A$ of $\Sigma_{y}$ , if $\mathrm{A}(\mathrm{A})$ is aminimal disjoint union of ageodesic
subsurface $F$ and simple closed geodesies $l_{1}$ , $\ldots$ , $l_{k}$ in $\Sigma_{y}$ with $\mathrm{A}(\mathrm{A})\supset A$ , then the
frontier Fr($\Delta$ (A ) of $\Delta(A)$ in $\Sigma_{y}$ is the union $\partial F\cup l_{1}\cup\cdots\cup l_{k}$ of mutually disjoint
simple geodesic loops in $\Sigma_{y}$ . Let $\lambda(A)$ be the union of all simple closed geodesies 1
in $\Delta(A)$ such that, for the $\delta$-neighborhood $N_{\delta}(l, \Sigma_{y})$ with asmall $\delta>0$ , at least one
component $\mathrm{o}\mathrm{f}N_{\delta}(l, \Sigma_{y})-l$ is disjoint from $A$ . In particular, $\mathrm{X}(\mathrm{A})$ contains Fr(A(A)),
see Fig. 2.

FIGURE 2. The case of $A=l_{1}\cup A_{1}\cup A_{2}$ . Then, $\Delta(A)=\mathrm{F}$ Uli, where
$F$ is the union of the shaded regions. Fr( $\Delta$ (A ) $=l_{1}\cup m_{1}\cup m_{3}$ , and
$\mathrm{X}(\mathrm{A})=\mathrm{b}(\Delta(A))\cup m_{2}=l_{1}\cup m_{1}\cup m_{2}\cup m_{3}$ .

Let $\mathcal{X}$ be the closed subset of $\Sigma \mathrm{x}$ I given below. Then, we set $\mathcal{Y}=q(\mathcal{X})$ ,
$X_{y}=\Sigma_{y}\cap \mathcal{X}$ for $y\in \mathcal{Y}$ , $\Lambda_{y}^{+}=\Sigma_{y}\cap\overline{\Sigma \mathrm{x}(y,1]\cap \mathcal{X}}$ for $y<1$ , $\Lambda_{y}^{-}=\Sigma_{y}\cap\overline{\Sigma \mathrm{x}[0,y)\cap \mathcal{X}}$

for $y>0$ .
Theorem 1. Let $\{\rho_{n} : \Piarrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{C})\}_{n=1}^{\infty}$ be any algebraically convergent sequence
of quasi-Fhchsian representations such that $\{\rho_{n}(\Pi)\}_{n=1}^{\infty}$ converges geometrically to
a Kleinian group G. Then, the hyperbolic 3-manifold $\mathbb{H}^{3}/G$ is homeomorphic to
I $\mathrm{x}I-\mathcal{X}$ such that $\mathcal{X}$ is a closed subset of $\Sigma \mathrm{x}$ I satisfying the following conditions
$(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ .

(i) $\Sigma \mathrm{x}I-\mathcal{X}$ is connected, containing $\Sigma_{1/2}$ , and disjoint ffom $\Sigma_{0}\cup\Sigma_{1}$ .
(ii) For any $y\in \mathcal{Y}$ , $X_{y}$ is a disjoint union of a geodesic subsurface and simple

geodesic loops in $\Sigma_{y}$ . For $\epsilon$ $=\pm$ , each non-peripheral component of $X_{y}-$

$\Delta(\Lambda_{y}^{\epsilon})\cup \mathrm{F}\mathrm{r}(X_{y})$ is an open non-pant geodesic subsurface of $\Sigma_{y}$ .
(iii) For any $y$ , $z\in$ )) with $y<z$ , if a component $l_{y}$ of $\mathrm{R}(X_{y})\cup\lambda(\Lambda_{y}^{+})$ is parallel to

a component $l_{z}$ of $\mathrm{F}\mathrm{r}(X_{z})\cup\lambda(\Lambda_{z}^{-})$ in $\Sigma \mathrm{x}I-\mathcal{X}$ , then $l_{y}$ and $l_{z}$ are horizontally
parallel in $\mathcal{X}$ .

The property $\Sigma_{0}\cup\Sigma_{1}\subset \mathcal{X}$ in the condition (i) is immediate from that $\mathbb{H}^{3}/G$ is
an open manifold. Asubsurface of $X_{y}$ is peripheral if it is horizontally parallel in
$\mathcal{X}$ to asubsurface of either $\Sigma_{0}$ or $\Sigma_{1}$ . Any component of $X_{y}-\Delta(\Lambda_{y}^{\epsilon})\cup \mathrm{R}(X_{y})$ is
called asubsurface of type Be, see Fig 3. Thus, the latter part of the condition
(ii) is restated that any non-peripheral subsurface of type $\mathrm{B}^{\epsilon}$ is not an open pair of
pants. In fact, the ends of $\mathbb{H}^{3}/G$ corresponding to such subsurfaces are necessaril
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FIGURE 3. A7, $B_{j}^{+}$ , $C_{k}$ represent respectively subsurfaces of $\Sigma_{y}$ of
types $\mathrm{A}^{+}$ , $\mathrm{B}^{+}$ and C.

geometrically infinite tame. The condition (iii) is derived from the fact that any two
parabolic cusps in ahyperbolic 3-manifold $M$ is not parallel in $M$ .

According to Myers [6], there exists asimple loop $l$ in $\Sigma \mathrm{x}(0,1)$ which is not
parallel to aloop in $\Sigma_{0}\cup\Sigma_{1}$ and such that $N=\Sigma \mathrm{x}(0,1)-l$ admits ageometrically
finite hyperbolic metric $\sigma$ . By Hyperbolic Dehn Surgery Theorem in [8], $N(\sigma)$ is
ageometric limit of geometrically finite hyperbolic 3-manifolds without parabolic
cusps. However, $N$ is not homeomorphic to $\mathbb{H}^{3}/G$ for any geometric limit $G$ of
quasi-Fuchsian groups. This fact is proved by Theorem 1or directly as an exercise
without invoking the theorem.

In general, aclosed subset $\mathcal{X}$ in $\Sigma \mathrm{x}$ I satisfying the conditions $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ is very
complicated. When $\mathcal{Y}$ is atotally disconnected subset of $I$ , $\mathcal{Y}$ is not aperfect set
and each connected component of $\mathcal{X}$ is either ageodesic subsurface or ageodesic
loop. Even in this rather simple case, there may exist adoubly (or more multiply)
accumulation point $y$ in $\mathcal{Y}$ . This means that $y$ is an accumulation point of asubset
$\{y_{n}\}$ of $\mathcal{Y}$ such that each $y_{n}$ is also an accumulation point of $\mathcal{Y}$ , see Fig. 4.

01/2 1

FIGURE 4. ‘1/2’ is adoubly accumulation point of $\mathcal{Y}$ .

Remark 2. In particular, Theorem 1implies that, for any geometric limit $G$ of an
algebraically convergent sequence $\{\mathrm{p}\mathrm{n}\}$ of quasi-Fuchsian representations, $\mathbb{H}^{3}/G$ is
homeomorphic to an open subset of $\Sigma \mathrm{x}(0,1)$ . One may suppose that the assertion is
obvious since each $\mathbb{H}^{3}/\rho_{n}(\Pi)$ is homeomorphic to $\Sigma \mathrm{x}(0,1)$ , and since moreover ther
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exists a $K_{n}$-quasi-isometry $g_{n}$ : $N_{R_{n}}(x_{n}, \mathbb{H}^{3}/\rho_{n}(\Pi))arrow N_{R_{n}}(x_{\infty}, \mathbb{H}^{3}/G)$ between
the $R_{n}$-neighborhoods centered at suitable base points $x_{n}$ and $x_{\infty}$ with $R_{n}\nearrow \mathrm{o}\mathrm{o}$

and $K_{n}\backslash 1$ . Though the $g_{n}^{-1}$ and $g_{n+1}^{-1}$-images of $N_{R_{n}}(x_{\infty}, \mathbb{H}^{3}/G)$ are mutually
homeomorphic, their complements in $\mathbb{H}^{3}/\rho_{n}(\Pi)$ and $\mathbb{H}^{3}/\rho_{n+1}(\Pi)$ do not necessarily
have the same topological type. Thus, the maps $g_{n}^{-1}$ would not offer directly an
expanding sequence of embeddings from $N_{R_{n}}(x_{\infty}, \mathbb{H}^{3}/G)(n=1,2, \ldots)$ into $\Sigma \mathrm{x}$

$(0,1)$ . We will construct an embedding of $\mathbb{H}^{3}/G$ into I $\mathrm{x}(0,1)$ by using the fact
that $\mathbb{H}^{3}/G$ has the structure of ablock complex.

Theorem 3. Let $\mathcal{X}$ be any closed subset of $\Sigma \mathrm{x}$ I satisfying the conditions $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$

in Theorem 1. Then, there eists a geometric limit $G$ of an algebraically convergent
sequence of quasi-Fuchsian representations such that $\mathbb{H}^{3}/G$ is homeomorphic to $\Sigma \mathrm{x}$

$I-\mathcal{X}$ .

Aclosed subset of $\Sigma \mathrm{x}$ I satisfying the conditions $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ in Theorem 1is cffied
acrevasse in $\Sigma \mathrm{x}I$ . We need to study crevasses from the topological point of view.
This is not only necessary to prove Theorems 1and 3, but also useful to understand
topological properties of geometric limits of quasi-Fuchsian groups. As aspecial case,
these theorems determine the topological types of $\mathbb{H}^{3}/G$ for geometric limits of any
sequence in the Bers slice $B_{\sigma}+$ ’which is naturally identified with the Teichmiiller
space Teich(E). Then, $\mathbb{H}^{3}/G$ is homeomorphic to I $\mathrm{x}I-\mathcal{X}$ for some crevasse $\mathcal{X}$

with $\mathcal{X}\cap\Sigma \mathrm{x}[1/2,1)=\emptyset$ . Though the result does not imply data on the geometric
structure on $\mathbb{H}^{3}/G$ , some arguments used in the proofs of our theorems suggest
implicitly that the hyperbolic structure on $\mathbb{H}^{3}/G$ would be controlled by those on
the geometrically infinite tame ends $\mathcal{E}$ of $\mathbb{H}^{3}/G$ corresponding to the subsurfaces in $\mathcal{X}$

of types $\mathrm{B}^{\pm}$ . On the other hand, the hyperbolic structures on $\mathcal{E}$ will be determined
only by their ending data if Thurston’s Ending Lamination Conjecture [9] holds,
where the ending data means the element of Teich(B) determined by the conformal
structure on the front end if $\mathcal{E}$ is geometrically finite and the ending lamination if
$\mathcal{E}$ is geometrically infinite. The conjecture is proved by Minsky [5] in the case when
the infimum injectivity radius of ahyperbolic 3-manifold is positive, and the project
toward the complete solution is making steady progress by some people including
himself. Thus, it would not be in distant future when we know all the elements of
the geometric Bers boundary of Teich(E).

Problem 4. Let $G_{i}(i=1,2)$ be geometric limits of algebraically convergent se-
quences of quasi-Fuchsian groups with homeomorphisms $h_{:}$ : $\mathbb{H}^{3}/G_{:}arrow\Sigma \mathrm{x}I-\mathcal{X}$

for agiven crevasse $\mathcal{X}$ . Is $h_{2}^{-1}\mathrm{o}h_{1}$ : $\mathbb{H}^{3}/G_{1}arrow \mathbb{H}^{3}/G_{2}$ properly homotopic to an
isometry if, for any subsurface $B$ in aof types $\mathrm{B}^{\pm}$ , the corresponding ends $\mathcal{E}_{i}(B)$

in $\mathbb{H}^{3}/G_{:}$ have the same ending data ?

Outline of the proof of Theorem 1. If an algebraically convergent sequence
of quasi-Fuchsian representations $\rho_{n}$ : II $arrow \mathrm{P}\mathrm{S}\mathrm{L}2(\mathrm{C})$ converges geometrically to
aKleinian group $G$ , then there exists a $K_{n}$-quasi-isometry $g_{n}$ : $N_{R_{n}}(x_{n}, N_{n})arrow$

$N_{R_{\hslash}}(x_{\infty}, M_{\infty})$ with $R_{n}\nearrow \mathrm{o}\mathrm{o}$ and $K_{n}\backslash$ $1$ for the suitable choice of base points
$x_{n}\in N_{n}$ and $x_{\infty}\in M_{\infty}$ , where $N_{n}=\mathbb{H}^{3}/\rho_{n}(\Pi)$ and $M_{\infty}=\mathbb{H}^{3}/G$ . Since $N_{n}$ is
homeomorphic to $\Sigma \mathrm{x}(0,1)$ , $N_{n}$ admits atopological fibration $\mathcal{G}_{n}$ with fiber X.
Then, the foliation $\hat{g}_{n}$ on $N_{R_{n}}(x_{\infty}, M_{\infty})$ is induced from $\mathcal{G}_{n}|N_{R_{\mathfrak{n}}}(x_{n}, N_{n})$ via $g_{n}$ .
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However, it would be difficult to define afoliation on $M_{\infty}$ from $\mathcal{G}\wedge n$ ’s since we do
not have geometric data to investigate relations between $\mathcal{G}_{n}$ and $\mathcal{G}_{n+1}$ . In our proof,
we will invoke a‘coarse fibration’ $S_{n}$ on the convex core $C_{n}$ of $N_{n}$ ‘fibers’ of which
are pleated surfaces between the two components of $\partial C_{n}$ . Then, $N_{R_{n}}(x_{\infty}, M_{\infty})$ has
the coarse foliation $\hat{S}_{n}$ induced from $S_{n}|N_{R_{n}}(x_{n}, N_{n})$ . Let $M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{n}(\epsilon)}$ be the union
of parabolic cusp components of the $\epsilon$-thin part $M_{\infty,\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{n}(\epsilon)}$ of $M_{\infty}$ for a sufficiently
small $\epsilon$ $>0$ . For any $x\in M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\epsilon)}=M_{\infty}-M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{n}(\epsilon)}$, there exists aconstant
$R(x)$ independent of $n\in \mathrm{N}$ , such that, for any leaf $F^{(n)}$ of $\hat{S}_{n}$ passing through the 1-
neighborhood of $x$ in $M_{\infty}$ , the diameter of the component $F_{0}^{(n)}$ of $F^{(n)}\cap M_{\infty,\mathrm{p}-}$-thick(r)

nearest to $x$ is less than $R(x)$ . Thus, if necessary passing to asubsequence, we
may assume that $\{F_{0}^{(n)}\}$ converges uniformly to asurface $F$ , and hence in particular
$F_{0}^{(n)}$ ’s are mutually properly homotopic in $M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\epsilon)}$ . This suggests that $\{\hat{S}_{n}\}$ is
an expanding sequence of coarse foliations in $M_{\infty,\triangleright \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\epsilon)}$ after slightly modifying $\hat{S}_{n}$

by proper homotopy in $M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\epsilon)}$ . Though the limit $F$ may not be an embedded
surface, one can replace it by an embedded surface $S$ in the homotopy class of
$F$ in $M_{\infty_{\mathrm{I}}\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\epsilon)}$ by using the least area surface theory. Amaximal set $\{Q_{b}\}$ of
these embedded surfaces which are mutually disjoint and not properly homotopic
to each other in $M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\epsilon)}$ divides $M_{\infty,r\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\epsilon)}$ into (in general infinitely many)
blocks $B_{c}$ . Here, $B_{c}$ being ablock means that $B_{c}$ is homeomorphic to $F\mathrm{x}(0,1)$

for asubsurface $F$ of X. We note that this block decomposition misses points
$x\in M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\in)}$ in asmall neighborhood of which does not meet the $g_{n}$ images of
pleated surfaces. This occurs when $g_{n}^{-1}(x)$ is $N_{n}-\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{C}\mathrm{n}$ for all sufficiently large
$n\in \mathrm{N}$ . Each component of $N_{n}-\mathrm{I}\mathrm{n}\mathrm{t}C_{n}$ is ageometrically finite end and hence
homeomorphic to $\Sigma \mathrm{x}[0, \infty)$ . Prom this fact, we know that $x$ is in ageometrically
finite end of $M_{\infty}$ homeomorphic to $F’\mathrm{x}[0, \infty)$ for some subsurface $F’$ of C. Regarding
such ends also as blocks, we have ablock decomposition of $\mathrm{I}\mathrm{n}\mathrm{t}M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(\epsilon)}$ . The
interior $\mathcal{K}_{k}$ of the union $\bigcup_{\dot{\iota}=1}^{k}\overline{B_{\mathrm{i}}}$ of the first $k$ blocks is contained in $N_{R_{n}}(x_{\infty}, M_{\infty})$ if
$n$ is sufficiently large, and hence it can be embedded in $\Sigma \mathrm{x}$ I via $g_{n}^{-1}$ . In general,
such embeddings are not expanding sequence as was remarked above. So, we will
construct an expanding sequence by splitting blocks into sub-blocks if necessary
and by embedding them into $\Sigma \mathrm{x}$ I at the sacrifice of aglobal continuity. Then, the
images $\mathcal{K}_{k}’$ are expanding open submanifolds, but not homeomorphic to the original
$\mathcal{K}_{k}$ . We will restore the originals by slit-sliding operations in $\Sigma \mathrm{x}I$ . This splitting
t0-restoring process is not ameaningless round trip since the process enables us to
deal with the embedding problem stepwise. We have an expanding sequence $\{F_{n}\}$

of unions of finitely many slits in $\Sigma \mathrm{x}$ I such that the 3-manifold $\mathrm{Y}_{n}$ obtained by
sliding along $\mathcal{F}_{n}$ contains $\mathcal{K}_{n}$ as an open submanifold. Moreover, $\mathrm{Y}_{n}-\mathcal{K}_{n}$ contains a
submanifold $W_{d(n)}$ such that there exists an embedding $\Phi_{n}$ : $\mathrm{Y}_{n}-W_{d(n)}arrow\Sigma \mathrm{x}I$ with
$\Phi_{n}(\mathcal{K}_{n})=\Phi_{n+1}(\mathcal{K}_{n})\subset\Phi_{n+1}(\mathcal{K}_{n+1})$ . Since $\kappa_{\infty}=\mathrm{I}\mathrm{n}\mathrm{t}M_{\infty,\mathrm{p}- \mathrm{t}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{k}(e)}$ is homeomorphic to
$M_{\infty}$ , our desired embedding of $M_{\infty}$ to $\Sigma \mathrm{x}$ I is defined by the expanding sequence
$\{\Phi_{n}(\mathcal{K}_{n})\}$ .

Once $M_{\infty}$ is realized as an open subset of $\Sigma \mathrm{x}(0,1)$ , the conditions $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ are de-
rived from fundamental properties of hyperbolic 3-manifolds, e.g. any two parabolic
cusps in ahyperbolic 3-manifold are not mutually parallel. In particular, we will
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show by invoking some conditions on athat each component of $\lambda(\Lambda_{y}^{\pm})$ corresponds
to a‘hidden’ parabolic cusp of $M_{\infty}$ .

Outline of the proof of Theorem 3. Consider any crevasse $\mathcal{X}$ in $\Sigma \mathrm{x}I$ . For any
$y\in \mathcal{Y}=q(\mathcal{X})$ , the components of $\Delta(\Lambda_{y}^{\epsilon})-\lambda(\Lambda_{y}^{\epsilon})$ are called open subsurface of type
$\mathrm{A}^{\epsilon}$ for $\epsilon=\pm$ , and each component of $\Sigma_{y}-X_{y}$ is an open subsurface of type C.
Thus, $X_{y}$ consists of geodesic loops and open subsurfaces of types Ae, $\mathrm{B}^{\epsilon}$ and $\mathrm{C}$ ,
see Fig. 3again.

In general, $\Sigma \mathrm{x}I-\mathcal{X}$ is not of finite type, that is, $\pi_{1}(\Sigma \mathrm{x}I-\mathcal{X})$ is possibly of
infinitely generated. So, we will define as follows an expanding sequence $\{W_{n}\}$ of
submanifolds of finite type in $\Sigma \mathrm{x}I-\mathcal{X}$ with $\bigcup_{n=1}^{\infty}W_{n}=\Sigma \mathrm{x}I$ -X. For any $n\in \mathrm{N}$ , let

$N_{\mathrm{A},n}$ be the union of small collar neighborhoods in $\Sigma \mathrm{x}$ I of subsurfaces of types $\mathrm{A}^{\pm}$ ,
where the depth of each collar neighborhood in $N_{\mathrm{A},n}$ is the $1/n$ times of that in $N_{\mathrm{A},1}$ .
The number of subsurfaces of types $\mathrm{B}^{\pm}$ and (saturated) geodesic loop components
in $\mathcal{X}$ disjoint from $N_{\mathrm{A},n}$ is finite. Let $B_{n}$ (resp. $P_{n}$ ) be the set of such subsurfaces
(resp. geodesic loops). Then, we have $B_{n}\subset \mathcal{B}_{n+1}$ and $\cup P_{n}\subset\cup P_{n+1}$ . Let $M_{n}^{m}$ be
a3-manifold obtained by cutting open $\Sigma \mathrm{x}I-\cup P_{n}$ along $B_{:}\in B_{n}$ and gluing back
the both side of $B_{i}$ by the $m$-th iteration $\varphi_{i}^{m}$ of apseudo Anosov homeomorphism
$\varphi_{i}$ : $B_{:}arrow B_{\dot{\iota}}$ . For all sufficiently large $m\in \mathrm{N}$ , we may assume that $M_{n}^{m}$ is
acylindrical if necessary by adding some geodesic loops contained in subsurfaces of
type $\mathrm{A}^{\pm}$ to $P_{n}$ . The extended set is denoted by $’\hat{p}_{n}$ . By Thurston’s Uniformization
Theorem, $\mathrm{I}\mathrm{n}\mathrm{t}M_{n}^{m}$ admits ahyperbolic structure with two geometrically finite ends
corresponding to $\Sigma_{0}\cup\Sigma_{1}$ and $\mathbb{Z}\mathrm{x}\mathbb{Z}-$-cusps corresponding to elements of $\hat{P}_{n}$ . Note that
$\mathrm{I}\mathrm{n}\mathrm{t}M_{n}^{m}$ is homeomorphic to $\Sigma \mathrm{x}(0,1)$ minus finitely many geodesic loops in fibers. By
Hyperbolic Dehn Surgery Theorem in [8], $\mathrm{I}\mathrm{n}\mathrm{t}M_{n}^{m}$ is ageometric limits of hyperbolic
3-manifolds with quasi-Fuchsian holonomies. Let $\zeta_{n}^{m}$ : $\pi_{1}(Q_{n,0})arrow \mathrm{P}\mathrm{S}\mathrm{L}2(\mathrm{C})$ be
the restriction of the holonomy of $\mathrm{I}\mathrm{n}\mathrm{t}M_{n}^{m}$ , where $Q_{n,0}$ is the component of $\Sigma \mathrm{x}I-$

$\cup(B_{n}\cup\hat{P}_{n})$ containing $\Sigma_{1/2}$ . Then, for each $n\in \mathrm{N}$ , one can show that $\{\zeta_{n}^{m}\}_{m=1}^{\infty}$

converges algebraically to arepresentation $\zeta_{n}^{\infty}$ such that $N_{n}^{\infty}=\mathbb{H}^{3}/\zeta_{n}^{\infty}(\pi_{1}(Q_{n,0}))$

is homeomorphic to $Q_{n,0}$ . In turn, we would like to show that $\{\zeta_{n}^{\infty}\}_{n=1}^{\infty}$ converges
‘algebraically’ in areasonable sense, though $Q_{n,0}$ is not asubmanifold of $Q_{n+1,0}$ .
If we use the component $W_{n}$ of $Q_{n,0}-\overline{N_{\mathrm{A},n}}$ containing $\Sigma_{1/2}$ instead of $Q_{n,0}$ , then
$W_{n}$ is asubmanifold of $W_{n+1}$ and $\bigcup_{n=1}^{\infty}W_{n}=\Sigma \mathrm{x}I-\mathcal{X}$ . Then, $\{\zeta_{n}^{\infty}|\pi_{1}(W_{n})\}$

having asubsequence $\{\xi_{a}\}$ converging to $\xi_{\infty}$ : $\pi_{1}$ (I $\mathrm{x}I-\mathcal{X}$ ) $arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{C})$ means
that $\{\xi_{a}|\pi_{1}(W_{n})\}$ converges algebraically to $\xi_{\infty}|\pi_{1}(W_{n})$ for any $n\in \mathrm{N}$ . The algebraic
convergence of $\{\xi_{a}|\pi_{1}(W_{n})\}$ is reduced to those of $\{\xi_{a}|\pi_{1}(C)\}$ for open subsurfaces $C$

of type $\mathrm{C}$ by Relative Boundedness Theorem [11]. The convergence of $\{\xi_{a}|\pi_{1}(C)\}$ is
examined by test pleated surfaces $\overline{f}_{C_{j}n}$ : $\mathrm{C}(\mathrm{a}\mathrm{n})arrow N_{n}^{\infty}$ given in [10]. Usually, such
aconvergence theorem is proved by introducing acontradiction under the contrary
assumption such that $\{\sigma_{n}\}$ is unbounded in Teich(C). Then, we would have an
accumulation point $[\nu]$ of $\{\sigma_{n}\}$ in the Thurston boundary $\mathrm{V}\mathrm{C}\mathrm{o}(\mathrm{C})$ . Intuitively, the
projective lamination $[\nu]$ represents the part of $\mathrm{C}(\mathrm{a}\mathrm{n})$ which is split or collapsed most
rapidly as $narrow\infty$ . However, in our argument, we will need to concern relatively
slowly split parts of $C(\sigma_{n})$ . For example, let $l_{1}$ and $l_{2}$ be mutually disjoint simple
geodesies in $C$ , where $C$ is supposed to have acomplete hyperbolic structure of finite
area. Suppose that $\sigma_{n}\in \mathrm{T}\mathrm{e}\mathrm{i}\mathrm{c}\mathrm{h}(C)$ is obtained by the $n^{2}$-full Dehn twist along $l_{1}$
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and the $n$-full Dehn twist along $l_{2}$ . Then, {an} converges to $[l_{1}]\in \mathrm{V}\mathrm{C}\mathrm{o}\{\mathrm{C}$) which
contains no data about $l_{2}$ . For any simple geodesic loop $l\in C$ with $l\cap l_{2}\neq\emptyset$ , we
have $\lim_{narrow\infty}1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{\sigma_{n}}(l)=\infty$ even if $\mathit{1}\cap l_{1}=\emptyset$ . Such adivergence of the lengths
of certain geodesic loops or measured laminations in $\mathrm{C}\{\mathrm{a}\mathrm{n}$ ) is crucial to obtain our
desired contradiction.

Once the algebraic convergence of $\{\xi_{a}\}$ to $\xi_{\infty}$ is proved, one can show that $H_{\infty}=$

$\mathbb{H}^{3}/G$ is homeomorphic to $\Sigma \mathrm{x}I-\mathcal{X}$ for $G=\xi_{\infty}(\Sigma \mathrm{x}I-\mathcal{X})$ by using the fact
that $\mathbb{H}^{3}/G$ has an expanding sequence $\{H_{n}\}$ of submanifolds homeomorphic to $W_{n}$ .
This fact can be also proved by using results in Anderson-Canary-McCullogugh [1].
For any $t\in \mathrm{N}$ , $\xi_{\infty}|\pi_{1}(W_{t})$ is algebraically approximated by $\xi_{a}|\pi_{1}(W_{t})=\zeta_{n(a)}^{\infty}|\pi_{1}(W_{t})$ ,

and the latter by $\zeta_{n(a)}^{m(a)}|\pi_{1}(W_{t})$ . For aU sufficiently large $n(a)$ , any parabolic elements

of $\xi_{\infty}(\pi_{1}(W_{t}))$ corresponds to those of $\zeta_{n(a)}^{m(a)}|\pi_{1}(W_{t})$ . It follows that $\xi_{\infty}(\pi_{1}(W_{t}))$ is a
geometric limit of $\{\zeta_{n(a)}^{m(a)}(\pi_{1}(W_{t}))\}$ . Note that the holonomy group $G_{a}$ of $\mathrm{I}\mathrm{n}\mathrm{t}M_{n(a)}^{m(a)}$

contains $\zeta_{n(a)}^{m(a)}(\pi_{1}(W_{t}))$ . From this fact, we will show that $G$ is ageometric limit of
{Ga}. In turn, each $G_{a}$ is the geometric limit of quasi-Fuchsian groups as we have
remarked above.
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