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1 Introduction

On a compact Riemann surface R of genus g > 2, the order of a conformal
automorphism of R is not greater than 2(2g + 1) (see [7]). However for
a Riemann surface with the infinitely generated fundamental group, the
order of a conformal automorphism is not finite, in general. In [3], we
showed a necessary and sufficient condition for a conformal automorphism
of a Riemann surface to have finite order.

Proposition 1 ([3]) Let R = H/T', where I' is a Fuchsian group which is
not necessarily torsion-free. Suppose that R has the non-abelian fundamental
group. Then a conformal automorphism f of R has finite order if and only

if f fizes either a simple closed geodesic, a puncture, a point or a cone point
on R.

On the basis of Proposition 1, for a Riemann surface R such that the
injectivity radius at any point in R is uniformly bounded from above, we
estimated the order of conformal automorphisms of R in terms of the injec-
tivity radius. One of the results is the following.

Proposition 2 ([3]) Let R be a hyperbolic Riemann surface. Suppose that
there exists a constant M > 0 such that the injectivity radius at any point
in R is less than M /2. Let f be a conformal automorphism of R such that
f(c) = ¢ for a simple closed geodesic ¢ on R whose length is £ > 0. Then
the order n of f satisfies

n < (eM — 1) cosh(£/2).
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In this note, for a Riemann surface R such that the injectivity radius at
any point in R is not necessarily uniformly bounded from above, we prove
the same statements.

2 Statements of Theorems

Let H be the upper-half plane equipped with the hyperbolic metric |dz|/Imz.
We say that a Riemann surface R is hyperbolic if it is represented by H/T
for a torsion-free Fuchsian group I' acting on H. The hyperbolic distance
on H or on R is denoted by d(-,-), and the hyperbolic length of a curve ¢
on R is denoted by £(c).

Definition For a constant M > 0, we define Rjs to be the subset of points
p € R such that there exists a non-trivial simple closed curve c, passing
through p with £(c;) < M.

Remark The injectivity radius at a point p € R is the supremum of radii
of embedded hyperbolic discs centered at p. The Rjs is nothing but the set
of points in R where the injectivity radius is less than M/2.

We consider the following condition in terms of hyperbolic geometry on
Riemann surfaces R.

Definition We say that R satisfies the upper bound condition if there exist
a constant M > 0 and a connected component R}, of Ry such that a
homomorphism of 7;(R},) to m (R) that is induced by the inclusion map of
R}, into R is surjective.

Remark (i) If the injectivity radius at any point in R is uniformly bounded
from above, then R clearly satisfies the upper bound condition. (ii) If R
(# H) is a normal covering surface of an analytically finite Riemann surface,
then R satisfies the upper bound condition (see [4]).

We state our theorems.

Theorem 1 (hyperbolic case) Let R be a hyperbolic Riemann surface with
the non-abelian fundamental group. Suppose that R satisfies the upper bound
condition for a constant M > 0 and a connected component R}, of Ry. Let
f be a conformal automorphism of R such that f(c) = c for a simple closed
geodesic ¢ on R with ¢ C R}, and £(c) = € > 0. Then the order n of f
satisfies

n < (eM — 1) cosh(£¢/2).
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Theorem 2 (parabolic case) Let R be a hyperbolic Riemann surface with
the non-abelian fundamental group. Suppose that R satisfies the upper bound
condition for a constant M > 0. Let f be a conformal automorphism of R
such that f(p) = p for a puncture p of R. Then the order n of f satisfies

n<eM-1.

Theorem 3 (elliptic case) (i) Let R be a hyperbolic Riemann surface with
the non-abelian fundamental group, and f a conformal automorphism of R
such that f(p) = p for a point p in R at which the injectivity radius is
M > 0. Then the order n of f satisfies

n < 2w cosh M.

(ii) Let R = H/T, where I" is a Fuchsian group which is not torsion-free.
Suppose that R has the non-abelian fundamental group and satisfies the up-
per bound condition for a constant M > 0. Let f be a conformal automor-
phism of R such that f(p) = p for a cone point p in R which is a projection
of a fized point p of an elliptic element of ' with order m > 1. Then the
order n of f satisfies

M ™ 1 1 2
< (e” —1)— .
n<( )m (sin2% + sinhz%)

Remark The upper bound of the order of f obtained in Theorem 2 is the
limiting case of that in Theorem 1 as £ — 0. It is also the limiting case of
that in Theorem 3 (ii) as m — oo.

Remark In [5], we obtained a better estimate than that in Theorem 1 in
the case where £ > M.

3 Proofs of Theorems

We prove Theorem 1 only, for we can prove the other theorems by using the
same argument in the proof of Theorem 1 and the proofs of Theorems 2 and
3 in [3].

Definition A subset S C H is said to be precisely invariant under a
subgroup I'g of a Fuchsian group I' if v(S) = S for all ¥ € I's and v(S)NS =
PforallyeI' - T'g.
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Collar Lemma ([6], [8]) Let I' be a Fuchsian group (which is not necessarily
torsion-free) acting on H, and L an axis of a hyperbolic element v € I" whose
translation length is less than £. Assume that there exists no fixed points
of elements in I on L and that L is precisely invariant under the cyclic
subgroup () generated by . Then a collar

C(L)={z€H|d(z,L) Sw(f)}

is precisely invariant under (v), where sinhw(¢) = (2sinh(¢/2))~1. Equiv-
alently, the boundaries 8C(L) of C(L) and the real axis make an angle 0,
where tan 0 = 2sinh(¢/2).

The proof of Theorem 1 follows from the fact that there exists a wider
collar of the simple closed geodesic c, as the order of a conformal automor-
phism f fixing c increases.

Proof of Theorem 1: Let I" be a Fuchsian model of R, and f a lift of f which
is a hyperbolic element in PSLy(R). Note that f™ is a hyperbolic element
in T’ which is corresponding to c. We consider the quotient R = R/(f) by
the cyclic group (f) and its Fuchsian model I' = (T, f). Then &= c/{ )
is a non-trivial simple closed geodesic on R whose length is £/n. Since f
is corresponding to &, we may assume that f (2) = exp(¢/n)z with the axis
L = {iy | y > 0}. Applying Collar Lemma for I' and f, we can take a collar

C(L)y={re® eH|0<r, <8 <m—b}
so that it is precisely invariant under (f) C I', where
tan @y = 2sinh(£/2n).

In particular, v(C(L)) N C(L) = @ for any y € T’ — (f). Then we can take
a tubular neighborhood C(c) = C(L)/{(f") of c on R whose fundamental
region is

A={re? cH|1<r<¢€, p<8<m—06)}.

We may assume that d(c, C(c)) = w(¢/n) > M /2. Indeed, suppose that

w(€/n) = arcsinh (——-—1-——) < ]-‘42—-

I3
2sinh o

Using the fact that z~!sinh z is a monotone increasing function for z > 0,
we see that '

cosh ;g- exp%l— > cosh% S sinh 5 _€_ sinh-% > _E_ sinh =& N 4
n - n n 2n £ T 2n = 2n
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forn>1,£¢>0and M > 0. Then

n 1 < sinh _1\211_

<
2 cosh -é exp—gi 2sinh -2%
This implies that

n < 2exp(M/2)sinh(M/2)cosh(¢/2)
= (eM —1)cosh(£/2),

and we have nothing to prove.

We can take a point p in C(c) which satisfies d(p,dC(c)) = M/2 and
p € R},. Here 8C(c) is the boundary of C(c). Indeed, if there exist no such
points, then any point in two simple closed curves {p € C(c) | d(p,C(c)) =
M/2} does not belongs to R},. This means that R}, is a tubular neighbor-
hood of ¢, and this contradicts the upper bound condition.

By the definition of Rys, the length 7, of the shortest non-trivial simple
closed curve a passing through p is less than M. Since d(p,8C(c)) = M/2,
the curve a is in C(c). Let p = re®® € A (8o < 8 < 7/2) be a lift of p.
Setting 21(t) = re® for t > 0, we have

M s 6 |2, (t)] 0 1 61 0
—_— = = —etee (I = — > -dt = —

5 = d(5,06(0) = [ Pl / T ) qdt=log g
Hence 6 < exp(M/2)8y. We put a = exp(i6) and b = exp(£ +i6). Then
rp = d(a,b). From Theorem 7.2.1 in [1], we have -

— £ _ inh £ inh £
sinh ld(a, b) = @ — b - = € . 1 = Slfl 2 > Smh 3
2 2(ImaImb)z 2expssing  sinf 6
sinh % _ sinh % sinh -g-

6o exp-%’f- - arctan(2 sinh %) expl}zi ~ 2sinh Teﬁ exp%

£ inh £ inh £ inh £
. 5 smh2 l n smh2 n sinh %

sinh 5% Eexpilg.— = Sinh? Zexp%,f N sinhEexlf;—%_
n

£oxpM’
2 cosh 5 exp75

For the last inequality, we used the fact that z(sinhz)~! is a monotone
decreasing function for z > 0. Since r, < M, this implies that

n < 2exp(M/2)sinh(M/2)cosh(£/2)
= (M —1)cosh(£/2).



4 Application

We apply Theorem 1 to investigating a certain property on hyperbolic ge-
ometry on Riemann surfaces. The following proposition is an extension of
Proposition 3 in [3].

Definition We say that R satisfies the lower bound condition if there exists
a constant € > 0 (which is smaller than the Margulis constant) such that R,
consists only of cusp neighborhoods and neighborhoods of geodesics which
are homotopic to boundary components.

Proposition 3 Let R be a hyperbolic Riemann surface, and R a normal
covering surface of R. If R satisfies the lower and upper bound conditions,
then R also satisfies these conditions.

Proof. It is clear that R satisfies the upper bound condition. Suppose that
R does not satisfy the lower bound condition. Then R has a sequence {c,}
of disjoint simple closed geodesics which are not homotopic to boundary
components of R with £, = £(cp) — 0 (n > o). Let &, C R be a connected
component of the preimage of c,. Then &, is not homotopic to a boundary
component of R. Since R satisfies the lower bound conditions, there exists
a constant € > 0 such that £(é,) > € for all n. We take a constant M > 0
so that R satisfies the upper bound condition for M and for a connected
component R of Rps. We may assume that &, C R *,. Assume that £(¢,) <
M for mﬁmtely many n. Then, by Theorem 1, the order of a conformal
automorphism f,, of R fixing &, is less than N = (eM 1) cosh(M/2). Then
we have £(c,) > ¢/N. However, this contradicts £(c,) — 0 (n — oo). Next,
we assume that £(¢,) > M (including the case that &, is not closed) for
infinitely many n. By Collar Lemma, there exists a tubular neighborhood
C(cn) of ¢, with width w(£,), where sinh w(£,) = (2sinh(£,/2)) . From the
proof of Theorem 1, there exists a (tubular) neighborhood of ¢, with width
w(£p). Since &, C R’}‘VI, there exists a non-trivial simple closed curve passing
through p, € &, whose length is less than M. However, since £(¢,) > M
and since w(¢,) — oo as n — 0o, we have a contradiction. ]

For applications of Proposition 3 to the action of Teichmiiller modular
groups, see [2].
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