The order of conformal automorphisms of Riemann surfaces of infinite type－supplement

Ege Fujikawa
藤川 英華
Department of Mathematics
Tokyo Institute of Technology東京工業大学大学院理工学研究科数学専攻

1 Introduction

On a compact Riemann surface R of genus $g \geq 2$ ，the order of a conformal automorphism of R is not greater than $2(2 g+1)$（see［7］）．However for a Riemann surface with the infinitely generated fundamental group，the order of a conformal automorphism is not finite，in general．In［3］，we showed a necessary and sufficient condition for a conformal automorphism of a Riemann surface to have finite order．

Proposition 1 （［3］）Let $R=\mathbf{H} / \Gamma$ ，where Γ is a Fuchsian group which is not necessarily torsion－free．Suppose that R has the non－abelian fundamental group．Then a conformal automorphism f of R has finite order if and only if f fixes either a simple closed geodesic，a puncture，a point or a cone point on R ．

On the basis of Proposition 1，for a Riemann surface R such that the injectivity radius at any point in R is uniformly bounded from above，we estimated the order of conformal automorphisms of R in terms of the injec－ tivity radius．One of the results is the following．

Proposition 2 （［3］）Let R be a hyperbolic Riemann surface．Suppose that there exists a constant $M>0$ such that the injectivity radius at any point in R is less than $M / 2$ ．Let f be a conformal automorphism of R such that $f(c)=c$ for a simple closed geodesic c on R whose length is $\ell>0$ ．Then the order n of f satisfies

$$
n<\left(e^{M}-1\right) \cosh (\ell / 2) .
$$

In this note, for a Riemann surface R such that the injectivity radius at any point in R is not necessarily uniformly bounded from above, we prove the same statements.

2 Statements of Theorems

Let \mathbf{H} be the upper-half plane equipped with the hyperbolic metric $|d z| / \operatorname{Im} z$. We say that a Riemann surface R is hyperbolic if it is represented by \mathbf{H} / Γ for a torsion-free Fuchsian group Γ acting on H. The hyperbolic distance on \mathbf{H} or on R is denoted by $d(\cdot, \cdot)$, and the hyperbolic length of a curve c on R is denoted by $\ell(c)$.

Definition For a constant $M>0$, we define R_{M} to be the subset of points $p \in R$ such that there exists a non-trivial simple closed curve c_{p} passing through p with $\ell\left(c_{p}\right)<M$.

Remark The injectivity radius at a point $p \in R$ is the supremum of radii of embedded hyperbolic discs centered at p. The R_{M} is nothing but the set of points in R where the injectivity radius is less than $M / 2$.

We consider the following condition in terms of hyperbolic geometry on Riemann surfaces R.

Definition We say that R satisfies the upper bound condition if there exist a constant $M>0$ and a connected component R_{M}^{*} of R_{M} such that a homomorphism of $\pi_{1}\left(R_{M}^{*}\right)$ to $\pi_{1}(R)$ that is induced by the inclusion map of R_{M}^{*} into R is surjective.

Remark (i) If the injectivity radius at any point in R is uniformly bounded from above, then R clearly satisfies the upper bound condition. (ii) If R ($\neq \mathbf{H}$) is a normal covering surface of an analytically finite Riemann surface, then R satisfies the upper bound condition (see [4]).

We state our theorems.
Theorem 1 (hyperbolic case) Let R be a hyperbolic Riemann surface with the non-abelian fundamental group. Suppose that R satisfies the upper bound condition for a constant $M>0$ and a connected component R_{M}^{*} of R_{M}. Let f be a conformal automorphism of R such that $f(c)=c$ for a simple closed geodesic c on R with $c \subset R_{M}^{*}$ and $\ell(c)=\ell>0$. Then the order n of f satisfies

$$
n<\left(e^{M}-1\right) \cosh (\ell / 2)
$$

Theorem 2 (parabolic case) Let R be a hyperbolic Riemann surface with the non-abelian fundamental group. Suppose that R satisfies the upper bound condition for a constant $M>0$. Let f be a conformal automorphism of R such that $f(p)=p$ for a puncture p of R. Then the order n of f satisfies

$$
n<e^{M}-1 .
$$

Theorem 3 (elliptic case) (i) Let R be a hyperbolic Riemann surface with the non-abelian fundamental group, and f a conformal automorphism of R such that $f(p)=p$ for a point p in R at which the injectivity radius is $M>0$. Then the order n of f satisfies

$$
n<2 \pi \cosh M .
$$

(ii) Let $R=\mathbf{H} / \Gamma$, where Γ is a Fuchsian group which is not torsion-free. Suppose that R has the non-abelian fundamental group and satisfies the upper bound condition for a constant $M>0$. Let f be a conformal automorphism of R such that $f(p)=p$ for a cone point p in R which is a projection of a fixed point \tilde{p} of an elliptic element of Γ with order $m>1$. Then the order n of f satisfies

$$
n<\left(e^{M}-1\right) \frac{\pi}{m}\left(\frac{1}{\sin ^{2} \frac{\pi}{m}}+\frac{1}{\sinh ^{2} \frac{M}{2}}\right)^{\frac{1}{2}}
$$

Remark The upper bound of the order of f obtained in Theorem 2 is the limiting case of that in Theorem 1 as $\ell \rightarrow 0$. It is also the limiting case of that in Theorem 3 (ii) as $m \rightarrow \infty$.
Remark In [5], we obtained a better estimate than that in Theorem 1 in the case where $\ell \geq M$.

3 Proofs of Theorems

We prove Theorem 1 only, for we can prove the other theorems by using the same argument in the proof of Theorem 1 and the proofs of Theorems 2 and 3 in [3].

Definition A subset $S \subset \mathbf{H}$ is said to be precisely invariant under a subgroup Γ_{S} of a Fuchsian group Γ if $\gamma(S)=S$ for all $\gamma \in \Gamma_{S}$ and $\gamma(S) \cap S=$ \emptyset for all $\gamma \in \Gamma-\Gamma_{s}$.

Collar Lemma ([6], [8]) Let Γ be a Fuchsian group (which is not necessarily torsion-free) acting on \mathbf{H}, and L an axis of a hyperbolic element $\gamma \in \Gamma$ whose translation length is less than ℓ. Assume that there exists no fixed points of elements in Γ on L and that L is precisely invariant under the cyclic subgroup $\langle\gamma\rangle$ generated by γ. Then a collar

$$
C(L)=\{z \in \mathbf{H} \mid d(z, L) \leq \omega(\ell)\}
$$

is precisely invariant under $\langle\gamma\rangle$, where $\sinh \omega(\ell)=(2 \sinh (\ell / 2))^{-1}$. Equivalently, the boundaries $\partial C(L)$ of $C(L)$ and the real axis make an angle θ, where $\tan \theta=2 \sinh (\ell / 2)$.

The proof of Theorem 1 follows from the fact that there exists a wider collar of the simple closed geodesic c, as the order of a conformal automorphism f fixing c increases.

Proof of Theorem 1: Let Γ be a Fuchsian model of R, and \tilde{f} a lift of f which is a hyperbolic element in $\mathrm{PSL}_{2}(\mathbf{R})$. Note that \tilde{f}^{n} is a hyperbolic element in Γ which is corresponding to c. We consider the quotient $\hat{R}=R /\langle f\rangle$ by the cyclic group $\langle f\rangle$ and its Fuchsian model $\hat{\Gamma}=\langle\Gamma, \tilde{f}\rangle$. Then $\hat{c}=c /\langle f\rangle$ is a non-trivial simple closed geodesic on \hat{R} whose length is ℓ / n. Since \tilde{f} is corresponding to \hat{c}, we may assume that $\tilde{f}(z)=\exp (\ell / n) z$ with the axis $L=\{i y \mid y>0\}$. Applying Collar Lemma for $\hat{\Gamma}$ and \tilde{f}, we can take a collar

$$
\tilde{C}(L)=\left\{r e^{i \theta} \in \mathbf{H} \mid 0<r, \theta_{0}<\theta<\pi-\theta_{0}\right\}
$$

so that it is precisely invariant under $\langle\tilde{f}\rangle \subset \hat{\Gamma}$, where

$$
\tan \theta_{0}=2 \sinh (\ell / 2 n)
$$

In particular, $\gamma(\tilde{C}(L)) \cap \tilde{C}(L)=\emptyset$ for any $\gamma \in \Gamma-\left\langle\tilde{f}^{n}\right\rangle$. Then we can take a tubular neighborhood $C(c)=\tilde{C}(L) /\left\langle\tilde{f}^{n}\right\rangle$ of c on R whose fundamental region is

$$
A=\left\{r e^{i \theta} \in \mathbf{H} \mid 1<r<e^{\ell}, \theta_{0}<\theta<\pi-\theta_{0}\right\}
$$

We may assume that $d(c, \partial C(c))=\omega(\ell / n)>M / 2$. Indeed, suppose that

$$
\omega(\ell / n)=\operatorname{arcsinh}\left(\frac{1}{2 \sinh \frac{\ell}{2 n}}\right) \leq \frac{M}{2}
$$

Using the fact that $x^{-1} \sinh x$ is a monotone increasing function for $x>0$, we see that

$$
\frac{\cosh \frac{\ell}{2} \exp \frac{M}{2}}{n} \geq \frac{\cosh \frac{\ell}{2}}{n}>\frac{\sinh \frac{\ell}{2}}{n}=\frac{\ell}{2 n} \frac{\sinh \frac{\ell}{2}}{\frac{\ell}{2}} \geq \frac{\ell}{2 n} \frac{\sinh \frac{\ell}{2 n}}{\frac{\ell}{2 n}}=\sinh \frac{\ell}{2 n}
$$

for $n>1, \ell>0$ and $M>0$. Then

$$
\frac{n}{2 \cosh \frac{\ell}{2} \exp \frac{M}{2}}<\frac{1}{2 \sinh \frac{\ell}{2 n}} \leq \sinh \frac{M}{2}
$$

This implies that

$$
\begin{aligned}
n & <2 \exp (M / 2) \sinh (M / 2) \cosh (\ell / 2) \\
& =\left(e^{M}-1\right) \cosh (\ell / 2)
\end{aligned}
$$

and we have nothing to prove.
We can take a point p in $C(c)$ which satisfies $d(p, \partial C(c))=M / 2$ and $p \in R_{M}^{*}$. Here $\partial C(c)$ is the boundary of $C(c)$. Indeed, if there exist no such points, then any point in two simple closed curves $\{p \in C(c) \mid d(p, \partial C(c))=$ $M / 2\}$ does not belongs to R_{M}^{*}. This means that R_{M}^{*} is a tubular neighborhood of c, and this contradicts the upper bound condition.

By the definition of R_{M}, the length r_{p} of the shortest non-trivial simple closed curve α passing through p is less than M. Since $d(p, \partial C(c))=M / 2$, the curve α is in $C(c)$. Let $\tilde{p}=r e^{i \theta} \in A\left(\theta_{0}<\theta<\pi / 2\right)$ be a lift of p. Setting $z_{1}(t)=r e^{i t}$ for $t \geq 0$, we have

$$
\frac{M}{2}=d(\tilde{p}, \partial \tilde{C}(L))=\int_{\theta_{0}}^{\theta} \frac{\left|z_{1}^{\prime}(t)\right|}{\operatorname{Im} z_{1}(t)} d t=\int_{\theta_{0}}^{\theta} \frac{1}{\sin t} d t \geq \int_{\theta_{0}}^{\theta} \frac{1}{t} d t=\log \frac{\theta}{\theta_{0}}
$$

Hence $\theta \leq \exp (M / 2) \theta_{0}$. We put $a=\exp (i \theta)$ and $b=\exp (\ell+i \theta)$. Then $r_{p}=d(a, b)$. From Theorem 7.2.1 in [1], we have

$$
\begin{aligned}
\sinh \frac{1}{2} d(a, b) & =\frac{|a-b|}{2(\operatorname{Im} a \operatorname{Im} b)^{\frac{1}{2}}}=\frac{e^{\ell}-1}{2 \exp \frac{\ell}{2} \sin \theta}=\frac{\sinh \frac{\ell}{2}}{\sin \theta} \geq \frac{\sinh \frac{\ell}{2}}{\theta} \\
& \geq \frac{\sinh \frac{\ell}{2}}{\theta_{0} \exp \frac{M}{2}}=\frac{\sinh \frac{\ell}{2}}{\arctan \left(2 \sinh \frac{\ell}{2 n}\right) \exp \frac{M}{2}} \geq \frac{\sinh \frac{\ell}{2}}{2 \sinh \frac{\ell}{2 n} \exp \frac{M}{2}} \\
& =\frac{\frac{\ell}{2 n}}{\sinh \frac{\ell}{2 n}} \cdot \frac{n \sinh \frac{\ell}{2}}{\ell \exp \frac{M}{2}} \geq \frac{\ell}{\sinh \ell} \cdot \frac{n \sinh \frac{\ell}{2}}{\ell \exp \frac{M}{2}}=\frac{n \sinh \frac{\ell}{2}}{\sinh \ell \exp \frac{M}{2}} \\
& =\frac{n}{2 \cosh \frac{\ell}{2} \exp \frac{M}{2}} .
\end{aligned}
$$

For the last inequality, we used the fact that $x(\sinh x)^{-1}$ is a monotone decreasing function for $x>0$. Since $r_{p}<M$, this implies that

$$
\begin{aligned}
n & <2 \exp (M / 2) \sinh (M / 2) \cosh (\ell / 2) \\
& =\left(e^{M}-1\right) \cosh (\ell / 2)
\end{aligned}
$$

4 Application

We apply Theorem 1 to investigating a certain property on hyperbolic geometry on Riemann surfaces. The following proposition is an extension of Proposition 3 in [3].

Definition We say that R satisfies the lower bound condition if there exists a constant $\epsilon>0$ (which is smaller than the Margulis constant) such that R_{ϵ} consists only of cusp neighborhoods and neighborhoods of geodesics which are homotopic to boundary components.
Proposition 3 Let R be a hyperbolic Riemann surface, and \tilde{R} a normal covering surface of R. If \tilde{R} satisfies the lower and upper bound conditions, then R also satisfies these conditions.

Proof. It is clear that R satisfies the upper bound condition. Suppose that R does not satisfy the lower bound condition. Then R has a sequence $\left\{c_{n}\right\}$ of disjoint simple closed geodesics which are not homotopic to boundary components of R with $\ell_{n}=\ell\left(c_{n}\right) \rightarrow 0(n \rightarrow \infty)$. Let $\tilde{c}_{n} \subset \tilde{R}$ be a connected component of the preimage of c_{n}. Then \tilde{c}_{n} is not homotopic to a boundary component of \tilde{R}. Since \tilde{R} satisfies the lower bound conditions, there exists a constant $\epsilon>0$ such that $\ell\left(\tilde{c}_{n}\right)>\epsilon$ for all n. We take a constant $M>0$ so that \tilde{R} satisfies the upper bound condition for M and for a connected component \tilde{R}_{M}^{*} of \tilde{R}_{M}. We may assume that $\tilde{c}_{n} \subset \tilde{R}_{M}^{*}$. Assume that $\ell\left(\tilde{c}_{n}\right) \leq$ M for infinitely many n. Then, by Theorem 1 , the order of a conformal automorphism \tilde{f}_{n} of \tilde{R} fixing \tilde{c}_{n} is less than $N=\left(e^{M}-1\right) \cosh (M / 2)$. Then we have $\ell\left(c_{n}\right)>\epsilon / N$. However, this contradicts $\ell\left(c_{n}\right) \rightarrow 0(n \rightarrow \infty)$. Next, we assume that $\ell\left(\tilde{c}_{n}\right)>M$ (including the case that \tilde{c}_{n} is not closed) for infinitely many n. By Collar Lemma, there exists a tubular neighborhood $C\left(c_{n}\right)$ of c_{n} with width $\omega\left(\ell_{n}\right)$, where $\sinh \omega\left(\ell_{n}\right)=\left(2 \sinh \left(\ell_{n} / 2\right)\right)^{-1}$. From the proof of Theorem 1, there exists a (tubular) neighborhood of \tilde{c}_{n} with width $\omega\left(\ell_{n}\right)$. Since $\tilde{c}_{n} \subset \tilde{R}_{M}^{*}$, there exists a non-trivial simple closed curve passing through $\tilde{p}_{n} \in \tilde{c}_{n}$ whose length is less than M. However, since $\ell\left(\tilde{c}_{n}\right)>M$ and since $\omega\left(\ell_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, we have a contradiction.

For applications of Proposition 3 to the action of Teichmüller modular groups, see [2].

References

[1] A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics 91, Springer, 1983.
[2] E. Fujikawa, Sufficient conditions for Teichmüller modular groups to be of the second kind, Hyperbolic Spaces and Discrete Groups II, RIMS Kokyuroku 1270 (2002), 88-92.
[3] E. Fujikawa, The order of conformal automorphisms of Riemann surfaces of infinite type, Kodai Math. J. 26 (2003) 16-25.
[4] E. Fujikawa, Limit sets and regions of discontinuity of Teichmüller modular groups, Proc. Amer. Math. Soc., to appear.
[5] E. Fujikawa, The dilatation and the order of periodic elements of $T e$ ichmüller modular groups, preprint.
[6] N. Halpern, A proof of the collar lemma, Bull. London Math. Soc. 13 (1981), 141-144.
[7] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. 17 (1966), 86-97.
[8] J. P. Matelski, A compactness theorem for Fuchsian groups of the second kind, Duke Math. J. 43 (1976), 829-840.

