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1 Introduction

On acompact Riemann surface $R$ of genus $g\geq 2$ , the order of aconformal
automorphism of $R$ is not greater than $2(2g+1)$ (see [7]). However for
aRiemann surface with the infinitely generated fundamental group, the
order of aconformal automorphism is not finite, in general. In [3], we
showed anecessary and sufficient condition for aconformal automorphism
of aRiemann surface to have finite order.

Proposition 1([3]) Let $R=\mathrm{H}/\Gamma$ , where $\Gamma$ is a Fuchsian group which is
not necessarily torsion-free. Suppose that $R$ has the non-abelian fundamental
group. Then a conformal automorphism $f$ of $R$ has finite order if and only
if $f$ fixes either a simple closed geodesic, a puncture, a point or a cone point
on $R$ .

On the basis of Proposition 1, for aRiemann surface $R$ such that the
injectivity radius at any point in $R$ is uniformly bounded ffom above, we
estimated the order of conformal automorphisms of $R$ in terms of the injec-
tivity radius. One of the results is the following.

Proposition 2([3]) Let $R$ be a hyperbolic Riemann surface. Suppose that
there exists a constant $M$ $>0$ such that the injectivity radius at any point
in $R$ is less than $M/2$ . Let $f$ be a conformal automorphism of $R$ such that
$f(c)=c$ for a simple closed geodesic $c$ on $R$ whose length is $\ell$ $>0$ . Then
the order $n$ of $f$ satisfies

$n<(e^{M}-1)\cosh(\ell/2)$ .
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In this note, for aRiemann surface R such that the injectivity radius at
any point in R is not necessarily uniformly bounded from above, we prove
the same statements.

2Statements of Theorems

Let $\mathrm{H}$ be the upper-half plane equipped with the hyperbolic metric $|dz|/{\rm Im} z$ .
We say that aRiemann surface $R$ is hyperbolic if it is represented by $\mathrm{H}/\Gamma$

for atorsion-free Fuchsian group $\Gamma$ acting on H. The hyperbolic distance
on $\mathrm{H}$ or on $R$ is denoted by $d(\cdot$ , $\cdot$ $)$ , and the hyperbolic length of acurve $c$

on $R$ is denoted by $\ell(c)$ .
Definition For aconstant $M>0$ , we define $R_{M}$ to be the subset of points
$p\in R$ such that there exists anon-trivial simple closed curve % passing
through $p$ with $\ell(\mathrm{q})<M$ .
Remark The injectivity radius at apoint $p\in R$ is the supremum of radii
of embedded hyperbolic discs centered at $p$. The $R_{M}$ is nothing but the set
of points in $R$ where the injectivity radius is less than $M/2$ .

We consider the following condition in terms of hyperbolic geometry on
Riemann surfaces $R$ .
Definition We say that $R$ satisfies the upper bound condition if there exist
aconstant $M>0$ and aconnected component $R_{M}^{*}$ of $R_{M}$ such that a
homomorphism of $\pi_{1}(R_{M}^{*})$ to $\pi_{1}(R)$ that is induced by the inclusion map of
$R_{M}^{*}$ into $R$ is surjective.

Remark (i) If the injectivity radius at any point in $R$ is uniformly bounded
froin above, then $R$ clearly satisfies the upper bound condition, (ii) If $R$

$(\neq \mathrm{H})$ is anormal covering surface of an analytically finite Riemann surface,
then $R$ satisfies the upper bound condition (see [4]).

We state our theorems.

Theorem 1(hyperbolic case) Let $R$ be a hyperbolic Riemann surface with
the non-abelian fundamental group. Suppose that $R$ satisfies the upper bound
condition for a constant $M$ $>0$ and a connected component $R_{M}^{*}$ of $R_{M}$ . $L$ et
$f$ be a conformal automorphism of $R$ such that $f(c)=c$ for a simple closed
geodesic $c$ on $R$ with $c\subset R_{M}^{*}$ and $\ell(c)=\ell>0$ . Then the order $n$ of $f$

satisfies
$n<(e^{M}-1)\cosh(\ell/2)$ .
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Theorem 2(parabolic case) Let $R$ be a hyperbolic Riemann surface with
the non-abelian fundamental group. Suppose that $R$ satisfies the upper bound
condition for a constant $M>0$ . Let $f$ be a conformal automorphism of $R$

such that $f(p)=p$ for a puncture $p$ of R. Then the order $n$ of $f$ satisfies
$n<e^{M}-1$ .

Theorem 3(elliptic case) (i) Let $R$ be a hyperbolic Riemann surface with
the non-abelian fundamental gmup, and $f$ a confomal automorphism of $R$

such that $f(p)=p$ for a point $p$ in $R$ at which the injectivity radius is
$M$ $>0$ . Then the $o$ rder $n$ of $f$ satisfies

$n<2\pi\cosh M$ .

(ii) Let $R=\mathrm{H}/\Gamma$ , where $\Gamma$ is a Fuchsian group which is not torsion-free.
Suppose that $R$ has the non-abelian fundamental group and satisfies the up-
per bound condition for a constant $M>0$ . Let $f$ be a conformal automor-
phism of $R$ such that $f(p)=p$ for a cone point $p$ in $R$ which is a projection
of a fixed point $\tilde{p}$ of an elliptic element of $\Gamma$ with $\mathit{0}$ rder $m>1$ . Then the
order $n$ of $f$ satisfies

$n<(e^{M}-1) \frac{\pi}{m}(\frac{1}{\sin^{2}\frac{\pi}{\sqrt}}+\frac{1}{\sinh^{2}\frac{M}{2}})^{\frac{1}{2}}$

Remark The upper bound of the order of $f$ obtained in Theorem 2is the
limiting case of that in Theorem 1as $\ellarrow 0$ . It is also the limiting case of
that in Theorem 3(ii) as $marrow\infty$ .
Remark In [5], we obtained abetter estimate than that in Theorem 1 in
the case where $\ell\geq M$ .

3Proofs of Theorems

We prove Theorem 1only, for we can prove the other theorems by using the
same argument in the proof of Theorem 1and the proofs of Theorems 2and
3 in [3].

Definition Asubset $S\subset \mathrm{H}$ is said to be precisely invariant under a
subgroup $\Gamma s$ of aFuchsian group $\Gamma$ if $\gamma(S)=S$ for all $\gamma\in\Gamma s$ and $\gamma(S)\cap S=$

$\emptyset$ for all $\gamma\in\Gamma-\Gamma_{S}$ .
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Collar Lemma ([6], [8]) Let $\Gamma$ be aFuchsian group (which is not necessarily
torsion-free) acting on $\mathrm{H}$ , and $L$ an axis of ahyperbolic element $\gamma\in\Gamma$ whose
translation length is less than $\ell$ . Assume that there exists no fixed points
of elements in $\Gamma$ on $L$ and that $L$ is precisely invariant under the cyclic
subgroup $\langle\gamma\rangle$ generated by $\gamma$ . Then acollar

$C(L)=\{z\in \mathrm{H}|d(z, L)\leq\omega(\ell)\}$

is precisely invariant under $\langle\gamma\rangle$ , where $\sinh\omega(\ell)=(2\sinh(\ell/2))^{-1}$ . Equiv-
alently, the boundaries $\partial C(L)$ of $C(L)$ and the real axis make an angle 0,
where tm $\theta=2\sinh(\ell/2)$ .

The proof of Theorem 1follows from the fact that there exists awider
collar of the simple closed geodesic $c$ , as the order of aconformal automor-
phism $f$ fixing $c$ increases.

Proof of Theorem 1: Let $\Gamma$ be aFuchsian model of $R$, and $\tilde{f}$ alift of $f$ which
is ahyperbolic element in $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{R})$ . Note that $\tilde{f}^{n}$ is ahyperbolic element
in $\Gamma$ which is corresponding to $c$ . We consider the quotient $\hat{R}=R/\langle f\rangle$ by
the cyclic group $\langle f\rangle$ and its Fuchsian model $\hat{\Gamma}=\langle\Gamma,\tilde{f}\rangle$ . Then $\hat{c}=c[\langle f\rangle$

is anon-trivial simple closed geodesic on $\hat{R}$ whose length is $\ell/n$ . Since $\tilde{f}$

is corresponding to $\hat{c}$ , we may assume that $\tilde{f}(z)=\exp(\ell/n)z$ with the axis
$L=\{iy|y>0\}$ . Applying Collar Lemma for $\hat{\Gamma}$ and $\tilde{f}$ , we can take acollar

$\tilde{C}(L)=\{re^{i\theta}\in \mathrm{H}|0<r, \theta_{0}<\theta<\pi-\theta_{0}\}$

so that it is precisely invariant under $\langle\tilde{f}\rangle\subset\hat{\Gamma}$ , where

$\tan\theta_{0}=2\sinh(\ell/2n)$ .
In particular, $\gamma(\tilde{C}(L))\cap\tilde{C}(L)=\emptyset$ for any $\gamma\in\Gamma-\langle\tilde{f}^{n}\rangle$ . Then we can take
atubular neighborhood $C(c)=\tilde{C}(L)/\langle\tilde{f}^{n}\rangle$ of $c$ on $R$ whose fundamental
region is

$A=\{re^{:\theta}\in \mathrm{H}|1<r<e^{\ell}, \theta_{0}<\theta<\pi -\theta_{0}\}$ .
We may assume that $d(c, \partial C(c))=\omega(\ell/n)>M/2$ . Indeed, suppose that

$\omega(\ell/n)=\mathrm{a}\mathrm{r}\mathrm{c}\sinh(\frac{1}{2\sinh\frac{\ell}{2n}})\leq\frac{M}{2}$ .

Using the fact that $x^{-1}\sinh x$ is amonotone increasing function for $x>0$ ,

we see that

$\frac{\cosh\frac{\ell}{2}\exp\frac{M}{2}}{n}\geq\frac{\cosh\frac{\ell}{2}}{n}>\frac{\sinh\frac{\ell}{2}}{n}=\frac{\ell}{2n}\frac{\sinh\frac{\ell}{2}}{\frac{\ell}{2}}\geq\frac{\ell}{2n}\frac{\sinh\frac{\ell}{2n}}{\frac{\ell}{2n}}=\sinh\frac{\ell}{2n}$
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for $n>1$ , $\ell>0$ and $M$ $>0$ . Then

$\frac{n}{2\cosh\frac{\ell}{2}\exp\frac{M}{2}}<\frac{1}{2\sinh\frac{\ell}{2n}}\leq\sinh\frac{M}{2}$ .

This implies that

$n$ $<$ 2 $\exp(M/2)\sinh(M/2)\cosh(\ell/2)$

$=$ $(e^{M}-1)\cosh(\ell/2)$ ,

and we have nothing to prove.
We can take apoint $p$ in $C(c)$ which satisfies $d(p, \partial C(c))=M/2$ and

$p\in R_{M}^{*}$ . Here $\partial C(c)$ is the boundary of $C(c)$ . Indeed, if there exist no such
points, then any point in two simple closed curves $\{p\in C(c)|d(p, \partial C(c))=$

$M/2\}$ does not belongs to $R_{M}^{*}$ . This means that $R_{M}^{*}$ is atubular neighbor-
hood of $c$ , and this contradicts the upper bound condition.

By the definition of $R_{M}$ , the length $r_{p}$ of the shortest non-trivial simple
closed curve $\alpha$ passing through $p$ is less than $M$ . Since $d(p, \partial C(c))=M/2$ ,
the curve $\alpha$ is in $C(c)$ . Let $\tilde{p}=re^{i\theta}\in A(\theta 0<\theta<\pi/2)$ be alift of $p$.
Setting $z1(t)=re^{it}$ for $t\geq 0$ , we have

$\frac{M}{2}=d(\tilde{p}, \partial\tilde{C}(L))=\int_{\theta_{0}}^{\theta}\frac{|z_{1}’(t)|}{{\rm Im} z_{1}(t)}dt=\int_{\theta_{0}}^{\theta}\frac{1}{\sin t}dt\geq\int_{\theta_{\mathit{0}}}^{\theta}\frac{1}{t}dt=\log\frac{\theta}{\theta_{0}}$ .

Hence $\theta\leq\exp(M/2)\theta 0$ . We put $a=\exp(i\theta)$ and $b=\exp(\ell+i\theta)$ . Then
$r_{p}=d(a, b)$ . Prom Theorem 7.2.1 in [1], we have

$\sinh\frac{1}{2}d(a, b)$ $=$ $\frac{|a-b|}{2({\rm Im} a{\rm Im} b)^{\frac{1}{2}}}=\frac{e^{\ell}-1}{2\exp\frac{\ell}{2}\sin\theta}=\frac{\sinh\frac{\ell}{2}}{\sin\theta}\geq\frac{\sinh\frac{\ell}{2}}{\theta}$

$\geq$ $\frac{\sinh\frac{\ell}{2}}{\theta_{0}\exp\frac{M}{2}}=\frac{\sinh\frac{\ell}{2}}{\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{m}(2\sinh\frac{\ell}{2\overline{n}})\exp\frac{M}{2}}\geq\frac{\sinh\frac{\ell}{2}}{2\sinh\frac{\ell}{2n}\exp\frac{M}{2}}$

$=$ $\frac{\frac{\ell}{2n}}{\sinh\frac{\ell}{2n}}$ . $\frac{n\sinh\frac{\ell}{2}}{\ell\exp\frac{M}{2}}\geq\frac{\ell}{\sinh\ell}\cdot\frac{n\sinh\frac{\ell}{2}}{\ell\exp\frac{M}{2}}=\frac{n\sinh\frac{\ell}{2}}{\sinh\ell\exp\frac{M}{2}}$

$n$

$=$

$2 \cosh\frac{\ell}{2}\exp\frac{\overline M}{2}$

.

For the last inequality, we used the fact that $x(\sinh x)^{-1}$ is amonotone
decreasing function for $x>0$ , Since $r_{p}<M$ , this implies that

$n$ $<$ 2 $\exp(M/2)\sinh(M/2)\cosh(\ell/2)$

$=$ $(e^{M}-1)\cosh(\ell/2)$ .
$\blacksquare$
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4Application

We apply Theorem 1to investigating acertain property on hyperbolic ge-
ometry on Riemann surfaces. The following proposition is an extension of
Proposition 3in [3].

Definition We say that $R$ satisfies the lower bound condition if there exists
aconstant $\epsilon>0$ (which is smaller than the Margulis constant) such that $R_{\epsilon}$

consists only of cusp neighborhoods and neighborhoods of geodesies which
are homotopic to boundary components.

Proposition 3Let $R$ be a hyperbolic Riemann surface, and $\tilde{R}$ a norrreal
covering surface of R. If $\tilde{R}$ satisfies the lower and upper bound conditions,
then $R$ also satisfies these conditions.

Proof It is clear that $R$ satisfies the upper bound condition. Suppose that
$R$ does not satisfy the lower bound condition. Then $R$ has a sequence $\{c_{n}\}$

of disjoint simple closed geodesies which are not homotopic to boundary
components of $R$ with $\ell_{n}=\ell(c_{n})arrow 0(narrow\infty)$ . Let $\tilde{\mathrm{c}}_{n}\subset\tilde{R}$ be aconnected
component of the preimage of $c_{n}$ . Then $\tilde{c}_{n}$ is not homotopic to aboundary
component of $\tilde{R}$ . Since $\tilde{R}$ satisfies the lower bound conditions, there exists
aconstant $\epsilon>0$ such that $\ell(\tilde{c}_{n})>\epsilon$ for all $n$ . We take aconstant $M>0$

so that $\tilde{R}$ satisfies the upper bound condition for $M$ and for aconnected
component $\tilde{R}_{M}^{*}$ of $\tilde{R}_{M}$ . We may assume that $\tilde{c}_{n}\subset\tilde{R}_{M}^{*}$ . Assume that $\ell(\tilde{c}_{n})\leq$

$M$ for infinitely many $n$ . Then, by Theorem 1, the order of aconformal
$\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}\tilde{f}_{n}\neg$ of $\tilde{R}$ fixing $\tilde{c}_{n}$ is less than $N=(e^{M}-1)\cosh(M/2)$ . Then
we have $\ell(c_{n})>\epsilon/N$ . However, this contradicts $\ell(c_{n})arrow 0(narrow\infty)$ . Next,
we assume that $\ell(\tilde{c}_{n})>M$ (including the case that $\tilde{c}_{n}$ is not closed) for
infinitely many $n$ . By Collar Lemma, there exists atubular neighborhood
$C(c_{n})$ of $c_{n}$ with width $\omega(\ell_{n})$ , where $\sinh\omega(\ell_{n})=(2\sinh(\ell_{\mathrm{n}}/2))^{-1}$ . Prom the
proof of Theorem 1, there exists a(tubular) neighborhood of $\tilde{c}_{n}$ with width
$\omega(\ell_{n})$ . Since $\tilde{c}_{n}\subset\tilde{R}_{M}^{*}$ , there exists anon-trivial simple closed curve passing
through $pn\in\tilde{c}_{n}$ whose length is less than $M$ . However, since $\ell(\tilde{c}_{n})>M$

and since $\omega(\ell_{n})arrow\infty$ as $narrow\infty$ , we have acontradiction. $\blacksquare$

For applications of Proposition 3to the action of Teichm\"uller modular
groups, see [2].
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