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1 Introduction.
We deal with transition layers of the following scalar reaction-diffusion equation

(1.1) $\{$

$u_{t}= \Delta u+\frac{1}{\epsilon^{2}}f(u)$ (in $\Omega$ , $t>0$)

$\frac{\partial u}{\partial \mathrm{n}}=0$ (on $\partial\Omega$ , $t>0$)

with the homogeneous Neumann boundary conditions. This system, called the
Allen-Cahn equation, has been studied extensively for bistable reaction kinetics.
Atypical example of the nonlinearity $f$ is acubic polynomial $f(u)=u-u^{3}$ . In
general, we assume that the nonlinearity $f$ is obtained from adouble-well potential
$F(u)$ of equal depth. Namely, $f(u)=$ -Ff{u) with $F(u)\geq 0$ attains its absolute
minimum at exactly two non-degenerate critical points $u=\pm 1$ (on-degereracy here
means that $F’(\pm 1)>0)$ . These conditions ensure the existence of aspecial solution
$Q(z)(z\in \mathrm{R})$ , called astanding wave solution, which satisfies

(S-W) $\frac{d^{2}Q}{dz^{2}}+f(Q)=0$ , $z$ $\in \mathrm{R}$ , $\lim_{zarrow\pm\infty}Q(z)=\pm 1$ , $Q(0)=0$.

The function $Q(z)$ will play important roles in this paper.
The domain 0is asmooth, bounded one in $\mathrm{R}^{N}$ , $\mathrm{n}$ stands for the unit inward

normal vector on $\partial\Omega$ , and the parameter $\epsilon$ $>0$ is small.
Our main concern in this paper is to show the existence of internal transition

layers which exhibit asharp transition ffom $u\approx-1$ to $u\approx+1$ across such $\mathrm{a}$

hypersurface $\Gamma$ that intersects the boundary of the domain; $\overline{\Gamma}\cap\partial\Omega$
$\neq\emptyset$ . We call

this kind of internal transition layer aboundary-interior layer. We also analyze the
stability property of boundary-interior layers by using some geometric information
of $\Gamma$ , $\partial\Omega$ and $\partial\Gamma\subset\partial\Omega$ .

When $\epsilon>0$ is small, the solutions of (1.1) for aclass of initial functions are
known to develop transition layers within ashort time scale of $O(\epsilon^{2}|\log\epsilon|)[3]$ . This
phenomenon is caused by the strong bistability of the ordinary differential equation
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$u_{t}=\tau_{\epsilon}^{1}f(u)$ with $u=\pm 1$ being stable equilibria. According to the sign of the
value of the initial function, the solution is quickly attracted to either $u=+1$ or
$u=-1$ , thus creating asharp transition from $u\approx-1$ to $u\approx 1$ near the set, called
an interface,

$\Gamma(t):=\{x\in\Omega|u^{\epsilon}(u, t)=0\}$ .
The interface divides $\Omega$ into two sub-domains $\Omega^{\pm}(t)$ (cf. Figure 1) defined by
$\Omega^{\pm}(t):=\{x \in\Omega|\pm u^{\epsilon}(x, t)>0\}$ . When $x\in\Omega^{\pm}(t)$ , $u^{\epsilon}(x, t)arrow\pm 1$ as $\mathit{6}arrow 0$ .
Such solutions with sharp transition are called transition layer solutions.

Figure 1: The $\mathrm{i}$ terface $\mathrm{T}(\mathrm{t})$ and the normal vector $\nu(x, t)$ .

It is also well known (cf. [3], for instance) that the interface $\Gamma(t)$ evolves according
to its mean curvature:

(1.2) $\mathrm{V}_{\Gamma(t)}(x)=-\kappa(x;\Gamma(t))(x\in\Gamma(t), t>0)$

where $\mathrm{V}_{\Gamma(t)}(x)$ is the speed of the interface measured along the unit normal $\nu(x, t)$

of $\Gamma(t)$ at $x$ ( $\nu$ points to the $\Omega^{+}(t)$-side, cf. Figure 1) and $\kappa(x;\Gamma)$ stands for the sum
of the principal curvatures of $\Gamma$ at $x\in\Gamma$ . Hereafter, $\kappa$ is simply called the mean
curvature and the equation (1.2) is referred to as the mean curvature flow. To be
precise about the sign of $\kappa$ (which is the opposite to geometers’ convention), let us
extend the unit normal vector $\nu$ to aneighbourhood of $\Gamma$ . Then our mean curvature
is defined as the divergence of $\nu$ ;

$\kappa(x;\Gamma)=\mathrm{d}\mathrm{i}\mathrm{v}\nu(x)$ , $x\in\Gamma$ .
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When the interface $\Gamma(t)$ stays away from the boundary $\partial\Omega$ , the dynamics of (1.2)
has been studied rather extensively ([6, 8]). In such acase, the interface governed
by the mean curvature flow (1.2) does not feel the presence of the boundary an.
Therefore, the domain $\Omega$ does not play any role in the dynamics of (1.2).

Our concern in this paper, on the other hand, is the case where the interface $\Gamma(t)$

intersects the boundary $\partial\Omega$ (cf. Figure 2). The motion of $\Gamma(t)$ in such asituation is
still described by the mean curvature flow (1.2) to the lowest order approximation.
Main questions we raise in this article are:

When (1.2) has an equilibrium interface, does it give rise to an equilib-
rium boundary-interiorlayer for $($ 1.1 $)^{}$ If the answer is affirmative, what
is it that determines the stability of the layer?

The dynamics of such interfaces intersecting the boundary of domain has been stud-
ied by several authors ([2, 13, 4, 5, 12, 15, 10]).

Since we have identified $\Gamma(t)$ as the 0-level set of the solution to (1.1), the ho
mogeneous Neumann boundary conditions demand that $\Gamma(t)$ be perpendicular to
$\partial\Omega$ at the intersection $\partial\Gamma(t)=\overline{\Gamma(t)}\cap\partial\Omega$ . Therefore, the interface $\Gamma(t)$ immediately
feels the presence of the boundary, and the geometry of an influences the dynamics
of (1.2).

Figure 2: The interface intersecting the boundary.

The existence of energy-minimising solutions (of (1.1)) with interface intersecting
the boundary was first rigorously established in [15] by avariational method. For
competition-diffusion systems, stable internal layers intersecting the boundary was
established in [12] for rotationally symmetric domains. Exponentially slow motions
of flat interfaces are discussed in $[2, 13]$ , where interfaces intersect flat parallel part
of the boundary. Motions of interfaces with contact angle was treated in [4] for a
generalized mean curvature flow. Dynamics of flat interfaces in astrip like domain
was discussed in [5], where the speed of the interface is of order $O(\epsilon^{2})$ with respect to
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the time scale of (1.1). In [10], the existence and stability of equilibrium boundary-
interior layers with flat interfaces were established. Recently, the same results as
[10] have been obtained by [14] via different methods. In all of these works, the
geometry of the boundary an has essential effects on the dynamics of (1.1).

The purpose of this article is to extend the results in [10] and [14] to higher-
dimensional domains.

2Review of tw0-dimensional results.

In this section we assume $N=2$ , and review know results according to [10].
In order to describe an equilibrium interface $\Gamma$ of (1.2), let us consider the dis-

tance function $L$ ;

L:an x $\partial\Omegaarrow[0,\infty)$ , $L(p,q)=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(p,q)$ .

Theorem2.1 (Equilibrium Interface). If $(p_{\mathrm{r}}, q_{*})\in\partial\Omega$ x an satisfies following
conditions:

(i) $(p_{\mathrm{r}}, q_{\mathrm{r}})$ is a critical point of $L$ ;

(ii) $L_{*}:=L(p_{*}, q_{*})>0$ ;

(iii) the open straight line-segment $\overline{p_{*}q_{*}}is$ contained in $\Omega$ ,

then, $\Gamma=\overline{p_{*}q_{*}}is$ an equilibrium interface of (1.2).
Conversely, any equilibrium of (1.2) is characterized by these properties.

Proof. In the two dimensional case, $\kappa=0$ is equivalent to $\Gamma$ being astraight line. It
is verified that $\partial L(p_{*}, q_{*})/\partial p=0$ is equivalent to $\overline{p_{*}q_{*}}1_{\mathrm{P}*}\partial\Omega$ . Also, $\partial L(p_{*}, q_{*})/\partial q=$

$0$ is equivalent to $\overline{p_{*}q_{*}}[perp]_{q}$. $\partial\Omega$ . Now, the statements of the theorem follow. $\square$

We now define the curvature of $\partial\Omega$ with respect to its inward unit normal $\mathrm{n}$ by

$\overline{\kappa}_{\mathrm{p}}=\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{n}(p)$ , $p\in\partial\Omega$ .

Let us denote by $\overline{\kappa}_{p}$. and $\overline{\kappa}_{q_{*}}$ the cruvature of an at the two end points of the
equilibrium interface $\Gamma=\overline{p_{*}q_{*}}$. Let us define $\mathrm{D}$ and $\mathrm{T}$ by

$\mathrm{D}:=\overline{\kappa}_{\mathrm{p}}$ . $+\overline{\kappa}_{q}$. $+L_{*}\overline{\kappa}_{p_{*}}\overline{\kappa}_{q}.$ ,
$\mathrm{T}:=2+L_{*}(\overline{\kappa}_{p_{\mathrm{r}}}+\overline{\kappa}_{q}.)$.

These quantities are related to the second variation of $L$ . Namely, $\mathrm{T}/L_{*}$ and $\mathrm{D}/L_{*}$

are, respectively, the trace and determinant of the Hessian matrix (i.e., the second
variation) of $L$ at $(p, q)=(p_{\mathrm{r}}, q_{*})$ .
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Theorem 2.2 (Existence of boundary-interior layers). Assume that the fol-
lowing non-degeneracy condition is satisfied

(a) $\mathrm{D}\neq 0$ .

Then there eist an $\epsilon_{*}>0$ and a family of equilibrium solutions $U^{\epsilon}(x)$ of (1.1) for
$\epsilon$ $\in(0, \epsilon_{*}]$ , enjoying the following properties:

(i) For each $\delta$ $>0$ ,

$\lim_{\epsilonarrow 0}U^{\epsilon}(x)=\{$ $-11$ uniformly in $\{$ $x\in \mathrm{d}\overline{\frac{\Omega}{\Omega}}-,\mathrm{i}\mathrm{s}\mathrm{t}(x,\Gamma)>\delta x\in \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x,\Gamma)>\delta+,$

.

(ii) Near the interface $\Gamma$ , the solution $U^{\epsilon}(x)$ has the asymptotic characterization:

$U^{\epsilon}(x) \approx Q(\frac{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x,\Gamma)}{\mathit{6}})$ ,

where $Q(z)(z\in \mathrm{R})$ is the standing wave solution in (S-W).

Let us call such asolution as in Theorem 2.2 aboundary-interior layer. The
stability properties of the boundary-interior layer is given in the following theorem.
In Theorem 2.3 below, the Morse index of an equilibrium solution to (1.1) means
the number of unstable (positive) eigenvalues for the eigenvalue problem

(2.1) $\lambda\phi=\Delta\phi+\frac{1}{\epsilon^{2}}f’(U^{\epsilon})\phi$ in $\Omega$ , $\frac{\partial\phi}{\partial \mathrm{n}}=0$ on an,

associated with the linearized operator around the equilibrium $U^{\epsilon}$ of (1.1). Also, in
the same theorem, the Morse index of acritical point $(p_{*}, q_{*})$ of $L$ is the number of
positive eigenvalues of the Hessian matrix $\mathrm{o}\mathrm{f}-L$ at $(p, q)=(p_{l}, q_{*})$ .
Theorem 2.3 (Stability property of boundary-interior layers). Let $U^{\epsilon}(x)$ be
the solution in Theorem 2.2. As an equilibrium solution of (1.1), it is

(1) stable (the Morse index 0), if $\mathrm{D}>0$ and $\mathrm{T}>0$ ,

(2) unstable, if otherwise, with

(2-i) the Morse index 1if $\mathrm{D}<0$

(2-ii) the Morse inde$ex2$ if $\mathrm{D}>0$ and $\mathrm{T}<0$ .
(3) The Morse index of the equilibrium solution described in items (1) and (2) are

the same as the Morse index of the corresponding critical point $(p_{*}, q_{*})$ for the
$fi\iota nction$ $L(p, q)$ .
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Theorems 2.2 and 2.3 says that the dynamics of boundary-interior layers are
qualitatively described by the gradient system of the function $L$ . It is easy to see
that Theorems 2.2 and 2.3 are restatements of Theorems 1.3 and 1.4 in [10].

In order to gain some insights for Theorem 2.3, it is illuminating to consider the
following eigenvalue problem

(2.2) $\{$

$\phi_{\tau\tau}(\tau)=\lambda\phi(\tau)$ , $\tau\in(-\frac{L}{2}., \frac{L}{2}.)$ ,

$\phi_{\tau}(-\frac{L}{2}.)-\overline{\kappa}_{q}.\phi(-\frac{L*}{2})=0$

$- \phi_{\tau}(\frac{L}{2}.)-\overline{\kappa}_{p*}\phi(\frac{L_{\mathrm{s}}}{2})=0$ .

This is an eigenvalue problem associated with the linearization of (1.2) on the equi-
librium interface $\Gamma=\overline{p_{*}q_{*}}$ . It was shown in [10] that non-critical eigenvalues of (2.1)
go $\mathrm{t}\mathrm{o}-\infty$ as $\mathit{6}arrow 0$ and that critical eigenvalues of (2.1) converge to the eigenvalues
of (2.2). It is rather elementary to show that (2.2) has

1. no positive eigenvalues and no 0-eigenvalue if $\mathrm{D}>0$ and $\mathrm{T}>0$ ;

2. one positive eigenvalue and no 0-eigenvalue if $\mathrm{D}<0$ ;

3. two positive eigenvalues and no 0-eigenvalue if $\mathrm{D}>0$ and $\mathrm{T}<0$ ;

4. one 0-eigenvalue and no positive eigenvalue if $\mathrm{D}=0$ and $\mathrm{T}>0$ ;

5. one 0-eigenvalue and one positive eigenvalue if $\mathrm{D}=0$ and $\mathrm{T}<0$ .

Note that it is impossible to have both $\mathrm{D}=0$ and $\mathrm{T}=0$ satisfied. We have thus
classified the stability property of the boundary-interior layer in terms of the singular
limit (1.2) (of (1.1)) and its linearization (2.2).

Aquestion naturally suggests itself;

What happens when $\mathrm{D}=0$?

The answer seems to be:

Bifurcation of Boundary-Interior Layers. Purterbing the bound-
ary of domain an as $a$ bifurcation parameter, static bifurcations occur
from the equilibrium boundary-interior layer at $(\mathrm{D}=0,\mathrm{T}>0)$ and
$(\mathrm{D}=0, \mathrm{T}<0)$ .

We have confirmed in [10] by numerical simulations that the last statement may be
true. Its rigorous proof will be treated in aseparate work
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There is another way of looking at the problem (2.2). Let us consider aDirichlet-
Neumann map $\Pi_{L}$ . on the interface $\Gamma=\{\tau\in \mathrm{R} ||\tau|<L_{*}/2\}$ . This map sends
the Dirichlet data $(\phi(-L_{*}/2), \phi(L_{*}/2))=(a_{-}, a_{+})\in \mathbb{R}^{2}$ to the in ward Neumann
data $(\phi’(-L_{*}/2), -\phi’(L_{*}/2))\in \mathrm{R}^{2}$ , where $\phi(\tau)$ is harmonic on $\Gamma$ , $\mathrm{i}.\mathrm{e}$ . $\phi_{\tau\tau}\equiv 0$ .
Elementary computations yield that

$\Pi_{L}$. : $(\begin{array}{l}a_{-}a_{+}\end{array})\mapsto\frac{1}{L_{*}}$ $(\begin{array}{l}-\mathrm{l}11-1\end{array})(\begin{array}{l}a_{-}a_{+}\end{array})$ .

Eigenvalues of aDirichlet-Neumann map have aclose relation to the eigenvalue
problem for the Lapl cdan with boundary conditions of the third type (Robin type
boundary conditions). In the present situation, since the boundary of $\Gamma$ is not
connected, we can consider alittle more general eigenvalue problem for $\Pi_{L_{\mathrm{r}}}$ . We
call $(\mu^{-}, \mu^{+})\in \mathrm{R}^{2}$ an eigenvalue-pair of $\Pi_{L_{*}}$ if the linear equation

$\Pi_{L}$ . $(\begin{array}{l}a_{-}a_{+}\end{array})=(\begin{array}{ll}\mu^{-} 00 \mu^{+}\end{array})(\begin{array}{l}a_{-}a_{+}\end{array})$

has anon-trivial solution (a-, $a_{+}$ ) $\neq(0,0)$ . By elementray computations, again, one
can easily find that $(\mu^{-},\mu^{+})$ is an eigenvalue pair of $\Pi_{L_{\mathrm{L}}}$ if and only if

(D) $\mathrm{D}(\mu^{-}, \mu^{+}):=\mu^{-}+\mu^{+}+L_{*}\mu^{-}\mu^{+}=0$ .

One can immediately see that

$\mathrm{D}=\mathrm{D}(\overline{\kappa}_{q}.,\overline{\kappa}_{p_{*}})$ .

In the $\mu^{-}-\mu^{+}$ plane, the equation $\mathrm{D}(\mu^{-}, \mu^{+})=0$ defines ahyperbola. The hyperbola
has two branches, one passing through $(\mu^{-}, \mu^{+})=(0,0)$ (call it (F)) and another
passing through $(\mu^{-}, \mu^{+})=(-2/L_{*}, -2/L_{*})$ (call it (S)). Theorems 2.2 and 2.3
apply when the point $(\overline{\kappa}_{q}.,\overline{\kappa}_{\mathrm{P}*})$ is neither on (F) nor on (S). When the point is
above the (F) branch, then Theorem 2.3 (1) applies. If the point is between (F) and
(S) branches, Theorem 2.3 (2-i) applies, while if it is below (S) branch, then Theorem
2.3 (2-ii) applies. As mentioned earlier, when the boundary $\partial\Omega$ is deformed so that
the point $(\overline{\kappa}_{q_{*}},\overline{\kappa}_{p_{*}})$ crosses either (F) or (S) branches, we expect that bifurcations
of boundary-interior layers would occur

140



$- \frac{2}{L}$.

Morse indices of the boundary-interior layer for 2-dimensinal domains.

3Main results in 3-dimensional domains.
We will establish results similar to Theorems 2.1, 2.2, and 2.3 for 3-dimensi0nal
domains. It turns out that to prove an analogue of Theorem 2.1 is the most difficult
part for 3-dimensional domains. We will show that once an analogue of Theorem
2.1 is obtained then counterparts of Theorems 2.2 and 2.3 will follow rather easily
by the method employed in [10].

3.1 Rotationary-symmetric domains.
We first consider aspecial class of domains; rotationally symmetric domains. Let the
axis of rotation be in $x$-direction($x\in \mathrm{R}$ here and below within \S 3.1), and consider
adomain $\Omega\subset \mathrm{R}^{3}$ which (or, part of which) is obtained by rotating the graph of a
positive function $\psi(x)$ around x-uis:

(3.1) $\Omega$ $=\{(x, y)\in \mathrm{R}^{3}|y\in \mathrm{R}^{2}, |y|<\psi(x)\}$ .

In this situation it is easy to find an equilibrium to (1.2).

Theorem 3.1 (Existence of flat disk-type interfaces). Let $x_{0}\in \mathrm{R}$ satisf
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$\psi’(x_{0})=0$ . Then the disk $\Gamma=\{(x_{0},$y)| $|y|<\psi(x\mathrm{o})\}$ is an equilibrium solution of
(1.2).

In order to state counterparts of Theorems 2.2 and 2.3, let us define the Dirichlet-
t0-Neumann map $\Pi$ for the Laplacian:

(3.2) $\Pi:C^{2+a}(S_{0})arrow C^{1+\alpha}(S_{0})$ ; $\Pi\phi(y):=\frac{\partial v}{\partial \mathrm{n}}(y)$ , $y\in S_{0}$ ,

where $S_{0}:=\{y\in \mathrm{R}^{2}||y|=\psi(x_{0})\}$ and $v(y)$ is the unique solution of the boundary
value problem:

(3.3) $\Delta_{y}v=0$ , $y\in\omega$ $:=\{|y|<\psi(x_{0})\}$ , $v(y)=\phi(y)$ , $y\in S_{0}$ .

To agiven Dirichlet data $\phi\in C^{2+\alpha}(S_{0})$ on So, the map asigns the Neumann
data $\partial v/\partial \mathrm{n}$ of the harmonic extension $v$ of $\phi$ . It is known that the map $\Pi$ is afirst
order elliptic operator on So. The operator is approximately given by

$\Pi\approx-\sqrt{-\Delta^{S_{0}}}$ ,

and extends to an unbounded operator on $L^{2}(S_{0})$ . Let us denote by $\sigma(\Pi)$ the set of
eigenvalues of $\Pi$ :

(3.4) $\sigma(\square )=\{\mu_{j}\}_{j=0}^{\infty}$ ; $0=\mu 0>\mu_{1}>\ldots>\mu_{j}>\ldotsarrow-\infty$,

where we only listed distinct eigenvalues. We denote by $m_{j}$ the multiplicity of $\mu_{j}$ .
In the present situation one can easily compute these eigenvalues; $\mu_{\mathrm{j}}=-j/\psi(x_{0})$

$(j\geq 0)$ and $m_{0}=1$ , $m_{j}=2(j\geq 1)$ .
We are ready to state:

Theorem 3.2 (Existence of boundary-interior layers). Assume that $x_{0}$ is such
that $\psi’(x_{0})=0$ and the following non-degeneracy condition is satisfied

(a): $\psi’(x_{0})\not\in\sigma(\Pi)$ .

Then there exist an $\mathit{6}_{*}>0$ and a family of equilibrium solutions $U^{\epsilon}(x, y)$ of (1.1)
for $\epsilon$ $\in(0,\epsilon_{*}]$ , enjoying the folloing properties:

(i) For each $\delta>0$ ,

$\lim_{\epsilonarrow 0}U^{\epsilon}(x, y)=\{$ $-11$ unifomly $i.n\{$

$(x,y)\in\overline{\Omega}$ , $x\leq x_{0}-\delta$,
$(x,y)\in\overline{\Omega}$ , $x\geq x_{0}+\delta$ .
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(ii) Near $x=x_{0}$ , the solution $U^{\epsilon}(x, y)$ has the asymptotic characterization:

$U^{\epsilon}(x, y) \approx Q(\frac{x-x_{0}}{\epsilon})$ .

As for the stability property of the solution, we have:

Theorem 3.3 (Stability Property of boundary-interior layers). Let $U^{e}(x, y)$

be the solution in Theorem 3.2. As an equilibrium solution of (1.1), it is

(1) stable if $\psi’(x_{0})>0=\mu_{0}$ ,

(2) unstable if $\mu_{j}>\psi’(x_{0})>\mu_{j+1}$ with the Morse index equal to $\sum_{k=0}^{j}m_{k}$ .

An outline of our proof for Theorems 3.2 and 3.3 is as follows (a rigorous proof
will be given later in acontext of ageneral situation).

We consider an eigenvalue problem:

(3.5) $\{$

$\Delta_{y}\phi=\lambda\phi$ in $\omega$ ,
$\partial\phi/\partial \mathrm{n}-\psi’(x_{0})\phi=0$ on $S_{0}$ .

We show that if (3.5) has no 0-eigenvalue, then it is possible to construct approximate
solutions to aboundary-interior layer along $\Gamma_{1}$ with as high accuracy as we wish.
On the other hand, it is readily shown that (3.5) has no 0-eigenvalue if and only if
$\psi’(x_{0})\not\in\sigma(\Pi)$ . This is the source of the nondegeneracy condition (a) in Theorem
3.2. If the approximation is accurate enough, aperturbation argument works and
the existence of aboundary-interior solution follows.

It is also shown that (3.5) determines the stability property of the boundary-
interior layer. In fact, the critical eigenvalues of (2.1) for the domain 0as in (3.1)
approach the eigenvalues of (3.5) which is an eigenvalue problem associated with
the linearization of (1.2) around the disk $\Gamma=/\mathrm{x}\mathrm{o},$ $y$ ) $||y|<\psi(x_{0})\}$ for the domain
$\Omega$ in (3.1).

Notice that $\psi’(x_{0})$ is equal to the curvature $\overline{\kappa}$ of the generating curve $(x, \psi(x),$ $0)\in$

$\mathrm{R}^{3}$ of the boundary an. If we denote by $\mathrm{n}(x, y)$ the inward unit normal vector of
$\partial\Omega$ at $(x, y)=(x, \psi(x)\cos\theta,$ $\psi(x)\sin\theta)\in\partial\Omega$ , the curvature of the generating curve
has another expression:

$\overline{\kappa}=\langle\frac{\partial \mathrm{n}(x,y)}{\partial x}|_{x=x_{0}}$ , $\nu\rangle=\langle\frac{\partial \mathrm{n}(x,y)}{\partial\nu}|_{x=x\mathrm{o}}$ , $\nu\rangle$ (independent of&),

where $\nu=(1,0,0)$ . The geometric significance of this expression will become clear
in the subsequent discussion, when we deal with ageneral situation
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3.2 General domains

The most difficult part of all to obtain results similar to Theorems 3.2 and 3.3 for
general 3-dimensional domains is to find aminimal surface that intersects $\partial\Omega$ in the
right angle. We therefore assume the existence of such aminimal surface and prove
the counterparts of of these theorems for general domains.

(A1): Assume that there exists aminimal interface $\Gamma$ that intersects an
in the right angle along acurve $\partial\Gamma=\overline{\Gamma}\cap\partial\Omega$ .

In order to state anon-degeneracy condition on $\Gamma$ , let us consider an eigenvalue
problem defined on $\Gamma$ :

(3.6) $\{$

$\Delta^{\Gamma}v+(\kappa_{1}^{2}+\kappa_{2}^{2})v=\lambda v$ in $\Gamma$ ,
$\partial v(y)/\partial \mathrm{n}-\overline{\kappa}(y)v(y)=0$ on $\partial\Gamma$ ,

where $\Delta^{\Gamma}$ is the Laplace Beltrami operator on $\Gamma$ , $\kappa_{j}(j=1,2)$ the principal curva-
tures of $\Gamma$ , and

(3.7) $\overline{\kappa}(y)=\langle\frac{\partial \mathrm{n}}{\partial\nu},\nu\rangle$ , y $\in\partial\Gamma\subset\partial\Omega$ .

We recall again that $\mathrm{n}$ is the inward unit normal vector on $\partial\Omega$ . Since acurve on an
is ageodesies if and only if its normal vector is parallel to the normal vector $\mathrm{n}$ of
an. Therefore, $\overline{\kappa}(y)$ is the curvature of the geodesies on an passing through $y\in\partial\Gamma$

in the direction $\nu(y)$ .
Let us denote by up the set of eigenvalues for (3.6);

$\sigma_{\Gamma}=\{\lambda_{j}\}_{j=0}^{\infty}$ , $\lambda_{0}>\lambda_{1}>\ldots>\lambda_{j}>\ldotsarrow-\infty$ ,

where we listed only distinct ones. The multiplicity of $\lambda_{j}$ is denoted by $m_{j}$ .
The non-degeneracy condition for $\Gamma$ is:

(A2): $0\not\in\sigma_{\Gamma}$ .

Our main result is the following.

Theorem 3.4 (Existence and stability of boundary-interior layers). Assume
that conditions (A1) and (A2) are satisfied. Then there $e$$\dot{m}t$ an $\epsilon_{*}>0$ and a family
of equilibrium solutions Ue(x) of (1.1) defined for $\epsilon\in(0, \epsilon_{*}]$ with the following
properties.

(i) For each $\delta$ $>0$ ,

$\lim_{\epsilonarrow 0}U^{\epsilon}(x)=\{$

1
-1 uniformly in $\{$

$x\in\Omega^{+}\backslash \Gamma^{\delta}$ ,
$x\in\Omega^{-}\backslash \Gamma^{\delta}$ ,

where $\Gamma^{\delta}=$ { $x\in\Omega|$ dist($x$ , $\Gamma)<\delta$ }.
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(ii) Near the interface $\Gamma$ , the solution $U^{\epsilon}$ has the following behavior

$U^{\epsilon}(x) \approx Q(\frac{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x,\Gamma)}{\epsilon})$ .

(iii) If $0>\lambda_{0}$ , then $U^{\epsilon}$ is stable.

(iv) If there exits $j\geq 0$ satisfying $\lambda_{j}>0>\lambda_{j+1}$ , then $U^{\epsilon}$ is unstable with Morse
index equal to $\sum_{k=0}^{j}m_{k}$ .

The structure of the contents of Theorem 3.4 is dipicted in the following diagram.

Figure 3: Non-degenerate critical point of $S$ give rise to boundary-interior layers.

It is illuminating to put the results of Theorem 3.4 in avariational formulation.
Let us define the class of admissible interfaces;

$A_{\Omega}:=$ { $\Gamma|\overline{\Gamma}$ is a $C^{2}$ surface with $\overline{\Gamma}\cap\partial\Omega$ $=\partial\Gamma$ and $\Gamma\subset\Omega$}.

Let $S:A_{\Omega}arrow \mathrm{R}$ be the surface area. The problem (1.2) is nothing but the gradient
flow with respect to the energy functional $S(\Gamma)$ ;

$\frac{\partial\Gamma}{\partial t}=-\frac{\delta S(\Gamma)}{\delta\Gamma}=-\kappa(x;\Gamma)$ ,

where the interface $\Gamma$ varies within the class $A_{\Omega}$ of admissible surfaces. Critical
points of $S(\Gamma)$ are characterized as

(3.8) $\kappa(x;\Gamma)\equiv 0$ and $\Gamma[perp]_{\partial\Gamma}$ an.
Moreover, (3.6) is an eigenvalue problem associated with the second variation of
the functional $S$ at the critical point $\Gamma\in A_{\Omega}$ in (3.8). Therefore we may restate
Theorem 3.4 as follows
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A non-degenerate critical point $\Gamma\in A$ of S gives rise to an equilib-
rium boundary-interior layer of (1.1). The Morse index of the boundary-
interior layer is the same as that of $\Gamma$ with respect to the area functional
S.

An interesting implication of Theorem 3.4 is that the boundary-interior layer with
transition layers occurring near any minimal hypersurface $\mathrm{I}\in A_{\Omega}$ , with $\Gamma[perp]_{\partial\Gamma}$ an,
can be made stable by deforming the boundary $\partial\Omega$ near $\partial\Gamma$ so that

$\inf_{y\in\partial\Gamma}\overline{\kappa}(y)=:\overline{\kappa}_{0}\gg 1$ .

To see this, let $K:= \sup\{\kappa_{1}^{2}(y)+\kappa_{2}^{2}(y)|y\in\overline{\Gamma}\}$ . Note that $\overline{\kappa}_{0}$ can be made as
large as one like, without influencing the magnitude of $K$ , since we are deformingan near $\partial\Gamma$ with $\Gamma$ being fixed. For the $L^{2}$-normalized first eigenpair $(\lambda_{0}, \phi_{0})$ of the
problem (3.6), we can estimate the eigenvalue as follows;

$\lambda_{0}=-\int_{\partial\Gamma}\phi_{0}\frac{\partial\phi_{0}}{\partial \mathrm{n}}dS_{y}^{\partial\Gamma}+\mathit{1}(\kappa_{1}^{2}+\kappa_{2}^{2})\phi_{0}^{2}dS_{y}^{\Gamma}$

$=- \int_{\partial\Gamma}\overline{\kappa}(y)\phi_{0}^{2}dS_{y}^{\partial\Gamma}+\mathit{1}(\kappa_{1}^{2}+\kappa_{2}^{2})\phi_{0}^{2}dS_{y}^{\Gamma}$

$\leq-\overline{\kappa}_{0}\int_{\partial\Gamma}\phi_{0}^{2}dS_{y}^{\partial\Gamma}+K|\Gamma|<0$ ,

showing the stability of $U^{\epsilon}$ thanks to Theorem 3.4.
As adirect consequence of Theorem 3.4, we obtain ageneralization of Theorems

3.2 and 3.3. In order to present such ageneralization, let $\psi(x)$ be asmooth positive
function ($x\in \mathrm{R}$ here and within \S 3.3) and $\omega$

$\subset \mathrm{R}^{2}$ abounded smooth domain. We
consider athree-dimensional domain $\Omega$ defined by

(3.9) $\Omega=\{(x, y)\in \mathrm{R}\mathrm{x} \mathrm{R}^{2}|\frac{1}{\psi(x)}y\in\omega\}$ .

If $\psi’(x_{0})=0$ , then
$\Gamma=\{(x_{0}, y)\in\Omega|\frac{1}{\psi(x_{0})}y\in\iota v\}$

is an equilibrium interface of (1.2). Since the inward normal vector on the boundary
of the domain in (3.9) is given for $(x, y)\in \mathrm{R}$ $\mathrm{x}\partial\omega$ by

$\mathrm{n}(x, y)=\frac{1}{\sqrt{1+(\psi’(x))^{2}|(y,\mathrm{n}_{\omega}(y)\rangle|^{2}}}(-\psi’(x)\langle y, \mathrm{n}_{\omega}(y)\rangle,$ $\mathrm{n}_{\omega}(y))$ ,
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where $\mathrm{n}_{\omega}$ is the unit inward normal vector on $\partial\omega$ , the eigenvalue problem (3.6)
reduces to

(3.10) $\{$

$\Delta v(y)=\psi(x_{0})^{2}\lambda v(y)$ , $y\in\omega$ ,

$\frac{\partial v(y)}{\partial \mathrm{n}_{\omega}}+(\psi’(x_{0})\psi(x_{0})\langle y, \mathrm{n}_{\omega}\rangle)v(y)=0$, $y\in\partial\omega$ ,

where the interface $\Gamma$ is scaled down to $\omega$ . We denote by $\sigma_{\omega}^{\psi(x\mathrm{o})}$ the eigenvalues of
(3.10);

$\sigma_{\omega}^{\psi(x_{0})}=\{\lambda_{j}\}_{j=0}^{\infty}$; $\lambda_{0}>\lambda_{1}>\ldots>\lambda_{j}>\ldotsarrow-\infty$ ,

where we listed only distinct eigenvalues and the multiplicity of $\lambda_{j}$ is $mj$ .

Corollary 3.1. Suppose that $\psi’(x_{0})=0$ and $0\not\in\sigma_{\omega}^{\psi(x_{0})}$ . $T/ien$ for the domain 0
in (3.9), the statements in Theorem 3.2 are valid. Moreover, the boundary-interior
layer is

(i) stable, if $0>\lambda_{0}$ , and

(ii) unstable with the Morse index equal to $\sum_{k=0}^{j}m_{k}$ , if $\lambda_{j}>0>\lambda \mathrm{j}+1$ .

The results presented in this acrticle will be rigorously proven in [16]
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