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1 Introduction
We consider the following chemotaxis-growth model equation [7]:

$\{$

$u_{t}$
$=\epsilon^{2}\Delta u-\epsilon k\nabla(u\nabla\chi(v))+f(u)$

$t>0$ , $x\in \mathrm{f}l$ (1)
$v_{t}$ $=$ $\Delta v+u-\gamma v$ ,

where $\chi(v)=v$ and $f(u)=u(1-u)(u-a)$ with $0<a<1/2$ .
We showed that for sufficiently small $\epsilon>0$ , there exist several statistic and dynamic

patterns depending on the parameter $k$ and the form of the sensitive function $\chi(v)$ of

Chemotaxis in [7]. Here, we consider the patterns which did not treat in [7] and [10]. We

first show the two numerical simulations (Figure 1). They imply that the band and triple

junction patterns stably exist. In Section 2,1, we study the equation which governs the

motion of the simple band pattern by using the formal analysis. From the second numerical
simulation, it is suggested that the 2-dimensional traveling solution with a triple $\mathrm{j}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{011}$

exists in the channel domain $\Omega_{L}=\{(x, y)|-L<x<L, -\infty<y<\infty\}$ in $\mathrm{R}^{2}$ . In

Section 2.2, we show the dependency for the velocity and the shape of these solutions on

the domain size $L$ and intensity of the chemotaxis effect $k$ by using the result in Section

2.1 as $\epsilon$ tends to zero
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2Formal Analysis

To study the motion of the front interface of the band and the triple junction patterns, we
use the formal analysis by Zykov [11], Mikhailov [6] and Zykov et al. [12].

2.1 The band pattern with two interfaces
The numerical simulations (Figure 3) show that

(51) The distance between two interfaces of the band pattern is constant.
(52) When the curvature is small, the interfaces of the band pattern become flat. When

the curvature is large, the target pattern shrinks and finally tends to the symmertic equi-
librium solution.

From (S2), we note that the motion of the interface seems as similar as one of the pattern
governed by the mean curvature flow. To show that, we consider the motion of the simple
arc-like band pattern in $0=\mathrm{R}^{2}$ . Using the formal analysis, we assume that

Assumption: The distance between the two interfaces of the band pattern is small as
compared with the radius of curvature, that is, $k$ is large.

Therefore, we may set up that two interfacies of the band pattern have the same mean
curvature is. Using anew variable $\xi=r\dashv-\epsilon\hat{V}t$ with $r=|\mathrm{x}|$ , we rewrite $(’1)$ in $0=\mathrm{R}^{2}$ as

$\{$

$0=\epsilon^{2}u_{\xi\xi}-\epsilon(\hat{V}-\epsilon\kappa)u_{\xi}-\epsilon k(u\chi’(v)v_{\xi})_{\xi}+f(u\grave{)}$

, $\xi\in \mathrm{R}$

$0=v_{\xi\xi}-(\epsilon\hat{V}-\kappa)v_{\xi}+u-\gamma v$

$\lim_{|\xi|-arrow\infty}(u, v)(\xi)=(0,0)$ .

(2)

Outer Solution of (2) in $\mathrm{R}$

When $\epsilon\downarrow 0$ , it follows from (2) that $f(u)=0$ . Thus, we put

$u(\xi)=\{$
1 $\xi\in\Omega_{1}$

0 $4\in\Omega_{0}$ ,

where $\Omega_{1}=(0, \delta)$ and $\Omega_{0}=\mathrm{R}\backslash \Omega_{1}$ .
Substituting this into (2) and putting $\epsilon=0$ , we have

$\{$

$0=v_{\xi\xi}+\kappa v_{\xi}+g_{\dot{l}}(v)$ , $\xi\in\Omega_{i}(i=0,1)$

$\lim_{|\xi|arrow\infty}v(\xi)=0$ , $v\in C^{1}(\mathrm{R})$ ,
(3)
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where $g_{i}(v)=i-\gamma v$ .
Therefore, the solution of (3) is represented by

$v(\xi)=\{$

$C_{-}e^{k\xi}+$ $\xi\in(-\infty,$ $01$,

$C_{1}e^{k\xi}++C_{2}e^{k_{-}\xi}+ \frac{1}{\gamma}$ $\xi\in(0, \delta)$

$C_{+}e^{k_{-}(\xi-\delta)}$ $1\in(\delta, \infty)$ ,

(4)

where $k_{\pm}= \frac{-\kappa\pm\sqrt{n^{2}+4\gamma}}{2}$ , $C_{-}=$ and $C_{2}=$

$- \frac{k+}{\gamma\sqrt{\kappa^{2}+4\gamma},\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}}\mathrm{t}\mathrm{h}’.\mathrm{e}$

outer solution of $u$ is not agood approximating solution, that is, it is discon-
tinuous, we need to obtain agood approximating one in the neighborhood of $\xi--- 0$ and
$\xi=\delta$ .

Inner Solution of (2) at $\xi$ $=0$ and $\xi$ $=\delta$

To obtain the inner solution in the neighborhood of $\xi=0$ and $\xi$ $=\delta$ , we introduce a
new stretched variable $\zeta=\xi/\epsilon$ or $\zeta=(\xi-\delta)/\epsilon$ . Then, the solution $v_{-}(\zeta)=v(\xi/\epsilon)$ and
$v_{+}(()=v((\xi-\delta)/\epsilon)$ of (2) in each neighborhood satisfy

$\{$

$0=v_{\pm\zeta\zeta}-\epsilon(\epsilon\hat{V}-\kappa)v_{\pm\zeta}-\vdash\epsilon^{2}(u_{\pm}-\gamma v\pm)$ , $\zeta\in \mathrm{R}$

$\lim_{\zetaarrow\pm\infty}v_{-}(\zeta)=v(0),\lim_{\zetaarrow\pm\infty}v_{+}(\zeta)=v(\delta)$ ,

by using the matching conditions at ( $=0$ and ( $=\delta$ . As $\epsilon$ tends to zero, it holds that
$\mathrm{v}_{-}(\mathrm{C})\equiv \mathrm{v}(0)=C_{-}$ and $\uparrow \mathit{1}+(\zeta\grave{)}\equiv \mathrm{v}(0)=C_{+}$ where $v(\xi)$ is the solution of (3).

On the other hand, by using these solutions $v_{\pm}$ , we have

$\{$

$0=u_{\pm\zeta\zeta}-(\hat{V}-\epsilon\kappa+k\chi’(v\pm)v\pm\xi)u\pm\zeta+f(u\pm)$ , $\zeta\in \mathrm{R}$

$\lim_{\zetaarrow-\infty}u_{-}(\zeta)=0$ , $\lim_{\zetaarrow\infty}u_{-}(\zeta)=1$

$\lim_{\zetaarrow-\infty}u_{+}(()=1, \lim_{\zetaarrow\infty}u_{+}(\zeta)=0$,

(5)

where $u_{-}(\zeta)=u(\xi/\epsilon)$ and $u_{+}(\zeta)=u((\xi-\delta)/\epsilon)$ , $v_{-\xi}= \frac{d}{d\xi}v(0)$ and $v_{+\xi}= \frac{d}{d\xi}v(\delta)$ for the

solution $v(\xi)$ of (3).
Since the coefficient of $u_{\pm\zeta}$ are constant, it turns out that

$\{$

$\hat{V}-\epsilon\kappa+k\chi’(v_{-})v_{-\xi}=c^{*}$ at $\xi=0$

$\hat{V}-\epsilon\kappa+k\chi’(v_{+})v_{+\xi}=-\mathrm{c}^{*}$ at $\xi=\delta$ ,
(6)
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where $c^{*}$ is the positive velocity of the traveling front solution of the following problem
with the traveling coordinate z $=\zeta[perp] c^{*}t$ (see Fife and McLeod [4]):

$\{$

$u_{t}=u_{\zeta\zeta}+f(u)$ , $\zeta\in \mathrm{R}$

$\lim_{\zetaarrow-\infty}u(\zeta, t)=0,\lim_{\zetaarrow\infty}u(\zeta, t)=1$ .

It follows from (4) and (6), $\delta$ and $\hat{V}$ can be given as the function of $(\kappa, k,\epsilon)$ .

Remark 1For $\chi(v)=v$ , $\delta$ satisfies

$\frac{k}{2\sqrt{\kappa^{2}+4\gamma}}(2-e^{-k\delta}+-e^{k_{-}\delta})=c^{*}$ (7)

and $\hat{V}$ is represented by

$\hat{V}=\epsilon\kappa+\frac{k(e^{-k}\dagger^{\delta}-e^{k_{-}\delta})}{2\sqrt{\kappa^{2}+4\gamma}}$ . (8)

Moreover it holds that

$\frac{\partial\hat{V}}{\partial\kappa}|_{\kappa=0}=\epsilon+\frac{k-2c^{*}\sqrt{\gamma}}{4\gamma}\log\frac{k}{k-2c^{*}\sqrt{\gamma}}$ . (9)

Since $\frac{\partial\hat{V}}{\partial\kappa}|_{\kappa=0}>0$ for any $k$ satisfying $k>2c^{*}\sqrt{\gamma}$, the planar equilibrium solution, that is
$\kappa$ $=0$ , is stable with respect to some disturbances.

As the related result, we show the stability of the planar equilibrium solution of (1) in
the channel domain $\Omega_{L}$ .

Theorem 1(Tsujikawa [10]) The planar equilibrium solution of (1) in the channel domain
$\Omega_{L}$ with Newmann boundary conditions on $x=-L$, $L$ is linearly stable for sufficient$lly$ small

$\mathrm{e}$ if the solution exists.

2.2 The pattern with atriple junction
We treat the traveling solution with atriple junction (Figure 1). From the numerical
simulations, it is known that

(S3) There exists the traveling solution with atriple junction and the profile of the front
interface without the neighborhood of the triple junction is independent of $k$ for fixed
domain size $L$ (Figures 1and 3)
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(54) The curvature and velocity of the front interface decrease when $L$ increases (Figures
3 and 4).

(55) The velocity of the traveling solution increases when $k$ increases (Figure 5).

We only consider the case that there is an aggregating region $\Omega_{1}$ which has three branches
and they connect at one region. Each branch which we call $B_{i}(i=1,2,3)$ has two interfaces
$\Gamma_{i}^{1}$ and $\Gamma_{i}^{2}$ and each curvature of their interface denotes $\kappa_{i}$ . Then, we assume that the width
$\delta(\kappa_{i})$ of the branch $B_{i}$ satisfies (7). Define the crossing points of each interfaces by $A_{i,j}$ .
Then there exists atriangle which has three vertices $\mathrm{A}\mathrm{i}$ ) $2$ , $A_{2,3}$ and $A_{3,1}$ . Let $\theta_{i,j}$ and $\delta_{k}^{*}$

be the angles of each vertex $A_{i,j}$ and the length of the side opposite to $A_{\dot{1}}\dot{o}(i,j\neq k)$ .
Therefore, it follows from Sine formula that

$\frac{\delta_{3}^{*}}{\sin\theta_{1,2}}=\frac{\delta_{1}^{*}}{\sin\theta_{2,3}}=\frac{\delta_{2}^{*}}{\sin\theta_{3,1}}$, (10)

where $\delta_{k}^{*}=\delta(\kappa_{k})$ and $\theta_{1,2}+\theta_{2,3}+\theta_{3,1}=2\pi$ .
Since the profile of the traveling solution is symmetric with respect to $y$-axis, we treat

the solution in the half region $\Omega_{L/2}=\{(x, y)|0<x<L, -\infty<y<\infty\}$ . Assuming that
two interfaces of the front part of the solution have same curvature, we may only consider
either interface in two ones, which we denote $\Gamma$ . Next, to obtain the boundary condition
of the interfaces $\Gamma$ on an, the tangent unit vector of the curve $\hat{\gamma}$ denotes by $T_{a}(\hat{\gamma})$ . If the
boundary condition of (1) at $x=L$ is Neumann type, then we assume that

$T_{a}(\Gamma)[perp] T_{a}(\partial\Omega_{L/2})$ at $x=L$ . (11
$\dot{}$

Define the curve corresponding to the interface $\Gamma$ as $y=\omega(x, t)=h(x)-Vt$ with aconstant
velocity $V$ . Then, the boundary conditions may be given by

$\frac{dh}{dx}(0)=\tan\alpha$ , $\frac{dh}{dx}(L)=0$ (12)

where $\alpha$ is an unknown constant.

Since $\hat{V}$ is the velocity of the normal direction to the front interface, $V$ satisfies

$V$ $=\sqrt{1+h’(x)^{2}}\hat{V}$

$= \sqrt{1[perp]_{1}h’(x)^{2}}\{\epsilon\kappa+\frac{k(e^{-k\delta}+-e^{k_{-}\delta})}{2\sqrt{\kappa^{2}+4\gamma}}\}$

where $\kappa=\frac{-h’(x)}{(1+h’(x)^{2})^{\mathrm{A}}2}$ .
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Here, we assume that $k$ is large and $\kappa$ is small Then it follows from (7) that

$\delta\cong\frac{2c^{*}}{k}+O((\frac{1}{k}+\kappa)^{2})$ . (13)

Therefore, we have

$V$ $\cong$
$\sqrt{1+h(x)^{2}}’\kappa(\epsilon+\frac{c^{*}}{\sqrt{\kappa^{2}+4\gamma}}-\frac{c^{*2}}{k})$

$\cong$
$\sqrt{1+h’(x)^{2}}\kappa\{\epsilon+\frac{c^{*}}{2\sqrt{\gamma}}(1-\frac{2c_{}^{*}\acute{\overline{\gamma}}}{k})\}$ (14)

$=$ $- \frac{h’(x)}{1+h’(x)^{2}}\{\epsilon+\frac{c^{\mathrm{r}}}{2\sqrt{\gamma}}(1-\frac{2c^{*}\sqrt{\gamma}}{k})\}$ .

Since $V$ is aconstant, the solution $h(x)$ of (12), (14) is given by

$h(x)= \frac{L}{\alpha}\log(\cos\frac{\alpha}{L}(x-L))+c$ (15)

with
$V= \frac{\alpha}{L}\{\epsilon+\frac{c^{*}}{2\sqrt{\gamma}}(1-\frac{2c^{*}\sqrt{\gamma}}{k})\}$ (16)

and any constant $c$ .

Remark 2From (16), the velocity $V$ decreases with respect to $L$ and increases with respect
to $k\iota f$ $\alpha$ is independent of L. Therefore, this supports the result of Figures 4and 5.

Remark 3It holds that

$\frac{\partial\kappa}{\partial L}=-\frac{\alpha}{L^{2}}\{\cos\frac{\alpha}{L}(x-L)+\alpha \mathrm{s}.\mathrm{n}\frac{\alpha}{L}(x-L)\}$

where $\kappa=\frac{\alpha}{L}\cos\frac{\alpha}{L}(x-L)$ . Moreover,

$\frac{\partial\kappa}{\partial L}<0$ for $0<\alpha<\alpha^{*}$ ,

where $\alpha^{*}$ satisfies $\tan(-\alpha^{*})=-\frac{1}{\alpha}$. for $\frac{\pi}{4}<\alpha^{*}<\frac{\pi}{3}f$ that is, $iAe$ mean curvature decreases
with respect to $L$ when asatisfies $0<\alpha<_{\vee}’\alpha^{*}$ . It follows from $(’10)$ and (13) that $\alpha=$

$\frac{\pi}{6}+O((\frac{1}{k}+\kappa)^{2})$ for large $k$ and small $\kappa$ .
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2.3 Stability of the traveling solution $\omega(t,$ $x_{J}^{\backslash }=h$ (xl,–Vt for (14)
and (12)

We note that $\omega(t, x)$ is the traveling solution of the following problem:

$\{$

$w_{t}= \frac{w’}{1+w2},\{\epsilon+\frac{c^{*}}{2\sqrt{\gamma}}(1-\frac{2c^{*}\sqrt{\gamma}}{k})\}$ , $t>0$ , $x\in(0, L)$

$\mathrm{w}’(\mathrm{t}, \mathrm{O})=\tan\alpha$ , $w’(t, L)=0$ , $t>0$

$w(t, 0)=w_{0}(x)$ , $x\in(0, L)$

(17)

where $w_{0}(x)$ satisfies $\int_{0}^{L}(w_{0}-h)dx=0$ .

Proposition 1(Garcke, Nestler and Stoh [5]) For the traveling solution $\omega(t, x)$ of (17),
$w(t, x)-\omega(t, x)$ exponentially decays with respect to $L^{2}(0, L)$ as $t$ increases. Therefore, the
traveling solution {$v(t, x)$ is stable.

3Concluding Remarks
In Section 2.1, we consider the motion of the interface curve of the band pattern with a
constant curvature. For the general case, that is, the curvature is not constant, it is aopen
problem. But, there are several results for the one phase problem of Allen-Cahn equation
and etc..

In Section 2,2, we assume the boundary conditions (12) of the front interface curve to
study the velocity of the traveling solution. For the special case of (1), which is treated in
[1], by the method shown in [9] the same boundary condition at $x=L$ will be shown. On
the other hand, Bronsard and Reitich [2] considered the contact angle of the triple junc-
tion pattern for Allen-Cahn equation, Ei, Ikota and Mimura [3] for competition-diffusion
system. They treated the contact angle at the meeting point of three curves. In our case,
their consideration and the approach to construct the solution with the interior transition
and boundary layers of Allen-Cahn equation by Owen et al. [8] are useful to obtain the
contact angle. This will be our fearture work.
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Contow line $(\mathrm{u}(\mathrm{t},$x) $=\mathrm{a}$ ) of the solution

$\mathrm{t}=0$

$\mathrm{t}=20$ t $=200$

t $=40$ $\mathrm{t}=400$

$\mathrm{t}=80$

$\mathrm{F}\mathrm{i}\mathrm{g}\iota \mathrm{n}\mathrm{e}$ $1$
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$\mathrm{t}=0$

$\mathrm{t}=0$

Figure 2
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Figure 3
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Figure 4
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$\mathrm{X}(\mathrm{v})=\mathrm{v}$, k $=5.0$ , $\epsilon$ $=0.05$

Figure 5
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