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Abstract

In order to obtain a sufficiently accurate approximation of the distribution under the
suitable conditions by the Monte Carlo simulation, the number of replications may be very
large. But, it is shown in the paper that such a large sample is not necessary if one wants
to get a randomized test of exact size which has a negligible loss of efficiency in comparison
with the best non-randomized test in some sense.

1. Introduction

As sophisticated programs come to be more easily available in statistical analysis, simu-
lation techniques are more often resorted to. Thus when exact test procedures are difficult to
be calculated and usual asymptotic approximations are not exact enough, simulation tech-
nique is often applied (see, e.g. Johnson (1987), Rubinstein (1981), Rubinstein and Melamed
(1998)). But it often happens when we want to approximate the distribution with sufficient
accuracy under the hypothesis by Monte Carlo simulation, the repeated number required is
very big.

The purpose of this paper is to show that it is not necessary to have such a big sample, if
we have in mind that our object can be considered to obtain a randomized test of exact size
with negligible loss of efficiency compared with the best non-randomized test, which goal
can be achieved with relatively small Monte Carlo sample.

2. Loss of the power of the test

Consider the following situation, let X;, ..., X, be random variables according to some
joint distribution Py characterized by a real parameter 6.

Suppose that it is required to test the simple hypothesis H : § = 6, against the alternative
6 # 6y with level a. A test procedure based on the test statistic 7* = £(X3, ..., X,,) rejecting
the hypothesis if T* > t,, is shown to have optimum (in some or other sense) property.
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However, it often happens that the exact critical point ¢, is difficult to calculate, and
the approximations (e.g. based on the asymptotic expansion) are not necessarily accurate.
Then we have to resort to simulation. N replications of the set of n values X7;,..., X;; (i =
1,...,N) which are independently distributed according to the same joint distribution with
X1,..., X, with 8 = 6,. N values of statistic T; = t(X,,...,X};) are calculated and the
hypothesis rejected if T* > (), where T(y, is the m—th largest value in the order set of
the values 73,...,Ty. Then, assuming that the distribution of T is continuous with zero
probability for the ties, we have

Poo {T* > Timy } = ﬁmﬁ
Hence, if m = (N + 1)a, we have the test procedure of exact size. For the power of the test
we define
Qo(t) 1= Po{T™* > t}.
Then Qg,(to) = a and B*(0) := Qp(ta) is the power of the "optimum” test at 6 # 6. The
power function of the above randomized test is given as

B(8) := Eo[Po{T* > Tim)|T(m)}] = E6[Qs(Tn)]-

Now we can expand it as

QulTio) ~Qofte) + { 5Qta) } T — 1o

422 Qulte) Ty — 1a)? + 0T — ).
2 012 m) e m) ~ b
Denoting
b= Eg[T(m) — tal,
and
v 1= Vo(T(m) — ta) = Bo[(Tim) — ta)?] — b%
we have
) 1( 8 .
5(6) = BIQu(To)] = Qlte) + { o) o+ 5 { F50te0)} 0 )

4o(v? + b?).
When 6 = 6y, we have
o = Eg,[Qas(T(m))]
a 1 62 2 2 2 2
= Qulte) + { Fntta) o+ 3 { 3 Qn(t) } 0 1) 4o +8),

Since Qg,(ta) = @, it follows that

{%QOo(ta)} b+ % {%Q%(ta)} (v* +b%) = o(v® +b°),
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80) = 576) + { ut) o+ 3 { et )}(v2+b2>+o(v2+b2>

ot Q9 (ta) Qoo (ta)
at Qﬂo (ta)

= B*(6) + %(vz +5°) {—gt—on(ta) } +o(v? +b%).

The second term {- - - } represents the loss of the power due to randomization.

Now let U; < --- < Uy be the order statistic of size N from the uniform distribution on
the interval (0,1). Then we can express

Temy = Q5" (Utm)
- 05@) + { 2-03%@) | (Uim - )

+ % {%Qil(a)} Um) = @)* + o((Um) = @)*),

from which we obtain

BuTo) =ta+ 3 { 5ei0' @} 22 + 0 ().

Ego[(Tm) — ta)?] = {%QEJ(“)} aﬁ+3) O(N)

_ 1 a(l — a) o 1
{%Qoo(tat)}2 N+2 ¥ <N>

Consequently we have

. o a(l —a)
B*(0) — B(8) = 2(N +2) {2 Qe (ta) }
N {ZQo(ta)} {%Qoo(ta)} o ( 1 )
2 Quolta) {2Qa(ta)}’ N/

3. Normal case

When T™ is distributed according to the normal distribution with mean 0 and variance
1 under the hypothesis and mean (> 0) and variance o? under the alternative hypothesis,
we obtain '

Qso(t) =1 — (1),
Qo(t) =1-2 (%_a) :
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o(t) = /_t d(u)du with ¢(u) = J—lﬁe‘“m,

hence

o B 0 _
5% (t) = —6(t),  55Qu(t) = t4(2),
o= 2(5). Sown-504(5)
Therefore we have
. —a(l_a). 1 ta — 6 -t__ta_o
PO =FO) =582 ndt) ¢ ( o ) (U o! ) |
If 02 =1, then

vy o(l—a) 0 B
ﬁ(a)_ﬂ (0)—' 2(N+2) : ta¢2(ta) ¢(ta 0))
hence, for a large t, and small 6,
— 2

From (1) we have

2ta¢(ta 92
a(a — 1) (N + 2)A(9) =~ Oexp (—E + 0ta)
1 2 1.
_ _L— = 2
Bexp{ 50 —ta) +2ta} (2)
for a large t, and small §. Then it follows that the value maximizing (2) is given by
1

0=§(ta+\/t§+4). (3)

If o = 0.05, then t, = 1.64, which yields § = 2.11 from (3). From (2) we also have
N =100.55 for ¢ = 0.01. The values of N satisfying A(f) = c for 0> = 1 and a = 0.05 are
given below.

Table 1. The values of the solution N of A(f) = ¢ for 0® = 1, a = 0.05.

c\\. 6| 050 1.00 1.50 2.11 2.50 3.00
0.01 | 12.06 | 41.99 | 78.38 | 100.55 | 91.92 | 62.86
0.005 | 26.12 | 85.98 | 158.77 | 203.10 | 185.85 | 127.72
0.001 | 138.60 | 437.88 | 801.83 | 1023.48 | 937.24 | 646.60

References

Johnson, M. E. (1987). Multivariate Statistical Simulation. Wiley, New York.
Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. Wiley, New York.

Rubinstein, R. Y. and Melamed, B. (1998). Modern Simulation and Modeling. Wiley, New
York.



