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Abstract: In this paper, conservative simultaneous confidence intervals for
multiple comparisons among mean vectors in multivariate normal distributions
are considered. Some properties of the multivarite Tukey-Kramer procedure
for pairwise comparisons and aconservative procedure for comparisons with
acontrol are presented, and the extent of conservativeness for the procedure
for comparisons with acontrol is discussed.
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1Introduction

Consider the simultaneous confidence intervals for multiple comparisons among mean vec-

tors from the multivariate normal populations. We discuss the extent of conservativeness

for the multivariate Tukey-Kramer(T-K) pairwise comparisons procedure and for the con-

servative procedure on comparisons with acontrol by SeO(1995). Let $\mu_{i}$ be the mean

vector from $i\mathrm{t}\mathrm{h}$ population. Let $M=[\mu_{1}, \ldots, \mu_{k}.]$ be the unknown $p\mathrm{x}k$ matrix and

$\overline{M}=[\hat{\mu}_{1}, \ldots,\hat{\mu}_{k}]$ be the estimator of $M$ such that $\mathrm{v}\mathrm{e}\mathrm{c}(X)$ is distributed as $N_{kp}(0, V\otimes\Sigma)$ ,

where $X=\overline{M}-M$, $V$ is aknown 7 $\mathrm{x}k$ positive definite matrix and 1is an unknown

$p\cross p$ positive definite matrix, and $\mathrm{v}\mathrm{e}\mathrm{c}(-)$ denotes the column vector formed by stacking

the columns of the matrix under each other. Also, let $S$ be an unbiased estimator of $\Sigma$

such that $\nu S$ is independent of $\overline{M}$ and is distributed as aWishart distribution $W_{p}(\Sigma, \nu)$ .

Then the simultaneous confidence intervals for multiple comparisons among mean vectors
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are given by

$a’Mb$ $\in[a’\overline{M}b\pm t(b’Vb)^{1/2}(a’Sa)^{1/2}]$ , Va $\in \mathbb{R}^{p}$ , $\forall b\in \mathrm{B}$ , (1)

where $\mathbb{R}^{p}$ is the set of any nonzero real -dimensional vectors and $\mathrm{B}$ is asubset that

consists of $r$ vectors in the $k$-dimensional space. We note that the value $t(>0)$ is the

upper apercentile of the $T_{\max}^{2}$-type statistic,

$T_{\max}^{2}= \mathrm{m}\mathrm{a}\mathrm{x}b\in \mathrm{B}\{\frac{(Xb)’S^{-1}\wedge Xb}{bVb},\}$ , (2)

which the coverage probability for (1) is $1-\alpha$ .

In many experimental situations, pairwise comparisons and comparisons with acontrol

are standard for multiple comparisons. In the case of pairwise comparisons, we note that

B $=\mathbb{C}\equiv\{c\in \mathbb{R}^{k}$ : c $=e_{\dot{l}}-e_{j}, 1\leq i<j\leq k\}$ ,

where $e_{i}$ is the zth unit vector of the $k$-dimensional space. We can also express (1) as

$a’(\mu_{i}-\mu_{j})\in[a’(\hat{\mu}_{\dot{\mathrm{t}}}-\hat{\mu}_{j})\pm t_{\max\cdot p}(d_{ij}a’Sa)^{1/2}]$ , $\forall a\in \mathbb{R}^{p}$ , $1\leq i<j\leq k$ ,

where $t_{\mathrm{n}1\mathrm{a}\mathrm{x}\cdot p}^{2}$ is the upper $\alpha$ percentile of $T_{\max\cdot p}^{2}$ statistic,

$T_{\max\cdot p}^{2}= \max_{\dot{l}<j}\{(x:-x_{j})’(d_{ij}S)^{-1}(x_{i}-x_{j})\}$ ,

and $d_{ij}=v_{ii}-2v_{ij}+v_{jj}$ .

In the case of pairwise comparisons and $V=I$, the $T_{\max}^{2}$ type statistic is reduced as

the same as half of the multivariate studentized $\mathrm{r}$ ange statistic $R_{\max}^{2}$ which is an extension

of the usual univariate studentized range (see, e.g., Seo and Siotani(1992)). Seo, Mano

and Fujikoshi(1994) proposed the multivariate Tukey-Kramer procedure which is asimple

procedure by replacing with the upper percentile of the multivariate studentized range

statistic as an approximation to the one of $T_{\max}^{2}$ type statistic for any positive definite

matrix $V$ . This procedure is an extension of Tukey-Kramer procedure(Tukey 1953;

Kramer 1956, 1957). The Tukey-Kramer procedure is an attractive and simple procedure
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for pairwise multiple comparisons. On the univariate case, it is shown in Dunnett (1980)

that the generalized Tukey conjecture for pairwise comparisons by an extensive simulation

study. Theoretical discussions related to this conjecture are referred to Hayter(1984,

1989), Brown(1984). It is known that this generalized conjecture is true for (i) $k=$

$3$ (see, Brown(1984)) and (ii) $\mathrm{t}_{j}.’ \mathrm{s}$ satisfy $d_{ij}=a_{i}+a_{j}$ for some positive numbers $a_{i}$ and

$a_{j}$ (see, Hayter(1989)), where $d_{ij}=v_{ii}-2v_{ij}+v_{jj}$ . Thus even for the univariate case,

there has been no analytical proof of the generalized Tukey conjecture except the special

cases. Further, Lin, Seppanen and Uusipaikka(1990) have discussed the generalized Tukey

conjecture for pairwise comparisons among the components of the mean vector.

The multivariate generalized Tukey conjecture is known as the statement that the

multivariate Tukey-Kramer procedure yields the conservative simultaneous confidence

intervals for all pairwise comparisons among mean vectors. The multivariate version of the

generalized Tukey conjecture has been affirmatively proved in the case of three correlated

mean vectors by Seo, Mano and Pujikoshi(1994). Relating to this conjecture, SeO(1996)

discussed how the approximate simultaneous confidence level by the multivariate Tukey-

Kramer procedure is close to $1-\alpha$ . The related discussion for the univariate case is

referred to Somerville(1993).

In the case of comparisons with acontrol, we have

B $=\mathrm{D}$ $\equiv\{d\in \mathbb{R}^{k}$: d $=e_{i}-e_{k},$i $=1,$\ldots , k-1},

where $k$-th population is the control. Then we can write (1) as

$a’(\mu_{i}-\mu_{k})\in[a’(\hat{\mu}_{i}-\hat{\mu}_{k})\pm t_{\max\cdot c}(d_{ik}a’Sa)^{1/2}],\forall a\in \mathbb{R}^{\mathrm{p}}$ , i $=1$ , \ldots , k-1.

where $t_{\max\cdot c}^{2}$ is the upper $\alpha$ percentile of $T_{\max\cdot c}^{2}$ statistic,

$T_{\max\cdot c}^{2}= \max_{i=1,\ldots,k-1}\{(x_{i}-x_{k})’(d_{ik}S)^{-1}(x_{i}-x_{k})\}$ .

In this paper, we discuss the extent of conservativeness for the simultaneous confi-

dence intervals for comparisons with acontrol in the case of three mean vectors. The
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organization of the paper is as follows. In Section 2, the extent of conservativeness for

the multivariate Tukey-Kramer procedure is discussed. In Section 3, aconservative pr0-

cedure for comparisons with acontrol by SeO(1995) is presented and its upper bound for

the conservativeness is presented.

2The multivariate Tukey-Kramer procedure

The simultaneous confidence intervals for all pairwise comparisons by the multivariate

Tukey-Kramer procedure are given by

$a’(\mu_{i}-\mu_{j})\in[a’(\hat{\mu}_{i}-\hat{\mu}_{j})\pm t_{p}\sqrt{d_{ij}a’Sa}],\forall a\in \mathbb{R}^{p}$ , $1\leq i<j\leq k$ , (3)

where $t_{\mathrm{p}}^{2}$ is the upper apercentile of $T_{\max\cdot p}^{2}$ statistic with $V=I$, that is, $t_{p}^{2}=q^{2}/2$ and

$q^{2}\equiv q_{p,k,\nu}^{2}(\alpha)$ is the upper apercentile of the pvariate studentized range statistic with

parameters $k$ and $\nu$ . By areduction of relating to the coverage probability of (3), Seo,

Mano and Fujikoshi(1994) proved that the coverage probability in the case $k=3$ is equal

or greater than 1–at for any positive definite matrix $V$ . Using the same reduction,

SeO(1996) discussed the bound of conservative simultaneous confidence levels.

Consider the probability

$Q(t, V,\mathrm{B})$ $=\mathrm{P}\mathrm{r}\{(Xb)’(\nu S)^{-1}(Xb)\leq t(b’Vb), \forall b\in \mathrm{B} \}$ , (4)

where $t$ is any fixed constant. Without loss of generality, we may assume $\Sigma=I_{p}$ when

we consider the probability (4).

When $t^{2}=t_{p}^{*2}=t_{p}^{2}/\nu$ and $\mathrm{B}$ $=\mathbb{C}$ , the coverage probability (4) is the same as the cov-

erage probability of (3). The conservativeness of the simultaneous confidence intervals

(3) means that $Q(t_{p}^{*}, V, \mathbb{C})\geq Q(t_{p}^{*}, I, \mathbb{C})=1-\alpha$ . The inequality is known as the mul-

tivariate generalized Tukey conjecture. Then we have the following theorem for the case

$k=3$ by using same line of the proof of Theorem 3.2 in Seo, Mano and Fujikoshi(1994)
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Theorem 1Let $Q(t_{p}^{*}, V, \mathbb{C})$ be the coverage probability (3) for a positive definite
matrix $V$ and $t_{p}^{*}=q/\sqrt{2\nu}$ . Then, for any $V_{f}$ it holds that

$1-\alpha=Q(t_{p}^{*}, I, \mathbb{C})\leq Q(t_{p}^{*}, V, \mathbb{C})<Q(t_{p}^{*}, V_{0}, \mathbb{C})$ ,

where $V_{0}$ satisfies with one of $\sqrt{d_{ij}}=\sqrt{d_{il}}+\sqrt{d_{jl}}$, $i\neq j\neq l$ .

This is the extended result of SeO(1996). As aconjecture, it may be expected that the

inequality holds for general case $k\geq 4$ .
For aspecial case that $V$ is adiagonal matrix, we consider the statistic $T_{\max\cdot \mathrm{p}}^{2}$ with

the case $V=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(n_{1}^{-1}, \ldots,n_{k}^{-1})$ . Then we have

$T_{\max\cdot p}^{2}= \mathrm{m}\mathrm{a}\mathrm{x}i<j[\frac{(x_{i}-x_{j})’S^{-1}(x_{i}-x_{j})}{n_{i}^{-1}+n_{j}^{-1}}]$ .

Without loss of generality, we can assume $n_{i}\leq n_{j}$ and put $a_{ij}^{2}=n_{i}/n_{j}$ . Then we have

$T_{\max\cdot p}^{2}= \max_{\dot{\iota}<j}[\frac{(u_{i}-a_{ij}u_{j})’S^{-1}(u_{i}-a_{ij}u_{j})}{1+a_{ij}^{2}}]$ ,

where $u_{i}=\sqrt{n_{\dot{1}}}(\hat{\mu}_{i}-\mu_{i})\sim N_{p}(0,$ $\eta$ and $\nu S\sim WP(I, \nu)$ . Then, when $a_{\dot{l}j}arrow 0$ , we have

$T_{\max\cdot p}^{2}= \tilde{T}_{\max}^{2}=\max_{i=1,\ldots,k-1}\{u_{\acute{t}}’S^{-1}u_{i}\}$ .

Also, when $k=3$ , the distribution of $\overline{T}_{\max}^{2}$ statistic is the same as that of $T_{\max\cdot p}^{2}$ statistic

with $\sqrt{d_{12}}=\sqrt{d_{13}}+\sqrt{d_{23}}$ or $\sqrt{d_{13}}=\sqrt{d_{12}}+\sqrt{d_{23}}$ or $\sqrt{d_{23}}=\sqrt{d_{12}}+\sqrt{d_{13}}$ , that is,

one of $\sqrt{d_{ij}}=\sqrt{l_{l}}.+\sqrt{d_{jl}}$, $i\neq j\neq l$ . From Theorem 1, it follows that $Q(t_{p}^{*}, V, C)<$

$\mathrm{P}\mathrm{r}\{\tilde{T}_{\max}^{2}<t_{p}^{*2}\}$ for any diagonal matrix $V$ . Therefore, ewe have the following corollary.

Corollary 2Let $Q(t_{p}^{*}, V, \mathbb{C})$ be the coverage probability (3) for a positive definite
and diagonal matrix $V$ and $t_{p}^{*}=q/\sqrt{2\nu}$ . Then, for any $V$ , it holds that

$1-\alpha=Q(t_{p}^{*}, I, \mathbb{C})\leq Q(t_{p}^{*}, V, \mathbb{C})<\mathrm{P}\mathrm{r}\{\tilde{T}_{\max}^{2}<t_{p}^{2}\}$,

where

$\overline{T}_{\max}^{2}=\max_{:=1,\ldots,k-1}\{u_{j}’S^{-1}u.\}$ ,

and $\mathrm{u}_{i}$ , $i=1$ , $\ldots$ , $k-1$ are independent identically distributed as $N_{p}(0, I)$ and $\nu S$ is

distributed as $W_{p}(I, \nu)$ .
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3Aconservative procedure for comparisons with acontrol

In this section, aconservative procedure for comparisons with acontrol by SeO(1995)

is discussed. The simultaneous confidence intervals for all comparisons with acontrol are

given by

$a’(\mu_{i}-\mu_{k})\in[a’(\hat{\backslash }\mu_{\dot{l}}-\hat{\mu}_{k})\pm t_{\max\cdot c}\sqrt{d_{ik}a’Sa}.]$ , $\forall a\in \mathbb{R}^{p}$ , $i=1$ , $\ldots$ , $k-1$ , (5)

where $t_{\max\cdot c}^{2}=t_{c}^{2}(\alpha;p, k, \nu, V)$ is the upper $\alpha$ percentile of $T_{\max\cdot c}^{2}$ statistic. SeO(1995)

conjectured conservative simultaneous confidence intervals given by

$a’(\mu_{i}-\mu_{k})\in[a’(\hat{\mu}_{i}-\hat{\mu}_{k})\pm t_{c}\sqrt{d_{ik}a’Sa}.],\forall a\in \mathbb{R}^{p}$ , $i=1$ , $\ldots$ , $k-1$

with $t_{c}=\mathrm{t}\mathrm{c}(\mathrm{a};\mathrm{p}, k, \nu, V_{1})$ and $V_{1}$ satisfies with $d_{tj}=d_{ik}+d_{jk}$ , $1\leq i<j\leq k-1$ . This

conjecture has been affirmatively proved in the case of $k=3$ by SeO(1995).

The coverage probability (4) with $t^{2}=t_{c}^{*2}=t_{c}^{2}/\nu$ and $\mathrm{B}$ $=\mathrm{D}$ is the same as the

coverage probability of (5). Then we have the following theorem for the case $k=3$ .

Theorem 3Let $Q(t_{c}^{*}, V, \mathrm{D})$ be the coverage probability (5) for a positive definite
matrix $V$ and $t_{c}^{*2}=t_{c}^{2}(\alpha;p, k, \nu, V_{1})/\nu$ . Then, for any $V_{f}$ it holds that

$1-\alpha=Q(t_{c}^{*}, V_{1}, \mathrm{D})$ $\leq Q(t_{c}^{*}, V, \mathrm{D})$ $<Q(t_{c}^{*}, V_{2}, \mathrm{D})$ ,

where $V_{1}$ satisfies with $d_{12}=d_{13}+d_{23}$ and $V_{2}$ satisfies with $\sqrt{d_{12}}=|\sqrt{d_{13}}-\sqrt{d_{23}}|$ .

From Theorem 3, it is noted that the procedure with $t_{c}=t_{c}^{*}$ for multiple comparisons

with acontrol yields the conservativeness for any positive definite matrix $V$ when the case

$k=3$ . For the case $k\geq 4$ , we can conjecture that the following simultaneous confidence

intervals are conservative.

$a’Md$ $\in[a’\overline{M}d\pm t_{\mathrm{c}}(d’Vd)^{\frac{1}{2}}(a’Sa)^{\frac{1}{2}}]$ , Va $\in \mathbb{R}^{p},\forall d\in \mathrm{D}$ ,

where $t_{c}=t_{c}(\alpha;p, k, \nu, V_{1})$ and $V_{1}$ satisfies with the conditions $d_{ij}=d_{ik}$. $+d_{jk}$ , $1\leq i<$

$j\leq k-1$ . That is, it may be expected that the procedure give the conservative and good

approximate simultaneous confidence intervals. Further, we have the following corollary
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Corollary 4Let $Q$ ( $t_{c}^{*}$ , $V$ , I[) $)$ be the coverage probability (5) for a positive definite
and diagonal matrix V. Then, for any $V$ , it holds that

$1-\alpha=\mathrm{P}\mathrm{r}\{\overline{T}_{\max}^{2}<t_{c}^{2}\}<Q(t_{c}^{*},$V,$\mathrm{D})<\mathrm{P}\mathrm{r}\{T_{k}^{2}<t_{c}^{2}\}$,

where $t_{c}^{*2}=t_{\mathrm{c}}^{2}/\nu,$ $t_{c}^{2}$ is the upper apercentile of $\overline{T}_{\max}^{2}$ statistic defined in Corollary 2, and

$T_{k}^{2}$. statistic is $np/(n-p+1)F_{p,n-p+1}$ statistic with p and n $-p+1$ degrees offfeedoms.
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