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In this paper we present and state evidence for aconjecture on the existence
and properties of new vectors for generic irreducible admissible representa-
tions of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character for $F$ anonarchi nedean
field of characteristic zero. To summarize the conjecture, let $O$ be the ring
of integers of $F$ and let $\mathcal{P}$ be the prime ideal of $O$ . We define, by asimple
formula, asequence of compact open subgroups $\mathrm{K}\{\mathrm{V}\mathrm{n}$) of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ indexed
by nonnegative integers $n$ . The first group $\mathrm{K}(\mathrm{O})$ is $\mathrm{G}\mathrm{S}\mathrm{p}(4, O)$ . The second
group $\mathrm{K}(\mathcal{P})$ is the other maximal compact subgroup of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ , up to
conjugacy, and is called the paramodular group. Automorphic forms for the
global version of this group have been considered by T. Ibukiyama and his
collaborators in anumber of papers dealing with agenus two version of Eich-
ler’s correspondence and old and new forms. In general, we refer to $\mathrm{K}(\mathcal{P}^{\iota}’)$

as the paramodular group of level $\mathcal{P}^{n}$ . Given ageneric irreducible admissi-
ble representation $\pi$ of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character, we consider
the space of vectors fixed by each $\mathrm{K}(\mathrm{V}\mathrm{n})$ . The conjecture for $\pi$ makes three
assertions. First, for some nonnegative $n$ , the space of $\mathrm{K}(\mathrm{V}\mathrm{n})$ fixed vectors is
nonzero; second, if $N_{\pi}$ is the smallest such $n$ , then the space of $\mathrm{K}(\mathcal{P}^{N_{n}})$ fixed
vectors is one dimensional; and third, this one dimensional space contains a
vector $W_{\pi}$ whose Novodvorsky zela integral gives the Novodvorsky &facLor
of the representation:

$Z(s, W_{\pi})=L(s, \pi)$ .

We call $W_{\pi}$ the new vector of $\pi$ . Zeta integrals depend on achoice of Whit-
taker model, which depends on achoice of nondegenerate character: we make
achoice independent of $\pi$ .

Evidently, the conjecture is similar to the theory of new vectors for generic
irreducible admissible representations of $\mathrm{G}\mathrm{L}(2, F)$ with trivial central charac-
ter. Just as for $\mathrm{G}\mathrm{L}(2, F)$ , there is asimple relation between new vectors and

’Partialy supported by aNSA Young Investigators Gran

数理解析研究所講究録 1338巻 2003年 107-121

107



$\epsilon$-factors. Assume the conjecture holds for $\pi$ . There exists an Atkin-Lehner
type element $u_{N_{\pi}}$ in $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ which normalizes $\mathrm{K}(\mathcal{P}^{N_{\pi}})$ and whose square
is in the center. Thus, $\pi(u_{N_{\pi}})W_{\pi}=\epsilon_{\pi}W_{\pi}$ for some $\epsilon_{\pi}=\pm 1$ . Moreover, it is
easy to show that

$\epsilon(s, \pi)=\epsilon_{\pi}q^{-N_{\pi}(s-1/2)}$

so that $\epsilon(1/2,\pi)=\epsilon_{\pi}$ . Here, $q$ is the order of $O/\mathcal{P}$ , and we use the mentioned
nondegenerate character in the definition of the e-factor.

We state three pieces of evidence for the conjecture. First, the first two
parts of the conjecture are true for all $\pi$ containing anonzero vector fixed by
the Iwahori subgroup. As evidence for the third part of the conjecture for
such $\pi$ one also has

$\epsilon(s,\varphi_{\pi},\psi,\mathrm{d}x_{\psi})=\epsilon_{\pi}qN_{\pi}(s1/2)$

where $\varphi_{\pi}$ is the $L$-parameter assigned to $\pi$ by [KL]. Second, the first two
parts of the conjecture are true for many $\pi$ induced from the Siegel or Klin-
gen parabolic subgroups, and for these $\pi$ , the level $\mathcal{P}^{N_{\pi}}$ is as expected. Fi-
nally, in proving the analogue for $\mathrm{G}\mathrm{S}\mathrm{p}(4)$ of the dihedral case of the global
Langlands-Tunnell theorem, [R1] defined certain local $L$-packets $\Pi(\tau)$ and
-parameters $\varphi(\tau)$ for $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ which depend on ageneric tempered irre-

ducible admissible representation $\tau$ of $\mathrm{G}\mathrm{L}(2, E)$ with trivial central character,
where $E$ is either aquadratic extension of $F$ , or $F\mathrm{x}F$ . The work [R1] gave
strong global evidence that $\Pi(\tau)$ is the -packet of $\varphi(\tau)$ . Assuming $q$ is
odd, we show that if $E/F$ is unramified or $E=F\mathrm{x}F$ , then the generic
element $\pi$ of $\Pi(\tau)$ contains anonzero vector $W$ fixed by $\mathrm{K}(\mathcal{P}^{N})$ , where $N$

is defined by $\epsilon(s, \varphi(\tau)$ , $\psi,\mathrm{d}x_{\psi})$ $=cq^{-N(s-1/2)}$ , and $c$ is aconstant. Moreover,
$Z(s, W)=L(s, \pi)$ .

To end this introduction, we emphasis that our conjecture is for generic
irreducible admissible representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central char-
acter. In gathering evidence we have encountered various related cases and
questions, as mentioned below. But, for example, currently we are not in a
position to state aconjecture for the case of nontrivial central character.

Notation

In this paper $\mathrm{G}\mathrm{S}\mathrm{p}(4,F)$ is the group of $g$ in $\mathrm{G}\mathrm{L}(4, F)$ such that

${}^{t}g$ $\{\begin{array}{ll}0 \mathrm{l}_{2}-1_{2} 0\end{array}\}$ $g=\lambda(g)$ $\{\begin{array}{ll}0 \mathrm{l}_{2}-\mathrm{l}_{2} 0\end{array}\}$

for some $\lambda(g)$ in $F^{\mathrm{x}}$ . Fix acontinuous character $\psi$ of $F$ with conductor $O$

and agenerator $\varpi$ for $\mathcal{P}$ . Let $|\cdot|$ be the valuation on $F$ such that if $\mu$ is
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aHaar measure on $F$ , then $\mathrm{f}\mathrm{i}(\mathrm{x}\mathrm{A})=|x|\mu(A)$ for $x$ in $F$ and measurable
sets $A$ in $F$ . If $\pi$ is an irreducible admissible representation of agroup of
$\mathrm{t}\mathrm{d}$-type[Car], let $\omega_{\pi}$ denote the central character of $\pi$ . Let $\mathrm{L}_{F}=\mathrm{W}_{F}\mathrm{x}$

$\mathrm{S}\mathrm{U}(2,\mathrm{R})$ be the Langlands group of $F$ , where $\mathrm{W}_{F}$ is the Weil group of $F$.
A $\mathrm{G}\mathrm{S}\mathrm{p}(4)L$-parameter over $F$ is acontinuous homomorphism $\varphi$ : $\mathrm{L}_{F}arrow$

$\mathrm{G}\mathrm{S}\mathrm{p}(4, \mathbb{C})$ such that $\varphi(x)$ is semisimple for all $x\in \mathrm{W}_{F}$ and $\varphi|_{1\mathrm{x}\mathrm{S}\mathrm{U}(2,1\mathrm{R})}$ is a
smooth representation. We denote the $\epsilon$-factor of $\varphi$ with respect to $\psi$ and
the Haar measure dx$ self-dual with respect to $\psi$ by $\mathrm{e}(\mathrm{s}, \varphi, \psi, \mathrm{d}x_{\psi})$ . One has
$\epsilon(s, \varphi, \psi, \mathrm{d}x\psi)$ $=cq^{-N(\epsilon-1/2)}$ for some nonnegative integer $N$ and constant $c$ .

1The conjecture
To state the conjecture we need some definitions and results. First, we recall
the fundamentals of the theory of Novodvorsky zeta integrals for $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ ,
as proven in [T-B], Fix $c_{1}$ , $c_{2}\in F^{\mathrm{x}}$ . Let $\pi$ be an irreducible admissible
representation of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ . We say that $\pi$ is generic if $\mathrm{H}\mathrm{o}\mathrm{m}_{U}(\pi,\psi_{c_{1},c_{2}})\neq 0$ ,
where $U$ is the group of all elements

$u=\{\begin{array}{llll}1 u_{\mathrm{l}} 0 00 1 0 00 0 1 00 0 -u_{1} \mathrm{l}\end{array}\}$ $[000100010**1u_{1}\mathrm{o}^{2}*]$ ,

and $\psi_{c_{1},c\mathrm{a}}(u)$ $=\psi(c_{1}u_{1}+c_{2}u_{2})$ . Whether $\pi$ is generic does not depend on the
choice of $c_{1}$ and $c_{2}$ . Assume $\pi$ is generic. Consider the space of functions
$W$ : $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)arrow \mathbb{C}$ such that $W(ug)=\psi_{c_{1},c_{2}}(u)W(g)$ for $u$ in $U$ and $g$

in $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ , and $W$ is right invariant under some compact open subgroup
of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ . There exists aunique $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ subspacc $\mathrm{W}(7\mathrm{r}, \psi_{c_{1},c_{2}})$ of this
space which is isomorphic to $\pi$ [Rod]. This subspace is called the Whittaker
model of $\pi$ with respect to $\psi_{c_{1},c_{2}}$ . Fix Haar measures on $F^{\mathrm{x}}$ and $F$ . Let
$\mu$ : $F^{\mathrm{x}}arrow \mathbb{C}^{\mathrm{x}}$ be acontinuous quasi-character. If $W$ is in $W(\pi,\psi_{c_{1},c_{2}})$ , the
Novodvorsky zeta integral associated to $W$ and $\mu$ is

$Z(s, W, \mu)=\int_{F^{\mathrm{X}}}\int_{F}W( \{\begin{array}{llll}y 0 0 00 y 0 00 0 \mathrm{l} 00 x 0 1\end{array}\}) \mu(y)|y|^{s-3/2}\mathrm{d}x\mathrm{d}^{\mathrm{x}}y$ .

The $Z(s, W,\mu)$ for $W$ in $W(\pi,\psi_{e_{1},e_{2}})$ converge absolutely in some right half
plane and are elements of $\mathbb{C}(q^{-}’)$ . There exists $\gamma(s, \pi,\mu,\psi_{c_{1},e_{2}}^{-})$ in $\mathbb{C}(q^{-s})$

such that the following functional equation

$Z(1-s,\pi(\{\begin{array}{ll}0 J-J 0\end{array}\})W$, $(\omega_{\pi}\mu)^{-1})=\gamma(s,\pi,\mu, \psi_{c_{1}.e_{2}})Z(s, W,\mu)$
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holds for W in $W(\pi, \psi_{c_{1},c2})$ . This $\gamma$-factor does not depend on the choices of
Haar measure on F and $F^{\mathrm{x}}$ . Here,

$J=\{\begin{array}{ll}0 1-\mathrm{l} 0\end{array}\}$ .

The $\mathbb{C}[q^{s}, q^{-}’]$ module generated by the $Z(s, W, \mu)$ for $W$ in $W(\pi, \psi_{c_{1},c_{2}})$ is a
fractional ideal of $\mathbb{C}(q^{-}’)$ with generator of the form $1/Q(q^{-}’)$ with $Q(0)-1$ ,

where $Q(X)$ is in $\mathbb{C}[X]$ . We define

$L(s, \pi,\mu)=1/Q(q^{-}’)$ .

This $L$-factor does not depend on the choices of Haar measures or $c_{1}$ and $c_{2}$ .
We also define

$\epsilon(s,\pi,\mu,\psi_{e_{1},\mathrm{c}_{2}})=\gamma(s, \pi,\mu, \psi_{c_{1},c_{2}})\frac{L(s,\pi,\mu)}{L(1-s,\pi,(\omega_{\pi}\mu)^{-1})}$ .

The function $\epsilon(s,\pi, \mu, \psi_{c_{1},c_{-}}.)$ is anonzero monomial in $q^{-}$’(e.g., see the
top of p. 65 of $\lfloor \mathrm{J}|$ ). The work [$\mathrm{R}2\rfloor$ verifies that $L(s, \pi,\mu)=L(s,\varphi,\mu)$ ,
and $\mathrm{e}(\mathrm{s}, \pi, \mu, \psi_{1,-1})=\mathrm{Z}(\mathrm{s}, \varphi, \mu,\psi, \mathrm{d}x_{\psi})$ for the generic element $\pi$ in $\Pi(\chi, \tau)$

and $\varphi=\mathrm{n}(\mathrm{x},\mathrm{r})$ , where $\Pi(\chi, \tau)$ and $\varphi(\chi, \tau)$ are the local $L$-packets and
parameters defined in [R1]. We take $c_{1}=l$ and $c_{2},=-1$ in the remainder of
this paper, and write $W(\pi)=W(\pi,\psi_{1,-1})$ , $\gamma(s,\pi,\mu)=\gamma(s, \pi,\mu,\psi_{1,-1})$ and
$\epsilon(s,\pi, \mu)=\epsilon(s,\pi,\mu, \psi_{1,-1})$ . If $\mu=1$ we drop $\mu$ from our notation.

Next, we define the paramodular group of level $\mathcal{P}^{n}$ . This requires that
we first define the Klingen congruence subgroup of level $\mathcal{P}^{n}$ . Let $n$ be a
nonnegative integer. The Klingen congruence subgroup $\mathrm{K}1(\mathcal{P}^{n})$ of level
7” is the subgroup of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ of all elements $k$ such that $\lambda(k)$ is in $O^{\mathrm{x}}$

and

$k$ $\in\{\begin{array}{llll}O O O O\mathcal{P}^{n} O O O\mathcal{P}^{n} \mathcal{P}^{n} O \mathcal{P}^{n}\mathcal{P}^{n} O O O\end{array}\}$ .

Define the Atkin-Lehner element of level 7” in $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ to be

$u_{n}=\{\begin{array}{ll}0 J-\varpi^{n}J 0\end{array}\}$ .

Evidently, $u_{n}^{2}=\varpi^{n}$ is in the center of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ . We now define the
paramodular group $\mathrm{K}(\mathcal{P}^{n})$ of level 7” to be the subgroup of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$
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generated by $\mathrm{K}1(\mathcal{P}^{n})$ and $u_{n}\mathrm{K}1(\mathcal{P}^{n})u_{n}^{-1}=u_{n}^{-1}\mathrm{K}1(\mathcal{P}^{n})u_{n}$ . Equivalently, $K(Pn)$

is the subgroup of $\mathrm{G}\mathrm{S}\mathrm{p}(4,F)$ of all elements $k$ such that $\lambda(k)$ is in $O^{\mathrm{x}}$ and

k $\in\{\begin{array}{llll}\mathcal{O} \mathcal{O} \mathcal{P}^{-n} \mathcal{O}P^{n} O \mathcal{O} \mathcal{O}\mathcal{P}^{n} \prime P^{n} \mathcal{O} \mathcal{P}^{n}\mathcal{P}^{n} O \mathcal{O} O\end{array}\}$ .

Conjecture 1.1 Let $\pi$ be generic irreducible admissible representation of
$\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character. For $eac^{l}fi$ nonnegative integer $n$ , let
$\pi(\mathcal{P}^{n})$ be tie subspace of $\pi$ of vectors ffied by $\mathrm{K}(\mathrm{V}\mathrm{n})$ .

J. For some nonnegative integer $n$ the space $\pi(\mathcal{P}^{n})$ is nonzero.
2. If $N_{\pi}$ is the smallest n such that $\pi(\mathcal{P}^{n})$ is nonzero, then

$\dim\pi(\mathcal{P}^{N_{\pi}})=1$ .

3. There exists $W_{\pi}$ in $\pi(\mathcal{P}^{N_{\pi}})$ such that

$Z(s, W_{\pi})=L(s, \pi)$ .

In (3) of the conjecture we use the Whittaker model $W(\pi)$ for $\pi$ as defined
above. If the conjecture holds for $\pi$ , we call $\mathcal{P}^{N_{\pi}}$ the level of $\pi$ and $W_{\pi}$ the
new vector of $\pi$ .

The reader will note that while the conjecture is quite similar to the theory
of new vectors for generic irreducible admissible representations of $\mathrm{G}\mathrm{L}(2, F)$

with trivial central character there is asignificant difference: $\mathrm{K}(\mathcal{P}^{n})$ is not
contained in $\mathrm{K}(\mathcal{P}^{n+1})!$ Thus, the theory of old vectors for $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ will
not be strictly analogous to that for $\mathrm{G}\mathrm{L}(2, F)$ . Nevertheless, we have some
evidence, which we will not discuss here, that acoherent theory of old vectors
for $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ does exist.

2Aformal heuristic
Before stating implications for $\epsilon$-factors and our evidence, we will give some
formal motivation for the conjecture. As far as we know, there does not exist
aconjectural conceptual theory of new vectors for representations of the $F$

points of an arbitrary reductive algebraic group defined over $F$ . The situation
seems to be that, given aparticular group like $\mathrm{G}\mathrm{S}\mathrm{p}(4)$ , atheory of new vectors
would be useful, but one has no reason to believe it exists. Groups for which
new vectors have been considered include $\mathrm{G}\mathrm{L}(n)$ (see [Cas], [D], [J-PS-S]
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and $\mathrm{S}\mathrm{L}(2)$ (see [LR]); for $\mathrm{G}\mathrm{S}\mathrm{p}(4)$ see also [S] for the case of square-free level.
In our considerations we mostly have been guided by empirical facts. Still,
for $\mathrm{G}\mathrm{S}\mathrm{p}(4)$ we can offer the following formal motivation.

Suppose one wants to derive the statement for aconjectural simple theory
of new vectors for generic irreducible admissible representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4)$

with trivial central character, and let $\pi$ be one such representation. In $\pi$ one
might consider the space of Klingen vectors of level $\mathcal{P}^{n}$ , i.e., the subspace
$\pi_{\mathrm{K}1}(\mathcal{P}^{n})$ of vectors fixed by $\mathrm{K}1(\mathcal{P}^{n})$ . Alternatively, one might consider vec-
tors fixed by $\Gamma_{0}(\mathcal{P}^{n})$ , the Siegel congruence subgroup of level $\mathcal{P}^{n}$ . However,
without going into details, examples show that these vectors will not give
asimple theory. One might hope, then, that Klingen vectors work, so that
if $N$ is the smallest $n$ such that $\pi_{\mathrm{K}1}(\mathcal{P}^{n})$ is nonzero, then $\dim\pi_{\mathrm{K}1}(\mathcal{P}^{N})=1$ ,

and there exists a $W$ in $\pi_{\mathrm{K}1}(\mathcal{P}^{N})$ such that $Z(s, W)=L(s, \pi)$ . One might
also hope, as aconsequence, that $\epsilon(s, \pi)=cq^{-N(s-1/2)}$ for some constant $c$ .
Examples show, however, for the smallest $n$ such that $\pi_{\mathrm{K}1}(\mathcal{P}^{n})$ is nonzero one
can have $\dim\pi_{\mathrm{K}1}(\mathcal{P}^{n})>1$ :being aKlingen vector at the smallest nontriv-
ial level is not enough to give uniqueness. It seems an enlargement of the
Klingen congruence subgroup is required.

How can one arrive at such an enlargement7 One might start with a
Klingen vector $W$ of level $’\rho^{N}$ for which $Z(s, W)=L(s, \pi)$ and $\epsilon(s_{1}\pi)=$

$cq^{-N(\epsilon-1/2)}$ and see if $W$ reasonably might be fixed by anatural larger com-
pact open subgroup. Using $Z(s, W)=L(s, \pi)$ , the functional equation gives

$\gamma(s, \pi)L(s, \pi)=Z(1-s, \pi(\{\begin{array}{ll}0 J-J 0\end{array}\})W)$.

Dividing by $L(1-s,\pi)$ , one obtains the e-factor:

$\epsilon(s, \pi)=Z(1-s, \pi(\{\begin{array}{ll}0 J-J 0\end{array}\})W)/L(1-s,\pi)$ .

Now $\mathrm{e}(\mathrm{s}, \pi)=cq^{-N(s-1/2)}$ ; how can one make the right hand side look like
this? Abit of algebra yields

$\epsilon(s, \pi)=\frac{Z(1-s,\pi(u_{N})W)}{L(1-s,\pi)}\cdot q^{-N(s-1/2)}$ .

It follows that $Z(s, \pi(u_{N})W)$ is constant multiple of $L(s, \pi)$ , or equivalently,
$Z(s,\pi(u_{N})W)$ is aconstant multiple of $Z(s, W)$ . What condition on $W$ can
guarantee this? It would hold if $\pi(u_{N})W$ is aconstant multiple of $W$;and if
$\mathrm{i}\mathrm{r}(\mathrm{u}\mathrm{N})\mathrm{W}$ is constant multiple of $W$ , then $\mathrm{k}(\mathrm{u}\mathrm{n})\mathrm{W}$ is fixed by $\mathrm{K}1(\mathcal{P}^{N})$ . Thus,
one might consider, for nonnegative integers $n$ , vectors $W$ such that $W$ and
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$.n_{n}W$ are both fixed by Kl(Pn), or equivalently, $\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}_{1}\mathrm{o}\mathrm{r}\mathrm{s}$ fixed by $\mathrm{K}(\mathcal{P}^{n})$ . Note
that if $W$ is fixed by $\mathrm{K}1(\mathcal{P}^{n})$ then one has no reason to expect $\pi(u_{n})W$ to also
be fixed by Kl(Pn), as $u_{n}$ does not normalize $\mathrm{K}1(\mathcal{P}^{n})$ . On the other hand, $u_{n}$

does normalize the Borel congruence subgroup $B\{Vn$ ) $=\mathrm{K}1(\mathcal{P}^{n})\cap \mathrm{r}\mathrm{o}(\mathrm{V}\mathrm{n})$ of
level $\mathcal{P}^{n}$ , so if $W$ is fixed by Kl(Pn), then at least $\pi(u_{\mathrm{n}})W$ will be fixed by
$\mathrm{B}(\mathcal{P}^{n})$ .

3The connection to e-factors
As mentioned in the introduction, the new vector and level of arepresentation
satisfying the conjecture are closely connected to its $\epsilon$-factor. This is useful
in providing evidence for the conjecture.

Proposition 3.1 Let $\pi$ be generic irreducible admissible representation of
$\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character. Assume (1) and (2) of the conjecture
for $\pi$ hold. Then $W_{\pi}$ is an eigenvector for $\pi(u_{N_{\pi}})$ with eigenvalue $\epsilon_{\pi}-\pm 1$ :

$\pi(u_{N_{n}})W_{\pi}=\epsilon_{\pi_{-}}W_{\pi}$ .

Assume (3) of the conjecture for $\pi$ also holds. Then

$\epsilon(s,\pi)=\epsilon_{\pi}q^{-N_{\pi}(s-1/2)}$ ,

so that $\epsilon_{\pi}=\epsilon(1/2,\pi)$ .

Proof. Assume (1) and (2) of the conjecture for $\pi$ hold. Acomputation
shows $u_{N_{\pi}}$ normalizes $\mathrm{K}(\mathcal{P}^{N_{\pi}})$ . This implies that $\pi(u_{N_{\pi}})W_{\pi}$ is in $\pi(\mathcal{P}^{N_{n}})$ ;
since this space is one dimensional, $\pi(u_{N_{n}})W_{\pi}=\mathrm{c}\mathrm{n}\mathrm{W}\mathrm{w}$ for some $\mathrm{c}_{\pi}\in \mathbb{C}^{\mathrm{x}}$ .
As $u_{N_{\pi}}^{2}=\varpi^{N_{\pi}}$ , and $\pi$ has trivial central character, we have $\pi(u_{N_{\pi}})^{2}=1$ , so
that $\epsilon_{\pi}^{2}=1$ . Next, assume (3) of the conjecture for $\pi$ also holds. Applying
the functional equation to $W_{\pi}$ , we obtain

$Z(1-s, \pi(\{\begin{array}{ll}0 J-J 0\end{array}\})W_{\pi})=\gamma(s,\pi)Z(s, W_{\pi})$ .

The definitions of the zeta integral and $u_{N_{\pi}}$ imply

$Z(1-s,\pi(\{\begin{array}{ll}0 J-J 0\end{array}\})W_{\pi})=\epsilon_{\pi}q^{-N_{\pi}(s-1/2)}Z(1-s, W_{\pi})$ .

Substituting this into the functional equation and using $Z(s, W_{\pi})=L(s,\pi)$ ,
we obtain

$\epsilon_{\pi}q^{-N_{\pi}(\epsilon-1/2)}L(1-s,\pi)=\gamma(s,\pi)L(s, \pi)$ ,
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so that $\epsilon(s, \pi)=\epsilon_{\pi}q^{-N_{\pi}(s-1/2)}$ . $\square$

This proposition can be used to supply evidence for the conjecture. For
example, suppose $\pi$ is ageneric irreducible admissible representation of
$\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character, and parts (1) and (2) of the con-
jecture for $\pi$ are known. To obtain evidence for (3) of the conjecture for
$\pi$ we may proceed as follows. Suppose that it is believed that acertain
-parameter $\varphi$ is the $L$-parameter associated to $\pi$ via the conjectural local

Langlands correspondence, so that it is believed that $\epsilon(s, \varphi, \psi,\mathrm{d}x\psi)$ $=\epsilon(s,\pi)$

(or even suppose this equality is known). Then, in light of Proposition 3.1,
verifying

$\epsilon(1/2,\varphi,\psi,\mathrm{d}x_{\psi})=\epsilon_{\pi}q^{-N_{\mathrm{P}}(s-1/2)}$

gives evidence that (3) of the conjecture for $\pi$ holds.

4Evidence
We currently have three different pieces of evidence for the conjecture. Our
evidence considers awide variety of generic irreducible admissible represen-
tations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character, and includes all repre-
sentations of lower level and several families of induced and supercuspidal
representations.

To state the first piece of evidence, define the Iwahori subgroup I of
$\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ to be the subgroup of all $k$ in $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with $\lambda(k)$ in $O^{\mathrm{x}}$ and

k $\in\{\begin{array}{llll}O O O OP O O OP \mathcal{P} \mathcal{O} \prime pP P O O\end{array}\}$

Then we have the following theorem. The number $\epsilon_{\pi}$ is defined in Proposition
3.1.

Theorem 4.1 Parts (1) and (2) of the conjecture are true for all generic ir-
reducible admissible representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central chaxac-
$ter$ which contain anonzero vector fixed by the Iwahori subgroup. Moreover,
suppose $\pi$ is generic irreducible admissible representation of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with
trivial central character which contains anonzero vector fixed by the Iwahori
subgroup, and let $\varphi$ be the $L$-paranieter associated to $\pi$ by [$I<LJ.$ Then

$\epsilon(1/2,\varphi,\psi, \mathrm{d}x_{\psi})=\epsilon_{\pi}q^{-N_{\mathrm{n}}(s-1/2)}$ ,

which gives evidence that (3) of the conjecture for $\pi$ holds, as explained in
section 3.
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In fact, we have computed the spaces of vectors fixed by $\mathrm{K}(\mathcal{P}^{0})$ , $\mathrm{K}(\mathcal{P}^{1})$ ,
$\mathrm{K}(\mathcal{P}^{2})$ and $\mathrm{K}(\mathcal{P}^{3})$ in all the, possibly nongeneric, irreducible ad missible repre-
sentations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character which contain anonzero
vector fixed by the Iwahori subgroup. This information is displayed in the
table in the next section, which also includes information on how to under-
stand the table. It is interesting to observe that (1) and (2) of the conjecture
and $\epsilon(1/2, \varphi, \psi,\mathrm{d}x\psi)$ $=\epsilon_{\pi}q^{-N_{\pi}(s-1/2)}$ hold, with one exception, for all irre-
ducible admissible representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character
which contain anonzero vector fixed by the Iwahori subgroup. This excep-
tion is the representation $\mathrm{V}\mathrm{I}\mathrm{b}$ , which does not admit anonzero vector fixed
by $\mathrm{K}(\mathcal{P}^{0})$ , $\mathrm{K}(\mathcal{P}^{1})$ , $\mathrm{K}(\mathcal{P}^{2})$ or $\mathrm{K}(\mathcal{P}^{3})$ ;we would expect anonzero vector fixed
by $\mathrm{K}(\mathcal{P}^{2})$ . However, the representations Via and VIb form an $L$-packet, and
the conjecture holds for the representation Via. This suggests that (1) and
(2) of the conjecture and the equality $\epsilon(1/2, \varphi, \psi, \mathrm{d}x_{\psi})=\epsilon_{\pi}q^{-N_{\mathrm{r}}(s-1/2)}$ may
be true for all irreducible admissible representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial
central character at the level of L-packets.

Our second parcel of evidence concerns certain induced representations.
For the representations considered in the following theorem there is anatu-
rally associated $L$-parameter $\varphi$ , which should be the $L$-parameter associated
to $\pi$ by the conjectural local Langlands conjecture; define the nonnegative
integer $N$ by $\epsilon(s,\varphi, \psi, \mathrm{d}x_{\psi})=cq^{-N(s-1/2)}$ , where $c$ is aconstant. We use the
notation of [ST] for induced representations.

Theorem 4.2 Let $\tau$ be ageneric irreducible admissible representation of
$\mathrm{G}\mathrm{L}(2,$F). Assume $\omega_{\tau}$ is unramiGed.

1. (Siegel parabolic) Let $\sigma$ be an unrmified quasi-character of $F^{\mathrm{x}}$ such
that $\omega_{\tau}\sigma^{2}=1$ . Assume

$\pi=\tau\aleph$ $\sigma$

is irreducible. Then $\pi$ is ageneric irreducible admissible re.presenta-
tion of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character, and (1) and (2) of the
conjecture for $\pi$ are true. Moreover, $N_{\pi}=N$ .

2. (Klingen parabolic) Assume

$\pi=\omega_{\tau}^{-1}\aleph$ $\tau$

is irreducible. Then $\pi$ is ageneric irreducible admissible representa-
tion of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character, and (1) and (2) of the
conjecture for $\pi$ are true. Moreover, $N_{\pi}=N$ .
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Our final piece of evidence considers abroad distribution of represen-
tations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ , including supercuspidals. Recall that [R1] proved an
analogue for $\mathrm{G}\mathrm{S}\mathrm{p}(4)$ of the global Langlands-Tunnell theorem. In doing so,
[R1] defined certain local -packets of representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ . Let
$\mathrm{n}(\mathrm{r})=\Pi(1, \tau)$ be such alocal $L$-packet which happens to occur in aglobal
situation as in Theorem 8.6 of [R1]. Thus, in particular, $\tau$ is atempered
generic irreducible admissible representation of $\mathrm{G}\mathrm{L}(2, E)$ with trivial central
character, where $E$ is either aquadratic extension of $F$ , or $E=F\mathrm{x}F$ .
The packet $\Pi(\tau)$ has one or two elements, and all elements are tempered
irreducible admissible representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central char-
acter. In [R2] it is shown that exactly one element $\pi$ of $\Pi(\tau)$ is generic. The
paper [R1] also associates to $\tau$ an &parameter $\varphi(\tau)=\varphi(1,\tau)$ , and Theorem
8.6 of [R1] provides evidence that $\Pi(\tau)$ is the -packet associated to $\varphi(\tau)$ by
the conjectural local Langlands correspondence for $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ . Again, define
the nonnegative integer $N$ by $\epsilon(s,\varphi(\tau),\psi,\mathrm{d}x\psi)=cq^{-N(s-1/2)}$ , where $c$ is a
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}_{1}$ .

Theorem 4.3 Assume q is odd. If E is unramified or E $=F$ xF, fflell $\pi$

contains avector W ffied by $\mathrm{K}(\mathcal{P}^{N})$ such that $Z(s, W)=L(s,\pi)$ .

In writing $Z(s, W)=L(s,\pi)$ we are, as in the conjecture, using the
Whittaker model $W(\pi)$ defined in section 1.

5The table
The table gives information relevant to the conjecture about all the irre-
ducible admissible representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central character
which contain anonzero vector fixed by the Iwahori subgroup.

The first column
By [Bo], an irreducible admissible representation of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial
central character contains anonzero vector fixed by I if and only if it is an
irreducible subquotient of arepresentation of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ with trivial central
character induced from an unramified quasi-character of the Borel subgroup.
The basic reference on representations of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ induced from aquasi-
c.haracter of the Borel subgroup is section 3of [ST], and we will use the
notation of that paper. Thus, St is the Steinberg representation, 1is the
trivial representation, and $\nu=|\cdot|$ . The reader will have to consult [ST]
for more details. It is also useful to consult section 41 of [T-B]. Let $\chi_{1}$ , $\mathrm{X}2$

and $\sigma$ be unramified quasi-characters of $F^{\mathrm{x}}$ with $\chi_{1}\chi_{2}\sigma^{2}=1$ , so that the
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representation $\chi_{1}\mathrm{x}\chi_{2}\aleph$ $\sigma$ of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$ induced ffom the quasi-character
$\chi_{1}\otimes\chi_{2}\otimes\sigma$ has trivial central character. Of course, ,$\chi_{1}\mathrm{x},\chi_{2}\aleph$

$\sigma$ may be
reducible. It turns out that by section 3of [ST], there are six types of
$\chi_{1}\mathrm{x}\chi_{2}\aleph\sigma$ such that every irreducible admissible representation of $\mathrm{G}\mathrm{S}\mathrm{p}(4, F)$

with trivial central character which contains anonzero vector fixed by $J$ is an
irreducible subquotient of arepresentative of one of these six types, and that
no two representatives of two different types share acommon irreducible
subquotient. The first column gives the name of the type. In the table
we choose arepresentative for atype with the notation as below, and in
subsequent columns we give information about the irreducible subquotients
of that representative. The types are described as follows:

Type I

These are the $\chi_{1}\mathrm{x}\chi_{2}\aleph$ $\sigma$ where $\chi_{1}$ , $\chi_{2}$ and $\sigma$ are unramified quasi-characters
of $F^{\mathrm{x}}$ such that $\chi_{1}\chi_{2}\sigma^{2}=1$ and $\chi_{1}\mathrm{x}\chi_{2}\aleph$ $\sigma$ is irreducible. See Lemma 3.2
of [ST].

Type II

These are the $\nu^{1/2}\chi \mathrm{x}\nu^{-1/2}\chi\aleph$ $\sigma$ where $\chi$ and $\sigma$ are unramified quasi-
characters of $F^{\mathrm{x}}$ such that $\chi^{2}\sigma^{2}=1$ . See Lemmas 3.3 and 3.7 of [ST].

Type III

These are the $\chi \mathrm{x}\nu*$
$\nu^{-1/2}\sigma$ where $\chi$ and $\sigma$ are unramified quasi-characters

of $F^{\mathrm{x}}$ such that $\chi\sigma^{2}=1$ . See Lemmas 3.4 and 3.9 of [ST].

Type IV

These are the $\nu^{2}\mathrm{x}\nu x$ $\nu^{-3/2}\sigma$ where $\sigma$ is an unramified quasi-character of
$F^{\mathrm{x}}$ such that $\sigma^{2}=1$ . See Lemma 3.5 of [ST].

Type $\mathrm{V}$

These are the $\nu\xi_{0}\mathrm{x}\xi_{0}\aleph$
$\nu^{-1/2}\sigma$ where $\xi_{0}$ and $\sigma$ are unramified quasi-characters

of $F^{\mathrm{x}}$ such that $\xi_{0}$ has order two and $\sigma^{2}=1$ . See Lemma 3.6 of [ST].

Type VI

These are the $\nu \mathrm{x}1n$ $\nu^{-1/2}\sigma$ where $\sigma$ is an unramified quasi-character of $F^{\mathrm{x}}$

such that $\sigma^{2}=1$ . See Lemma 3.8 of [ST].
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The second column
Choose atype as in the first column, and choose arepresentative $\chi_{1}\mathrm{x}$ $\chi_{2}\aleph$

aof that type. Then $\chi_{1}\mathrm{x}\chi_{2}\aleph$ $\sigma$ admits afinite number of irreducible
subquotients, and this number depends only on the type of $\chi_{1}\mathrm{x}\chi_{2}\nu$ $\sigma$ . We
index the irreducible subquotients by lower case Roman letters. The letter

$” \mathrm{a}$”is reserved for the generic irreducible subquotient.

The third column
This column lists the irreducible subquotients of the representative of the
type of the first column. We use the specific notation as in the discussion of
the first column.

The fourth column
Suppose $\pi$ is an entry of the third column, and let $\varphi$ be the $L$-chara eter
associated to $\pi$ by [KL]. We define $N$ by the equation

$\epsilon(s, \varphi, \psi, \mathrm{d}x_{\psi})=cq^{-N(s-1/2)}$,

where $c$ is aconstant.

The fifth column
Using the notation of the explanation of the fourth column, this is $\epsilon=c=$

$\epsilon(1/2,\varphi,\psi,\mathrm{d}x_{\psi})$ .

The sixth, seventh, eighth and ninth columns
The numbers in the columns give the dimensions of the $\mathrm{K}(\mathcal{P}^{n})$ fixed vectors
for the representations in the third column for $n=0,1,2$ and 3. Note that
to save space we have abbreviated $K(Vn)$ by $\mathrm{K}(n)$ . The signs under the
numbers indicate how these spaces of $\mathrm{K}(\mathrm{V}\mathrm{n})$ fixed vectors split under the
action of the Atkin-Lehner operator $\pi(u_{n})$ . The signs are correct if in the
type II case, where the central character of $\pi$ is $\chi^{2}\sigma^{2}$ , the character $\chi\sigma$ is
trivial, and in the type $\mathrm{I}\mathrm{V}$ , $\mathrm{V}$ , and IV cases, where the central character of $\pi$

is $\sigma^{2}$ , the character ais trivial. If these assumptions are not met, then the
plus and minus signs must be interchanged to obtain the correct signs
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$\Gamma \mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}1$ :Representations containing anonzero vector fixed by the Iwahor
;ubgroup. Consult section 5for definitions and comments

119



References
[Bo] A. Borel, Admissible representations of a semi-simple group over

a localfield with vectors fixed under an Iwahori subgroup, Invent.
Math. 35 (1976), 233-259.

[Car] P. Cartier, Representations of $p$-adic groups: a survey, in AutO-
morphic forms, representations and $L$-functions(Proc. Sympos.
Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part
1, 111-155, Proc. Sympos. Pure Math., XXXIII, Amer. Math.
Soc., Providence, R.I., 1979.

[Cas] W. Casselman, On some results of Atkin and Lehner, Math.
Ann. 201 (1973), 301-314.

[D] P. Deligne, Formes modulaires et $rep\acute{r}esentations$ de $\mathrm{G}\mathrm{L}(2)$ , in
Modular Functions of One Variable, II, (Proc. Internat. Summer
School, Univ. Antwerp, Antwerp, 1972), 55-105. Lecture Notes
in Math., Vol. 349, Springer, Berlin, 1973.

[J] H. Jacquet, Principal $L$ -functions of the linear group, in AutO-
morphic forms, representations and $L$-functions(Proc. Sy mpos.
Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2,
63-86, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc.,
Providence, R.I., 1979.

[J-PS-S] H. Jacquet, I.I. Piatetski-Shapiro, and J. Shalika, Conducteur
des reprisentations du groupe liniaire, Math. Ann. 256 (1981),

199-214.

[KL] D. Kazhdan and G. Lusztig, Proof of thc Deligne-Langlands
conjecture for Hecke algebras, Invent. Math. 87 (1987), 153-
215.

[LR] J. Lansky and A. Raghuram, On conductors and new forms for
$\mathrm{S}\mathrm{L}(2)$ and $\mathrm{U}(1,$ 1), preprint.

[Rl B. Roberts, Global $L$ -packets for $\mathrm{G}\mathrm{S}\mathrm{p}(2)$ and theta lifts, Doc.
Math. 6(2001), 247-314.

[R2] B. Roberts, Epsilon factors for sorn,e represent ations of $\mathrm{G}\mathrm{S}\mathrm{p}(2)$

and Bessel coefficients, in preparation

120



[Rod] F. Rodier, Whittaker models for admissibIe representations of
reductive $p$-adic split groups, in Harmonic analysis on hom0-
geneous spaces, (Proc. Sympos. Pure Math., Williams Coll.,
Williamstown, Mass., 1972), 425-430, Proc. Sympos. Pure
Math. , Vol. XXVI, Amer. Math. Soc, Providence, R.I., 1973.

[S] R. Schmidt, On Siegel modular forms of degree 2with square
free level, To appear in the proceedings of the conference An-
tomorphic forms and representations of algebraic groups, Jan-
uary 20-24, 2003, at RIMS, published by Surikaisekikenkyusho
K\={o}k.y\={u}roku, Research Institute for Mathematical Sciences, Ky-
oto University.

[ST] P. Sally and M. Tadic, Induced representations and classifi-
cations for $\mathrm{G}\mathrm{S}\mathrm{p}.(2,$F) and Sp(2, F), Mem. Soc. Math. France
(N.S.) No. 52 (1993), 75-133.

[T-B] R. TakloO-Bighash, $L$ -functions for the $p$-adic group $\mathrm{G}\mathrm{S}\mathrm{p}(4)$ ,
Amer. J. Math. 122 (2000), 1085-1120

121


