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1 Introduction

Turbulent diffusion of matter and mixing phenomena with the chemical reaction are practically
important in conection with many engineering and environmental problems. If the experiments
for some specific turbulent diffusion or reactive flow phenomena would be planned, it apparently
needs very hard labor and alot of cost. On the other hand, the numerical simulations by
computers have become effective to predict these phenomena because of the improvement of
computers and the development of numerical methods. Generally, there are Eulerian and
Lagrangian methods for the simulation of the turbulent diffusion field. In the present study,
we adopted.the Lagrangian PDF (Probability Density Function) method (Pope, 1985, 1994;
Dopazo, 1994) which is akind of Monte Carlo method. In the Lagrangian PDF method,
the exact velocity-scalar joint PDF is approximated by the discrete PDF for aset of many
stochastic particles, and the variations of velocity and scalar are modeled by the Lagrangian
equation (See Pope, 1985, 1994; $\mathrm{D}\mathrm{o}\mathrm{p}\mathrm{a}\mathrm{z}\mathrm{o},1994$, for details of the method).

In this study, the following two fundamental problems of turbulent diffusion and reactive
flows have been investigated.
(A) The reactive-scalar mixing layer in agrid-generated turbulence
(B) The axisymmetric point source plume diffusion in aturbulent pipe flow

The first problem (A) has been studied experimentally by Bilger et al. (1991) for the
gas phase and Komori et al. $(1993, 1994)$ for the liquid phase. Since the PDF method has
been mainly developed in the combusition engineering, there are still only alimited number of
researches in the liquid phase (e.g. Pipino and Fox, 1994; Tsai and Fox, 1994). For this reason,
we pay attention on the liquid phase reaction in the first problem (A). About the simulation
of this problem, Komori et al. (1991) also proposed astochastic two particle model, but in
their model, it was assumed that the chemical reaction occurs when the distance between two
particles becomes smaller than the Kolmogorov scale. Recently, Bilger (1993) and Klimenko
(1990) have independently developed the conditional moment closure (CMC) model. In the
CMC method, the information of mixture fraction is indispensable to get the unconditional
statistics of the flow, and the Lagrangian PDF method is useful to predict the mixture fraction.
In this study, to solve the first problem, the simplfied Langevin model (Pope, 1985) is used for
the velocity of stochastic particles. For the molecular mixing, three models: the Curl’s model
(Curl, 1963), the modified Curl’s model (Dopazo, 1979; Janicka et al., 1979; Pope, 1982),
and the binomial Langevin model ( $\mathrm{V}\mathrm{a}\mathrm{l}\mathrm{i}\tilde{\mathrm{n}}0$ and Dopazo, 1991) are adopted. The results are
compared with the experimental data in liquid phase (Komori et al., 1993, 1994).
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With regard to the second problem (B), as the velocity model of the stochastic particles,
ageneralized Langevin model expressed in the cylindrical coordinate system is adopted. The
generalized Langevin model was first proposed by Haworth and Pope (1986) and expressed in
the cylindrical coordinate system by Sakai et a1.(1999). This model is constructed to satisfy the
consistency condition of velocity field (Pope, and thermodynamic constraint (Sawford,
1986). On the other hand, as the molecular mixing model, two models (i.e. the Dopazo’s
deterministic model (Dopazo, 1975) and the modified Curl’s model (Dopazo, 1979; Janicka et
al., 1979; Pope, 1982)) are attempted. In this study, the scalar diffusion field from the point
source at the center of the pipe is simulated and compared with experimental data by Becker
et al. (1966).

This paper is structured as follows: In the following Section, we recall the Langrangian PDF
method as developed by Pope (1985), (1994) and by Dopazo (1994), and give the simulation
results of the reactive scalar mixing layer in the grid-turbulence of the liquid phase (Prob
$\mathrm{l}\mathrm{e}\mathrm{m}(\mathrm{A}))$ . In Section 3, the simulation models and results of axisymmetric point source plume
in afully developed turbulent pipe flow (Problem (B)) are given. In bothe Section 2and 3, the
effectiveness of the molecular mixing models used in this study is evaluated by comparing the
sumulation results with the experimental data. In the last Section, we summarize the content
of this paper and make some remarks about our future works by the Lagrangian PDF method.

2Reactive-Scalar Mixing Layer in Grid-Turbulence
(Problem (A))

2.1 Simulation Method

2.1.1 PDF Transport Equation

The transport equation for the velocity-scalar joint PDF $f(V, \psi;ox,t)$ in incompressible flow
(Pope, 1985) is given by

$\frac{\partial f}{\partial t}+V_{j}\frac{\partial f}{\partial x_{j}}-\frac{1}{\rho}\frac{\partial(p\rangle}{\partial x_{j}}\frac{\partial f}{\partial V_{j}}+\frac{\partial}{\partial\psi_{\alpha}}(w_{\alpha}f)$

$= \frac{1}{\rho}\frac{\partial}{\partial V_{j}}[\langle-\frac{\partial\tau_{ij}}{\partial x}.\cdot+\frac{\partial p’}{\partial x_{j}}|V,\psi\rangle f]$

(1)$+ \frac{\partial}{\partial\psi_{\alpha}}[\langle\frac{\partial J^{\alpha}}{\partial x}\dot{.}\dot{.}|V,\psi\rangle f]$ ,

where $V$ and $\psi$ are sample spaces corresponding to the velocity $U$ and the concentration $\Gamma$ ,
respectively, and $x$ is the position in the physical space, $t$ is the time, $\rho$ is the density, $p$ is the
pressure, $w_{\alpha}$ is the chemical source term for species $\alpha$ , $\tau_{ij}$ is the viscous stress tensor, and $J_{i}^{\alpha}$

is the diffusive flux vector for species $\alpha$ . $\langle Q|V,\psi\rangle$ stands for the conditional expectation of $Q$ ,
given that $U(ax, t)=V$ and $\Gamma(ax, t)=\psi$ , where $Q=\mathrm{Q}\{\mathrm{U},$ $\Gamma$) is afunction of $U$ and $\Gamma$ .

The terms on the left-hand side of Eq.(l) represent the unsteady term, the transport in
the physical space, the transport in the velocity space by the mean pressure gradient, and the
transport in the scalar space by the reaction, respectively. All these terms can be treated with-
out approximation. The terms on the right-hand side of Eq.(l) stand for the transport in the
velocity space by the viscous stress and by the fluctuating pressure gradient and the transport
in the scalar space by the molecular fluxes. These terms including conditional expectations
must be modeled.

In the Lagrangian PDF method, the velocity-scalar joint PDF within the solution domain,
$f(V,\psi;ax,t)$ , is approximated by $N(t)$ stochastic particles. The state of the $n\mathrm{t}\mathrm{h}$ stochastic
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particle at time $t$ is represented by

$U^{(n)}(t)$ , $\Gamma^{(n)}(t)$ , $ox^{(n)}(t)$ $(n=1,2, \ldots, N(t))$ . (2)

The discrete PDF of the stochastic particle is defined by

$f_{N}(V, \psi;ox,t)=\frac{1}{N}\sum_{n=1}^{N}\delta(V-U^{(n)})\delta(\psi-\Gamma^{(n)})\delta(ox-x^{(n)})$, (3)

and the relation between the discrete PDF $f_{N}$ and the true PDF $f$ is

$f(V, \psi;x, t)=\langle f_{N}(V,\psi;x, t)\rangle$ , (4)

i.e., the expectation of the discrete PDF is the true PDF (Pope, 1985).
The modeled joint PDF equation is solved numerically by integrating the state of the

stochastic particles under the given initial and boundary conditions. The Lagrangian PDF
simulation is one of the Monte Carlo methods. In the following, the models of the velocity and
concentration of the stochastic particles used in the Problem (A) are given.

2.1.2 Velocity

Since the mixing layer in agrid-generated turbulence is considered in this study, the velocity
of the stochastic particle is modeled by the following simplified Langevin model (Pope, 1985),

$dU_{\dot{l}}^{(n)}=-( \frac{1}{2}+\frac{3}{4}C\mathrm{o})(U_{i}^{(n)}-\langle U_{\dot{1}}\rangle)\frac{dt}{\tau}+(C0\epsilon)^{1/2}dW_{\dot{l}}$, (5)

where $dU_{\dot{1}}$ $=U_{\dot{\iota}}(t+dt)-U_{\dot{\iota}}(t)$ , the increment of velocity; $dt$ , the time increment; $C_{0}$ , Kolmogorov
constant; $\epsilon$ , the dissipation rate of the turbulent kinetic energy per unit mass $k;\tau$ , the time
scale of turbulence $\tau=k/\epsilon;dW${, the increment of isotropic Wiener process with zero mean
and covariance $(dW_{}dW_{j}\rangle=dt\delta_{ij}$ .

2.1.3 Molecular Mixing Model

Three fundamental models: the Curl’s model (Curl, 1963), the modified Curl’s model (Dopazo,
1974; Janika et al., 1979; Pope, 1982) and the binomial Langevin model ($\mathrm{V}\mathrm{a}\mathrm{l}\mathrm{i}\tilde{\mathrm{n}}0$ and Dopazo,
1991) are used. Each model is explained in the following.

Curl’s Model For the Curl’s model (Curl, 1963), in the small interval $dt$ the probability
of the yith particle being mixed is given by

$P^{(n)}= \frac{2C_{\phi}dt}{\tau(x^{(n)}(t))}$ , (6)

where $C_{\phi}=\tau/\tau_{\phi}$ is the empirical constant and $\tau_{\phi}$ is the time scale of molecular mixing. When
the mixing takes place with this probability, the pair to the yzth particle is selected (here, the
ryrth particle) and the concentrations of two particles are replaced by their mean:

$\Gamma_{\alpha}^{(n)}(t+dt)=\Gamma_{\alpha}^{(m)}(t+dt)=\frac{1}{2}(\Gamma_{\alpha}^{(n)}+\Gamma_{\alpha}^{(m)})$ , (7)

where the right-hand side of Eq.(7) represents the state at time $t$ . The nearest stochastic
particle is selected as apair because mixing takes place locally in the physical space
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Modified Curl’s Model In the modified Curl’s model (Dopazo, 1979; Janicka et al.,
1979; Pope, 1982), the probability of the particle being mixed is modified by

$P^{(n)}= \frac{3C_{\phi}dt}{\tau(x^{(n)}(t))}$ , (8)

and the concentrations of pair particles are replaced by

$\Gamma_{\alpha}^{(n)}(t+dt)=(1-\beta)\Gamma_{\alpha}^{(n)}+\frac{1}{2}\beta(\Gamma_{\alpha}^{(n)}+\Gamma_{\alpha}^{(m)})$ , (9a)

$\Gamma_{\alpha}^{(m)}(t+dt)=(1-\beta)\Gamma_{\alpha}^{(m)}+\frac{1}{2}\beta(\Gamma_{\alpha}^{(n)}+\Gamma_{\alpha}^{(m)})$ , (9b)

where $\beta$ is arandom variable uniformly distributed on the interval $[0,1]$ . $\beta$ represents the degree
of mixing in aparticle pair; no mixing occurs with $\beta$ $=0$, and the Curl’s model is recovered
with $\beta=1$ .

Binomial Langevin Model Valino and Dopazo (1991) proposed the following binomial
Langevin model,

$d\Gamma^{(n)}$
$=$ $- \frac{1}{2}[1+K(1-\frac{\langle\gamma^{\prime 2})}{\gamma_{*}^{2}},)]\frac{C_{\phi}}{\tau}(\Gamma^{(n)}-\langle\Gamma\rangle)dt$

(11)$+[K(1- \frac{(\gamma^{\prime(n)})^{2}}{\gamma_{*}^{2}},)\frac{C_{\phi}}{\tau}(\gamma^{\prime 2}\rangle dt]1/2\xi_{\mathrm{b}\mathrm{i}\mathrm{n}}$,

where $K$ , aconstant; $\xi_{\mathrm{b}\mathrm{i}\mathrm{n}}$ , anormalized binomially distributed random variable; and the prime
represents the fluctuation value. $\gamma_{*}’$ is equal to $\gamma_{\max}’$ if $\gamma^{\prime(n)}$ is positive and equal to $\sqrt\min$

if $\gamma^{\prime(n)}$ is negative, where subscripts $\max$ and $\min$ are the allowable maximum and minimum
fluctuation, respectively. $\xi_{\mathrm{b}\mathrm{i}\mathrm{n}}$ is generated to preserve the boundedness of the scalar concen-
tration.

2.1.4 Position and Chemical Reaction

The position of the stochastic particles in the physical space and the chemical source term
are treated without modeling. This is an advantage in the Lagrangian PDF method used in
this study. Therefore, the changes of position and concentration by the chemical reaction are
calculated as follows,

$dx_{i}$ $=$ $U_{\dot{1}}dt$ , (11)
$d\Gamma_{\alpha}$ $=$ $w_{\alpha}dt$ . (12)

2.2 Simulation Conditions

Figure 1shows aschematic diagram of the reactive-scalar mixing layer simulated in this study.
Nonpremixed species Aand $\mathrm{B}$ are supplied from the upstream of the grid with the mesh size
of $M$ , at the constant velocity U. The initial concentrations of species Aand $\mathrm{B}$ are $\Gamma_{A0}$ and
$\Gamma_{B0}$ , respectively. The second order and irreversible chemical reaction:

$\mathrm{A}+\mathrm{B}arrow \mathrm{P}$ (13)

has occurred in the mixing region of species Aand $\mathrm{B}$ , where species $\mathrm{P}$ is produced in the
downstream of the grid. The experiments of Komori et al. $(1993, 1994)$ were conducted unde
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grid concentration velocity

Figure 1: Scematic diagram of the reactive-scalar mixing layer

the following conditions: $M=2$ cm and $\overline{U}=25\mathrm{c}\mathrm{m}/\mathrm{s}$, so the mesh Reynolds number $Re_{M}=$

$M\overline{U}/\nu=5000$ .
This problem is two dimensional because of the homogeneity of PDF along the spanwise

direction. The longitudinal and transverse coordinates are denoted by $x$ and $y$ , respectively,
and the corresponding velocity $U=(U_{x}, U_{y})$ .

We assume the equal diffusivities for all species and calculate the mixture ffaction $F$ and
the concentration of product $\mathrm{P}$, i.e., $\Gamma=(F, \Gamma P)$ . The mixture fraction is aconserved scalar.
The following relation between Fa, $\Gamma_{B}$ , $\Gamma_{P}$ , and $F$ is derived by using the conserved scalar
theory (Bilger et al., 1991),

$\Gamma_{A}-\Gamma_{B}$ $=$ $F(\Gamma_{A0}+\Gamma_{B0})-\Gamma_{B0}$ , (14a)
$\Gamma_{A}+\Gamma_{P}$ $=$ $F\Gamma_{A0}$ , (14b)
$\Gamma_{B}+\Gamma_{P}$ $=$ $(1-F)\Gamma_{B0}$ . (14c)

Then, using Eqs.(14b) and (14c), $\Gamma_{A}$ and $\Gamma_{B}$ are calculated from $F$ and $\Gamma_{P}$ . For details of this
method in the binomial Langevin model, refer to Hulek and Lindstedt (1995).

Hereafter, all variables in Section 2are normalized by $M$ , $\overline{U}$ , $\Gamma_{A0}$ , and $\Gamma_{B0}$ . The Damkohler
number, that represents the ratio of the time scale of flow to one of chemical reaction, is defined
as

$Da= \frac{Mk_{R}(\Gamma_{A0}+\Gamma_{B0})}{\overline{U}}$ , (15)

where $k_{R}$ is the reaction rate constant. The stoichiometric value of mixture fraction, $F5$ , is
given by

$F_{S}= \frac{\Gamma_{B0}}{\Gamma_{A0}+\Gamma_{B0}}$. (16)

In the simplified Langevin model for the velocity, either $\epsilon$ or $dr$ must be modeled. In this
study, it is assumed that the time scale $\tau$ is constant in the $y$-direction. In the experiment of
Komori et al. (1993), it is known that the decay of turbulent intensities are given by

$\langle u_{x}^{\prime 2}\rangle=\langle u_{y}^{\prime 2}\rangle=0.0556x^{-1.59}$ , (15)
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so here $\tau$ is modeled to increase linearly in the downstream direction:

$\tau=\frac{k}{\epsilon}=(\frac{3}{2}\langle u_{x}^{\prime 2}\rangle)/(-\frac{3}{2}\frac{d\langle u_{x}^{\prime 2}\rangle}{dx})=0.629x$. (18)

Kolmogorov constant can be related to the turbulent diffusion coefficient through the La
grangian time scale $T_{L}$ :

$T_{L}= \frac{4}{3C_{0}}\tau$ . (19)

Kolmogorov constant is assumed to be $C_{0}=1.1$ in such away that the mixing layer thickness
agrees with the experimental data. It is smaller than the value used by Pope (1985), $C_{0}=2.1$ ,
probably because the Reynolds number of the experiments by Komori et al. $(1993, 1994)$ is
rather small.

The empirical constant, $C_{\phi}$ , is adjusted to be 0.44 in such amanner as the decay of con-
centration fluctuation agrees with the experimental data. Although we assume that $C_{\phi}$ is
constant, it is known that the value of $C_{\phi}$ depends on the modeling of molecular mixing time
scale $\tau_{\phi}$ . For example, using Corrsin’s model (1964), $C_{\phi}$ varies in the downstream direction and
its value is between 0.5-0.6 in the simulation region. Recently, Pipino and Fox (1994) proposed
the spectral relaxation model and showed its advantage.

According to Valino and Dopazo (1991), $K=2.1$ is chosen in the binomial Langevin
model for the concentration. The simulation has been made for the finite Damkohler number,
$Da=0.752$ , corresponding to the moderately fast reaction in the experiment of Komori et al.
(1994) $(k_{R}=0.047\mathrm{m}^{3}/(\mathrm{m}\mathrm{o}1\cdot \mathrm{s}), \Gamma_{A0}=\Gamma_{B0}=100\mathrm{m}\mathrm{o}1/\mathrm{m}^{3})$.

The frozen limit ($Daarrow \mathrm{O}$, corresponding to no reaction) and equilibrium limit $(Daarrow\infty$,
corresponding to the instantaneous reaction) are determined by using the conserved scalar
theory (Bilger et al., 1991) as follows.

As $Daarrow 0$,

$\lim_{Daarrow 0}\Gamma_{A}$
$=$ $F$, (20)

$\lim_{Daarrow 0}\Gamma_{B}$
$=$ 1-F. (21)

As $Daarrow\infty$ ,

$\lim_{Daarrow\infty}\Gamma_{A}$
$=$ $\frac{F-F_{S}}{1-F_{S}}H(F-F_{S})$ , (22)

$\lim_{Daarrow\infty}\Gamma_{B}$
$=$ $\frac{F_{S}-F}{F_{S}}H(F_{S}-F)$ . (23)

where $H$ is the Heaviside unit step function.
The solution in the domain $2\leq x\leq 20,$ $-2.5\leq y\leq 2.5$ is calculated by amarching solution

method (Pope, 1985). In this method, the constant spatial increment, $dx=1/1\mathrm{O}\mathrm{O}$ , is related to
the time increment of stochastic particle, $dt^{(n)}=dx/U_{x}^{(n)}$ . The number of stochastic particles
is $N=400,000$ and various expectations are calculated in the small region, $dy=0.1$ .

With regard to the initial conditions, the stochastic particles are uniformly distributed
in the $y$-direction at $x=2$, the velocities of them are generated as Eq.(17) is satisfied, and
concentrations of them are set to be,

$\Gamma_{A}$ $=$ 1, $\Gamma_{B}=0$ , for $y>0$ (24a)
$\Gamma_{A}$ $=$ 0, $\Gamma_{B}=1$ . for $y<0$ (24b)

For the boundary condition, we adopt aperfect reflection of stochastic particles at $|y|=2.5$
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2.3 Simulation Result

First, we verify whether the velocity field is simulated correctly by using Eq.(18). Figure 2
shows the simulated decay of turbulent intensities, together with the experimental data by
Komori et al. (1993). It is found that the turbulent intensities show good agreements with the
experimental data and that the velocity field is simulated correctly.

Figure 3shows the downstream variations of the mean concentration of species $\mathrm{A}$ , $\langle\Gamma A)$ ,
on the centerline $(y=0)$ . $\langle\Gamma A\rangle$ decreases in the downstream direction for $Da=0.752$ and
$Daarrow\infty$ because of the chemical reaction, while for $Daarrow \mathrm{O}$ it is constant and equal to 0.5. All
models show good agreements with the experimental data. However, we find that the Curl’s
model overestimates the effect of the chemical reaction, probably because the mixing effect of
the stochastic particles by the Curl’s model is larger than the actual one.

$\mathrm{c}\hat{\underline{\mathrm{e}}_{\mathrm{S}^{\theta}}\vee}$

$\hat{\vee \mathrm{b}^{\triangleleft}}$

$\hat{\mathrm{r}_{\tilde{\vee}}3^{\mathrm{B}}}$

.

$x$

Figure 3: Mean concentration of species a
$x$

on the centerline (experiments: $\mathrm{O}$ , No reac-
than $\triangle$ , Moderately fast reaction; Cl, Instan-

Figure 2: Decy of turbulent intensities taneous reaction. Same symbols sre used in
folowing figures.)

Figure 4shows the downstream variations of the mean concentration of product $\mathrm{P}$, $(\Gamma_{P}\rangle$ ,
on the centerline. It is also found that the Curl’s model overestimates the effect of the reaction.

Transverse profiles of the mean concentration of species Aat $x=12$ are shown in Fig.
5. The results for $Da=0.752$ is not shown in the figure, because there are no experimental
data, but these lie between the limits of $Daarrow \mathrm{O}$ and $Daarrow\infty$ . In reacting flows, the
mean concentration of species Ais smaller than the non-reacting flow and the profiles become
asymmetric because of the chemical reaction.

Figure 6shows the concentration fluctuation intensity of species $\mathrm{A}$ , $\langle\sqrt{}^{2}A\rangle$ , on the centerline.
The values of $\langle\gamma_{A}^{\prime 2}\rangle$ for $Daarrow\infty$ are lager than those for $Daarrow \mathrm{O}$ , since species Ais consumed
by the chemical reaction. The modified Curl’s model and binomial Langevin model show good
agreements with the data, while the Curl’s model gives lager values than those of experiment
for $Daarrow\infty$ . The modified Curl’s model shows lager value than the binomial Langevin model,
especially near the grid. In the Curl’s model and modified Curl’s model, the concentrations
of stochastic particles are mixed with the probability given by Eq.(6) and Eq.(8), respectively,
and the other particles preserve their concentrations. Therefore, the particles that have not
been mixed (i.e., $\mathrm{r}_{A}=1$ ) exist and they make the fluctuation intensity lager in the reacting
flow.

The profiles of concentration fluctuation r.m.s. value of species Aat $x=12$ are shown in
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$\hat{\vee \mathrm{b}^{\mathrm{k}}}$

$\hat{\vee \mathrm{t}^{\mathrm{H}}}$

$x$

$y$

Figure 4: Mean concentration of product Figure 5: Mean concentration profiles of
$\mathrm{P}$ on the centerline species Aat $x=12$ .

Fig. 7. For $Daarrow\infty$ , the r.m.s. value gives the peak in the region $y>0$ , where the reactant
Aexists in excess, and the peak value becomes lager than one for $Daarrow \mathrm{O}$ by the effect of
the chemical reaction. The Curl’s model and modified Curl model show lager value than the
binomial Langevin model in the region $y<0$ for $Daarrow\infty$ . It is probably caused by the effect
of the particles that have not been mixed.

$\frac{\sim}{\hat{\sim}}.\backslash \tau$

$\vee\succ$

$x$

Figure 6: Concentration fluctuation Figure 7: Profiles of concentration fluctuation
intensity of species Aon the centerline r.m.s. value of species Aat $x=12$ .

Figure 8shows the concentration correlation coefficient between species Aand $\mathrm{B}$ , $R_{AB}$ , on
the centerline. $R_{AB}=1$ in the case of $Daarrow \mathrm{O}$ , since concentration fluctuation $\gamma_{A}’=-\gamma_{B}’$ .
$R_{AB}$ increases in the downstream direction by the chemical reaction. It is found that the Curl’s
model overestimates the effect of the reaction and that the modified Curl’s model and binomial
Langevin model show good agreements with the experimental data.

Figure 9shows the segregation coefficient, $at=\langle\gamma_{A}\gamma_{B}$) $/(\langle\Gamma A\rangle\langle\Gamma_{B}\rangle)$ , on the centerline. $\alpha$

indicates the degree of the coexistence between species Aand B. We can easily find $\alpha=0$

if species are mixed completely, and $\alpha=-1$ if there is no mixing. For $Daarrow \mathrm{O}$ , $\alpha$ increases
gradually, because the mixing proceeds in the downstream. For $Daarrow\infty$ , $\alpha=-1$ , since
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the reaction is instantaneous, so that species Aand $\mathrm{B}$ can not be coexisted. The calculated
values by all models agree well the experiments for $Daarrow \mathrm{O}$ and $Daarrow\infty$ . For $Da=0.752$ ,
the experiment shows the increase of $\alpha$ in the downstream, while the simulation gives some
decreasing of $\alpha$ in the region $x>8$ . But we find the difference among three models is relatively
small.

$\mathit{0}\grave{e}\mathrm{Q}$

$a_{)}^{T}\mathrm{r}$

$x$ $x$

Figure 8: Correlation coefficient on the Figure 9: Segregation coefficient on the
centerline centerline

2.4 Conclusions of Section 2
the reaction calar mixing layer in agrid-generated turbulence is studied numerically by the
Lagrangian PDF method. Main conclusions are as follows.

(1) The simulation results of the mean concentration, the concentration fluctuation, and the
concentration covariance show good agreements with the experimental data as awhole.
So, the PDF calculation is valid for the liquid phase by adjusting the model constant.

(2) The Curl’s model tends to overestimate the effect of the chemical reaction. However, the
modified Curl’s model and the binominal Langevin model can overcome this defect.

3Axisymmetric Point Source Plume Diffusion in aTurbulent
Pipe Flows (Problem (B))

Now we move to the problem (B): the axisymmetric point source plume in afully developed
turbulent pipe flow.

3.1 Coordinate System

Here, the coordinate system $(r, \theta,x)$ is used as shown in Fig.lO, where $\mathrm{r},0,\mathrm{x}$ are the radial,
azimuthal and main streamwise coordinate, respectively. $R$ is the inner radius of the pipe.

3.2 Conditions of the Lagrangian Velocity Model

For the simulation of velocity field, the semiempirical Lagrangian stochastic model is adopted
to save the computing time and improve the efficiency of the algorithm. At first, we assume
that the evolutions of the moments of Euler velocity pdf in apipe flow (the first and second
moment etc.) are known from the experimental data, then the generalized Langevin equation
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Figure 10: Coordinate system

is constructed so that the evolutions of the moments calculated by the model may be equal to
those (the consistency condition (Pope, 1987)). Another important condition for the stochastic
model is the s0-called “thermodynamic constraint” that an initially uniform distribution of
material be maintained (Sawford, 1986). In other words, if, initially, the number density of
marked stochastic particles is uniform, then it remains uniform. According to Pope (1987), the
above condition is equivalent to the condition that the calculated mean velocity satisfies the
continuity equation.

3.3 AGeneralized Langevin Model in the Cylindrical Coordinates

In the present study, the motion of fluid particle is modeled and tracked by the generalized
Langevin model. Here we show only the equations used (See Sakai et al. (1996) for details).

Assuming axisymmetricity and the condition of full development for the turbulent pipe
flow, we can derive the following final form of the generalized Langevin model for each velocity
component,

$dU_{f}^{*}$ $=$ $- \frac{1}{\rho}\frac{\partial\overline{P}}{\partial r}dt+\frac{1}{r^{*}}U_{\theta}^{*2}dt+G_{rr}U_{f}^{*}dt$

$+G_{rx}(U_{x}^{*}-\overline{U_{x}})dt+\sqrt{C_{0}\epsilon}dW_{r}$ , (25a)

$dU_{\theta}^{*}$ $=$ $- \frac{U_{r}^{*}U_{\theta}^{*}}{r^{*}}dt+G_{\theta\theta}U_{\theta}^{*}dt$ $+\sqrt{C_{0}\epsilon}dW\theta$ , (25b)

$dU_{x}^{*}$ $=$ $- \frac{1}{\rho}\frac{\partial\overline{P}}{\partial x}dt+\nu\frac{1}{r^{*}}\frac{d}{dr}(r^{*}\frac{d\overline{U_{x}}}{dr})dt$

$+G_{tt}U_{r}^{*}dt+G_{xxx}(U_{x}^{*}-\overline{U_{x}})dt+\sqrt{C0\epsilon}dW_{x}$ , (25c)

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}*\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the random variable attendant on the particle, $dt$ :the time increment, $dU\dot{.}$ :
the increment of velocity component $(i=r, \theta, x)$ , $\epsilon$:mean dissipation rate per unit mass, Co:
Kolmogorov constant, $\mathrm{d}\mathrm{W}\mathrm{i}$ :increment of an isotropic Wiener process in the $i$ direction with the
mean 0and variance 1. The tensor $G_{\dot{|}j}$ is determined on the basis of the consistency condition
(Pope, 1987) up to the second-0rder moments of the velocity field (See Sakai et al. (1996) for
details on $G_{ij}$ ). And the gradient of the mean pressure can be expressed as

$\frac{1}{\rho}\frac{\partial\overline{P}}{\partial r}$ $=$
$- \frac{1}{r}\frac{\partial}{\partial r}(r\overline{\mathrm{u}_{f}^{2}})\dagger\overline{\frac{u_{\theta^{2}}}{r}}$ , (26)

$\frac{1}{\rho}\frac{\partial\overline{P}}{\partial x}$ $=$ $-2 \frac{u_{\tau}^{2}}{R}$ . (27)

Here, to satisfy consistency condition up to the second-0rder moments of the velocity, it is
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necessary to specify the radial distributions of the following mean quantities up to the third-
order,

Second-0rder moments
First-0rder moment

$.\cdot.\cdot.\cdot$

$\overline{\frac{\frac{U_{x}}{u_{r^{2}}}}{u_{r^{3}}}},’\frac{\overline u_{\theta^{2}},u}{u_{r^{2}}u_{x}},’\frac{\overline{2}\overline{u_{r}}}{u_{r}u_{\theta^{2}}}xu_{x},\overline{u_{r}u_{x^{2}}}$

, $\overline{u_{\theta^{2}}u_{x}}$Third-0rder moments
mean dissipation rate per unit mass : $\epsilon$

In the following, we explain the way of giving these parameters. Firstly, the radial distribution
of the mean velocity is given by the following equation in which the wake function (Tennekes
and Lumley, 1972) is added to the equation of mean velocity by Reichardt (See Hinze, 1975),

$\overline{\frac{U_{x}}{u_{\tau}}}$ $= \frac{1}{\kappa}\ln(1+\kappa y^{+})+c[1-\exp(-\frac{y^{+}}{\delta_{l^{+}}})-\frac{y^{+}}{\delta_{l^{+}}}\exp(-0.33y^{+})]$

$+d[1- \cos(\pi\frac{y}{\delta})]$ ,

$\kappa$ $=0.4$ , $c=6.0$, $\delta_{l^{+}}=11.0$ , $d=0.5$, $\delta=0.77R$ , (28)

where $y^{+}=u_{\tau}y/\nu$($y:\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}$ from the wall; $y=R-r$) and the third term of the right-hand
side is the wake function. The parameters $c$ and $\delta$ are chosen for the mean velocity at the
center of the pipe $\overline{U_{c}}$ and the cross-sectional mean velocity $U_{av}$ to agree with those given by
Becker et al. (1966). The experimental study by Becker et al. is the subject of the simulation
in the present research.

With regard to the second-0rder moments, i.e. $\overline{u_{f}^{2}},\overline{u_{\theta}^{2}}$ and $\overline{u_{x}^{2}}$ and the mean dissipation rate
$\epsilon$ , Laufer(1954)’s data (Reynolds number ${\rm Re}_{c}=2R\overline{U_{c}}/\nu=500,000$ ) are used. Here it is noted that
the Reynolds number of Laufer’s experiment is different ffom that of the experiment by Becker
et al. (1966) ( ${\rm Re}_{\mathrm{c}}=2R\overline{U_{\mathrm{c}}}/\nu=796,000$;This value corresponds to ${\rm Re}=2RU_{av}/\nu=684,000$). How-
ever, both Rec are in the same order, so distributions of the second moments and the mean
dissipation rate are not so different with each other. From this reason, the Laufer’s experimen-
tal results are used as the specified data.

The Reynolds stress $\overline{u_{r}u_{x}}$ is readily determined by integrating the $x$-direction mean velocity
equation, which is given by

$\overline{u_{r}u_{x}}=\nu\frac{\partial\overline{U_{x}}}{\partial r}+\frac{u_{\tau}^{2}}{R}r$. (29)

With regard to the third-0rder moments of the velocity, although there exist Laufer’s exper-
imental data, the scattering of the data is quite large. Thus, we judged that those data are not
suitable for inputting to the present model, and decided to omit the input of the third-0rder
moments to the model. This means that the present model does not satisfy the consistency
condition exactly. Thus we need to check the consistency condition in the practical simulation
in order judge whether the present model gives us reliable results or not. This check is made
by comparing the calculated statistics of the velocity field with the experimental (prescribed)
data.

3.4 Molecular Mixing Model

In the present problem, the DOpazO(1975)’s deterministic model and the modified Curl’s
model(Dopazo, 1975; Janicka et $\mathrm{a}1$ , 1979; Pope, 1982) are adopted as the molecular mixin
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model. The modified Curl’s model has been already explained in \S 2.1.3. In the following, we
explain the Dopazo’s model.

3.4.1 Dopazo’s Deterministic Model.

In the Dopazo’s deterministic model (Dopazo, 1975), when the scalar (concentration) attendant
on the particle is represented by $\Gamma$ , the increment of the scalar $d\Gamma$ is given by

$d\Gamma$ $=- \frac{1}{2}C_{\phi}(\Gamma-\langle\Gamma\rangle)\frac{dt}{\tau}$ , (30)

where ( $\Gamma\rangle$ is the ensemble average of the scalar over particles within each cell which is fixed on
the spatial area. $C_{\phi}$ is the parameter which determines the decay rate of the variance of the
scalar. And $\tau$ is the turbulent time scale, which is defined by

$\tau=\frac{\kappa}{\epsilon}$ , $\kappa$

$= \frac{\overline{u_{r^{2}}}+\overline{u_{\theta^{2}}}+\overline{u_{x^{2}}}}{2}$, (31)

where $\kappa$ is the turbulent kinetic energy, $\epsilon$ is the dissipation rate of $\kappa$ . In this model, the scalar
attendant on the particle is determined not randomly but deterministicaly.

3.5 Simulation Conditions

The subject of the present simulation is the oil fog diffusion field by Becker et al. (1966).
The simulation conditions are adjusted to those of the experiments by Becker et al.. In the
experiments, the measurements of the concentration field of the point source plume of oil fog
which is injected from the center of the pipe in afully developed turbulent pipe flow were
made. The fog injector’s inner diameter is 2.16 $\mathrm{m}\mathrm{m}$, and the outer diameter is 2.77 $\mathrm{m}\mathrm{m}$ . In the
actual experiments, the measurement points were fixed and the injector was moved, then the
concentrations were measured at the several downstream cross sections from the injector’s exit
(the plume source). On the other hand, we fixed the plume source at the origin and calculated
concentrations at the same downstream distances from the source as those of experiments.
Further, Becker et al. performed the experiments for several values of $\overline{U_{c}}$, but in this study
we chose only one case of these experiments as the simulation subject: the case of $\overline{U_{\mathrm{c}}}=61\mathrm{m}/\mathrm{s}$

$({\rm Re}=684,000)$ . The conditions of the simulation are as follows.

inner radius of the pipe : $R=0.1005$ $\mathrm{m}$

cross-sectional mean velocity : $U_{av}=52.38$ $\mathrm{m}/\mathrm{s}$

kinematic viscosity : $\nu=1.54\mathrm{x}10^{-5}\mathrm{m}^{2}/\mathrm{s}$

Reynolds number : ${\rm Re}=2RU_{av}/\nu=684,000$

friction velocity : $u_{\tau}=2.15\mathrm{m}/\mathrm{s}$

Kolmogorov constant : $C_{0}=2.0$

boundary condition absorptive wall

3.6 Simulation Results

3.6.1 Verification of the Velocity Field

Firstly, we made the numerical verifications of the consistency condition (Pope, 1987) up to
the second-0rder moment and the thermodynamic constraint (Sawford, 1986) for the calcu-
lated velocity field. Since the subject of calculation is afully developed turbulence field and
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the velocity field is independent of the azimuthal-direction, only the radial movements of the
particles were calculated in this verification. Although the figures are not shown here because
of the limitation of the paper length, it was confirmed that the velocity field simulated by the
present model can reproduce well the prescribed data up to the second-0rder moment even if
the input of the third-0rder moment is omitted. This gives us some practical background to
rely on the simulation of the scalar diffusion problem shown in the following section. Further,
it was also ascertained that the initial uniform distribution of stochastic particles is almost
unchanged with time in the simulation. Thus we concluded that the velocity field simulated
by the present model satisfies the thermodynamic constraint, i.e., the continuity condition
(Sawford, 1986).

3.6.2 Scalar Diffusion from the Center of the Pipe

For the simulation of the scalar field, the two dimensional calculation of the radial and main
streamwise direction was made because of the axisymmetricity of the pipe. Thus, the distance
of the particle movement in the radial and main streamwise direction $dr^{*}$ , $dx^{*}$ during the time
increment $dt$ is calculated by

$dr^{*}$ $=U_{r}^{*}dt$, (32)
$dx^{*}$ $=U_{x}^{*}dt$ . (33)

First, at the initial time the particles are distributed uniformly over the area of the calculation
$(r=0\sim R,x=0\sim 7.0R)$ and the particles within the source are given the scalar value
of 1, the others are given the scalar value of 0. The change of the scalar attendant on each
particle is calculated by the molecular mixing model mentioned in the previous section. The
size of the source is $0.04R$ in both the radial direction and the main streamwise direction.
This size was determined on the basis of the empirical equation of the mixing length given by
Nikuradse(see $\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g},1979$ ). The total number of particles is $N_{t}=2,000,000$ , the time
increment is $dt=4.67\mathrm{x}10^{-6}\sec$ for one step, and the total number of time steps is 11,000,
which corresponds to the real time of 5.137 $\mathrm{x}10^{-2}\mathrm{s}\mathrm{e}\mathrm{c}$ . The parameter $C_{\phi}$ , which determines
the decay rate of the variance of the scalar, is 7.5. In order to calculate the statistics of scalar
diffusion field, we take the ensemble average over particles within each spatially discretized cell
which is distributed in the radial and main streamwise direction. The total number of cells of
radial direction is 40 and the width of the $k\mathrm{t}\mathrm{h}$ cell $\Delta r^{(k)}$ from the center of the pipe is given by

$\Delta r^{(k)}/R=-a(k-1)+0.04$ , (34)

where the constant $a$ is 0.00076923 which is chosen so that the summation of the width of each
cell becomes $R$ . With regard to the cells of the main streamwise direction, their widths are
constant with $\Delta x^{(m)}/R=0.04$ ($m$ means the yyith cell) and the total number is 175. In the
following, the simulation results are shown.

Figure 11 shows the radial profiles of the mean concentration. In this figure, the ordinate
is normalized by the maximum of mean concentration in each cross-section $\overline{\Gamma}_{\max}$ and the
abscissa by concentration half-radius of plume $r_{1/2}$ . The lines show the simulation results by
two molecular mixing models (i.e., the Dopazo’s deterministic model and the modified Curl’s
model) and the symbols show experimental data by Becker et al. (1966). From this figure, it
is found that both simulation results agree with experimental data as awhole.

Figure 12 shows the radial profiles of the r.m.s value of concentration fluctuations. In this
figure, the lines show the simulation results by two molecular mixing models and the symbols
show the experimental data by Becker et al.. The ordinate is normalized by the maximum of
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mean concentration in each cross-section $\overline{\Gamma}_{\max}$ and the abscissa by $r_{1/2}$ . From the figure, it
is found that the difference by the mixing models is not so large, and the whole shape of any
simulated distribution almost agrees with the experimental one.

Figure 13 shows the main streamwise variation of the scalar PDF on the centerline of the
pipe. Figs.(a),(b) show the simulation results by the Dopazo’s deterministic model and the
modified Curl’s model, respectively. In these figures, the range $[0, 1]$ which the scalar value can
take is divided into one hundred pieces. From these figures, it is found that the modified Curl’s
model has the larger effect of the molecular mixing than the Dopazo’s model: the PDF profile
by the modified Curl’s model shows the two large spikes near $\Gamma=0$ and $\Gamma=1$ at the upstream
region (at $x/R=1.99$), but as going to the downstream direction the uniformalization of the
concetration (molecular mixing) has proceeded rapidly, then at the downstream region (at
$x/R=4.54)$ the PDF shows the monotonously decreasing profile from the peak near $\Gamma=0$

to the small value at the large concentration region, while in the PDF profile by the Dopazo’s
model the two peaks remain at the downstream region because of the less effect of molecular
mixing. This difference of molecular mixing effect between the two models seems to be worth
consideration to make the prediction of other diffusion fields by the PDF method in the future.
Further, although the figures are not shown here, it has been ascertained that both models
gives almost the same downstream variations of the mean concentration and the r.m.s. value
of concentration (i.e., the first-0rder and the second-0rder moment of the PDF). Consequently
it is found that both mixing models can express well the characteristics of the mixing process
at least up to the second-0rder moment of the scalar PDF in the plume.

Figure 11: Radial profiles of the mean Figure 12: Radial profiles of the r.m.s value
concentration of concentration fluctuations

3.7 Conclusions of Section 3

The axisymmetric point source plume in afully developed turbulent pipe flow is studied nu-
merically by the Lagrangian PDF method. The conclusions obtained in this section are as
follows.

(1) From the simulation resulsts of the diffusion field from the source at the center of the
pipe, it was found that the radial profiles of the mean concentration and concentration
fluctuation r.m.s value by two molecular mixing models (the Dopazo’s model and the
modeified Curl’s model) show good agreement with experimental data as awhole.

(2) From the downstream variations of the scalar pdf profiles, it was found that the modified
Curl’s model has the larger mixing effect than the Dopazo’s model, but the downstream
variations of the scalar PDF profiles by both mixing models can characterize well the
mixing process of the scalar plume from the point source on the center line of the pipe.
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(a) Dopazo’s model

$\Gamma$ $\Gamma$ $\Gamma$

(b) Modified Curl’s model

Figure 13: Downstream variation of the scalar PDF profile

4Summary

The Lagrangian PDF method is akind of Monte Carlo method in which the modeled equations
for the velocity and scalar of stochastic particle are constructed and they are solved numerically
by integrating the state of stochastic particles under the given initial conditions and boundary
conditions for the problems. In this study, the Lagrangian PDF method was applied to the two
mixing layer problems, i.e., the problem (A) :the reactive-scalar mixing layer of liquid phase in
grid-turbulence; the problem (B) :the axisymmetric turbulent plume diffusion in apipe flow.

For the velocity of the stochastic particles, the simplified Langevin model and the general-
ized Langevin model were used for the problem (A) and (B), respectively. With regard to the
molecular mixing model, three models (the Curl’s model, the modified Curl’s model and the
binomial Langevin model) were adopted for the problem (A), and two models (the Dopazo’s
model and the modified Curl’s model) were used for the problem (B). The simulation results
were compared with the experimental data by Komori et al. $(1993, 1994)$ for the problem (A)
and by Becker et al. (1966) for the problem (B).

Consequently, it was confirmed that the present simulation method is valid to predict the
distributions of the moments of the scalar PDF at least up to the second-0rder if the molecular
mixing models are appropriately chosen. However, we do not make sure yet whether the
present simple velcity and molecular mixing models give the correct results for the higher-
order moments of the scalar PDF. In the future, the usefulness of the present models will be
examined for other complicated diffusion processes and reactive flows, e.g., in the turbulent jet,
in the turbulent boundary layer and in the turbulence around the bluff body, etc.. Finally, it
should be noted that more recently other mixing models have been suggested, e.g., amapping
chosure model (Chen et al., 1989) and the spectral relaxation model (Pipino and Fox, 1994).
However, these new models were complicated in comparison with the simple models used in
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this study. The simplicity of the model is avery important factor for the application of the
model to the engineering problems. The use of these new models is also our future work.
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