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1. Introduction
Turbulent gas flows laden with small heavy particles are encountered in avariety of natural

and engineering applications. Examples include combustion of sprays and ash from volcanic
eruptions settling in the atmospheric turbulent boundary layer. Many studies have been
carried out to understand the flow characteristics, and the interaction between particles and
gas flow turbulence.

One of the key elements of the interaction is preferential concentration or clustering of
particles. Squires and Eaton (1991) showed in their numerical simulation of homogeneous
isotropic turbulence that particles tend to accumulate in low-vorticity or high-strain regions
due to the particle inertia. Wang and Maxey (1993) demonstrated that the particles in
gravity are preferentially swept to the downward side of vortices, which leads to the signiacant
increase in the mean settling velocity of particles.

TwO-way coupling between carrier fluid and particles is another key factor. The effects of
particles on the carrier fluid flow become important when the mean particle concentration
exceeds $O(10^{-6})$ . Numerical results show that the tw0-way coupling effects modify the
settling velocity of particles and vortical structures as well as turbulence kinetic energy of
carrier fluid (Squires and Eaton, 1990, Elghobashi and Truesdell, 1993). Recent experimental
(Aliseda et al., 2002) md numerical (Tanfaa et al., 2000) studies have demonstrated that
the tw0-way coupling effect signiacantly increases the settling velocity of particles even in
the case where the particles have only aminor effect on the turbulence kinetic energy of
carrier fluid. However it has not been clariaed how the tw0-way couplng effects lead to the
increase in the settling velocity.

In the present study, we investigate the interactions between particle clusters and vortical
structures in decaying homogeneous isotropic turbulence by the use of numerical simulation.
We focus on the role which the interaction plays in the increase in the settling velocity.

2. Formulation
2.1. Fluid and Particle Motions

We consider the motions of small heavy, spherical particles tinder the gravitational force
in the negative $x_{2}$ direction. The particle diameter, $d_{p}$ , was assumed to be small compared
with the Kolmogorov length-scale, $\eta$ , of turbulence. The particulate phase is assumed to be
dilute enough that the effects of particle-particle interactions are neglected though the two-
way coupling between two phases is considered. Taking account of the fact that the particle
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(solid) density, $\rho_{p}$ , is much higher than the fluid (air) density, $\rho f$ , only the Stokes drag and
the gravitational forces were assumed to exert on the particles. Under the assumption, the
particle motions are governed by the following equations (Maxey and Riley, 1983),

$\frac{\mathrm{d}v_{i}}{\mathrm{d}t}=\frac{1}{\tau_{p}}\{u_{i}(x_{p})-v_{i}-Vs\delta_{i2}\}$ , $\frac{\mathrm{d}x_{p}}{\mathrm{d}t}=v$ , $(i=1,2,3)$ (1)

where $v$ and $x_{p}$ denote the velocity and position of the particle, $u$ and $\nu$ represent the
velocity and kinematic viscosity of the fluid, respectively. Two parameters, $\tau_{p}=\rho_{p}d_{p}^{2}/18\rho f\nu$

and $Vs=\tau_{p}g$ , denote the particle inertia (or response time) and the still-fluid terminal
velocity, respectively. $g$ denotes the gravitational acceleration.

The motions of the carrier fluid are described by

$\frac{\partial u_{i}}{\partial t}+u_{k^{\frac{\partial u_{\dot{1}}}{\partial x_{k}}}}$ $=- \frac{1}{\rho_{f}}\frac{\partial p}{\partial x_{\dot{\partial}}}+\nu\nabla^{2}u:+\frac{1}{\rho_{f}}f_{i}$ (2)

with the solenoidal condition $\partial u_{j}/\partial x_{j}=0$ , where $P$ is the pressure, $f_{\dot{1}}$ represents a body
force which is the sum of the reaction forces exerted by the particles on the fluid. Here,
we assume that the mean body force $\langle$ $fl$ is balanced by the mean pressure gradient, where
$\langle\rangle$ denotes the spatial average. Therefore, the mean fluid velocity remains zero. For later
convenience, we introduce

$\Delta V\equiv\langle-v_{2}\rangle-V_{S}$ , (3)

which represents the increase in the mean settling velocity of particles from their still-fluid
terminal velocity.

2.2. Numerical Method

The motions of the carrier fluid were solved on 64 grid points in acubic box of sides of $2\pi$

by using the Fourier $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{l}/\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}$ -Kutta-Gill scheme. The initial velocity field was given
by the Fourier coefficients with specified energy spectrum,

$E(k)=ck$ $\exp(-k/h_{1})$ , (4)

and with random phase. Here, $k_{0}(=4.2)$ is awavenumber at which the energy spectrum
takes the maximum and $c$ is anormalization constant. We set $c$ as $k_{0}^{-4}/6$ so that $d$ (0) $=1$ ,
where $\omega’$ is the vorticity magnitude. Hereafter, $t^{*}=\omega’(0)t=t$ is used as adimensionless
time. $\eta k_{\mathrm{m}\mathrm{a}_{\#}}$.varied from 0.98 at $t^{*}=30$ to 2.66 at the end of the simulation $(t^{*}=200)$ . The
Taylor microscale Reynolds number was 20\sim 24 during the simulation except the initial
transient period.

We introduced particles randomly throughout the computational domain at $t^{*}=30$ after
the flow attained afully turbulent state. Many simulations were conducted with different
values of the particle response time $\tau_{p}$ and the still-fluid settling velocity $Vs$ . As in Aliseda
et al., we focus on acase of $\tau_{p}\approx\tau_{K}$ and $V_{S}\approx v_{K}$ , where anoticeable increase in settling
velocity is expected due to preferential sweeping (Wang and Maxey, 1993). Here, $\tau_{K}\mathrm{m}\mathrm{d}$ $v_{K}$

are the Kolmogorov time and velocity scales of turbulence, respectively. In order to reduce
the error that may result from point-force approximation (Boivin et al., 1998), the number
of particles was increased atimes by using the virtual particles which represent $1/\alpha$ real
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Table 1: Parameters for particles. Here, $N_{p}$ denotes the number of particles. $\phi_{v}$ and $\phi_{m}$ represent

the volume fraction and mass loading of particles, respectively.

$\overline{\overline{N_{p}\rho_{p}/\rho_{f}\tau_{p}/\tau_{K}V_{S}/v_{K}}}$

$2^{19}$ 1000 $2.18arrow 0.32$ $0.89arrow 2.3$

$\underline{\underline{\frac{\phi_{v}\phi_{m}\alpha d_{p}}{0.8\mathrm{x}10^{-4}0.8\mathrm{x}10^{-1}3.77.11\mathrm{x}10^{-4}}}}$

ones. (Note that $\alpha^{2}\rho_{p}/\beta f=canst$ , when $\tau_{p}$ , $N_{p}$ and $\phi_{m}$ are fixed.) The parameters employed
in this simulation are summarized in Table 1.

The particles were tracked in the Lagrangian frame. The initial particle velocity was set to
be the same as the sum of the surrounding fluid velocity and the still-fluid terminal velocity.
Cubic spline interpolation was used for the evaluation of fluid velocity at the particle position
from its neighboring grid points, whereas Taylor series 13 points method (Yeung and Pope,
1988) was used for the distribution of the reaction force to the neighboring grid points.

For comparison aone-way coupling simulation was conducted with the same initial condi-
tion. Another one-way coupling simulation was performed starting from the data at $t^{*}=100$

of the two way coupling simulation in order to clarify the tw0-way coupling effects on the
interaction between vortex structures and aparticle cluster.

3. Results

3.1. Turbulence kinetic energy and enstrophy

The energy and the enstrophy evolves as $t^{-1}$ and $t^{-2}$ , respectively, in later times in the
single-phase flow, as is expected from the form of the initial enery spectrum (Eq.(4)). Figure
1 shows the time evolution of turbulence kinetic energy and enstrophy of carrier fluid for
the tw0-way coupling case. They are normalized by the counterparts in the single phase
flow to emphasize the two way coupling effect. The relative magnitude of the energy slightly
increases in later times in this simulation. It is found that the enstrophy is more effectively
increased by the tw0-way coupling. The horizontal components of vorticity are found to
become greater than the vertical one though all components increase with time relative
to their counterparts in the single-phase flow. Examination of each term in the vorticity
equations has revealed that the horizontal vorticity is directly generated by the particles,
while the vertical vorticity is intensified by the stretching-and-tilting terms.

Figure 2shows the time evolution of the mean settling velocity of particles for the one-way
and tw0-way coupling simulations. In the figure, the increase in the sett.M velocity, $\Delta V$

(Eq.(3)), is normalized by the magnitude of the vertical component of velocity, $u_{2}’$ . The
increase in the mean settling velocity is about 10 percent of $u_{2}’$ in the one-way coupling
simulation, which is consistent with the result obtained by Wang $\mathrm{m}\mathrm{d}$ Maxey (1993). $\mathrm{h}$ the
tw0-way couplng simulation, the increase amounts to 35 percent of $u_{2}’$ at the end of the
simulation. It is somewhat smaller than aincrease (50%) in the experiment conducted by
Aliseda et al. (2002). However the additional increase due to the tw0-way coupling effects
is found to be comparable to theirs
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Fig. 1The effect of particles on the time
evolution of turbulence kinetic energy and
enstrophy of carrier fluid. The values were
normalized by those in the single-phase flow.

Fig. 2Time evolution of the increase in the
settling velocity of particles.

3.2. Counter-rotating vortex pair

We show a typical example of the interaction between particle clusters and vortical struc-
tures to understand the mechanism leading to the increase in the settling velocity. It is found
that counter-rotating vortex pairs Play an essential roll in the increase of settling velocity.
We focus on a vortex pair (Fig. 3), which is found to make the largest contribution to the
increase. In Figs. 3, the vortex tubes are represented by their central axes, which were
extracted by tracing the loci of sectional local minimum of the pressure (Kida and Miura
1998). The light one is inclined at about -30 to $\mathrm{t}\mathrm{h}\mathrm{e}+x\mathrm{s}$ direction, while the dark one at
about 30 to $\mathrm{t}\mathrm{h}\mathrm{e}-x_{3}$ direction. These two vortices induce adownward fluid flow between
them.

Figure 4 shows the time evolution of the vortex pair. Thick and thin lines denote the
vortex pairs in the two way simulation and the one-way coupling simulation starting from
the data of the former at $t^{*}=1\mathrm{O}\mathrm{O}$ , respectively. As time elapses, the central part of the
vortex pair (indicated by the vertical lines) moves in the gravitational direction due to the
self-induction of the vortex pair. It is interesting to note that the downward motion of the
vortex pair is enhanced by about 30% due to the tw0-way coupling effects, indicating that
the vortices are activated by the particle cluster. It is also interesting that the lower parts
of the vortex tubes are stretched in the gravitational direction as aresult of the two way
$\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{i}\cdot \mathrm{g}$ (see the bottom panel of Fig. 4). Generation of vertical vorticity was also observed
in a homogeneous turbulent shear flow laden with small heavy particles (Tanaka et al., 2002).

3.3. Interaction between the vortex pair and aparticle cluster
Figure 5 shows how the vortex pair interacts with the particles in the two way coupling

case. It is found that amushroom of high particle concentration is created at the end of
the interaction (see Fig. 8below). The particles composing the cluster were traced back
to the beginning of the interaction to examine how the particle cluster was generated. The
counterpart in the one-way coupling case is shown in Fig. 6for comparison. It turns out that
these particles represent the region of high particle concentration in the one-way coupling
case as well as that in the tw0-way coupling
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Fig. 3Vortex pair which is focused on
$(t^{*}=140)$ . (a) side view, (b) top view, (c)
sketch of the vortex pair.

Fig. 4Time evolution of the vortex pair. Thick
and thin Hues for the tw0-way and one-way
coupling simulations, respectively.

Before $t^{*}=1\mathrm{O}\mathrm{O}$ , the particles are distributed in alarge area above the vortex pair. As
time goes on, they are pulled down into the region between the pair vortices. Because of
particle inertia, they accumulate in anarrow region of high downward fluid velocity between
the vortices. This accelerates the particles in the gravitational direction. In addition to the
sweep from the region above the vortex pair to the region below, the downward motion of the
vortex pair due to the self-induction also contributes to the increase in the settling velocity.
The descending velocity of the cluster is surprisingly high (about four times higher than $u_{2}’$

in the two way coupling case) during the interaction.
By comparing Fig. 5and 6, it is found that aregion of very high concentration is generated

at the bottom of the cluster due to the tw0-way coupling effect (indicated by arrows in Fig.
5). As will be mentioned later, the fluid pressure is lowered behind (or above) the head
(or bottom) of the cluster, which enhances the accumulation of the particles. After passing
through the vortex pair, the descending velocity of the cluster rapidly decreases in the one-
way coupling case. The cluster is stretched in the horizontal directions due to the swirling
motions around the vortices. In the two way coupling case, on the other hand, the cluster
continues to move downward while it is transformed into amushroom-like structure (see
Fig. 8below). The descending velocity of the cluster is gradually lowered as the mushroom
becomes larger with time
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$\mathrm{g}$ . 5 Interaction between avortex pair and a
dicle cluster in the tw0-way coupling case.

Fig. 6The same as Fig. 5but for the one-way
coupling case.
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(a) tw0-way coupling

Fig. 7Spatial distributions of particle
concentration and $x_{3}$ component of vorticity on
the $x_{1}-x2$ plane for the (a) tw0-way and (b)
one-way coupling cases. $\mathrm{x}$ denotes the position
of the vortex axis. Solid (broken) lines denote
the contour lines of $\omega 3$ $=0.1,0.15,0.2$
(-0.1, -0.15, -0.2). The local particle
concentration changes as $C/\langle C)=2,4,8,16$

from the lightest to darkest shades.

(b)

(a) Concentrated region of particles and vorticity vectors on $\mathrm{m}$ $x_{3}-x_{1}$ plme at $t^{*}=180$

lack for $C/\langle C\rangle\geq 10$ and white for $C=0$ . (b) Sketch of the cluster
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3.4. Modification of vortical structures

Figure $7(\mathrm{a})$ shows atime series of the vortical structure and the local concentration of
particles on the $x_{1}-x_{2}$ planes indicated by the vertical lines in Figs. 3and 4. The distribution
of the $x_{3}$ component of vorticity is represented with solid lines for W3 $>0$ (counter-clockwise
rotation) and broken lines for $\omega_{3}<0$ (clockwise rotation). Shades denote the regions of high
particle concentration with darker shades representing higher concentration. The crossing
point of the vortex axis is represented by $\cross$ . In Fig. 8, across section of the mushroom at
$t^{*}=180$ is shown with asketch. For comparison, the vorticity and particle concentration
fields are shown for the one-way coupling case in Fig. $7(\mathrm{b})$ .

As was shown before, the particles accumulate in the region between the pair vortices. As
the particle concentration becomes high, the particle cluster begins to accelerate downward
due to gravity, inducing the downward fluid flow locally between the vortices. Then, aregion
of low fluid pressure is created behind (or above) the cluster. Because of the low pressure, the
vortices of positive and negative vorticities approach each other. This in turn enhances the
accumulation of particles, resulting in high particle concentration at the head (or bottom)
of the cluster.

As was found in Ferrante and Elghobashi (2003), elongated regions of high horizontal
vorticity appear on both sides of the downward flow. It is found that the vorticity vectors
are almost parallel to the $\mathrm{i}\mathrm{s}\mathrm{o}$-concentration surface around the mushroom (Fig. 8).

4. Conclusions
Numerical simulations have been conducted for decaying homogeneous isotropic turbulence

laden with small heavy particles settling under the effect of gravity. We have focused on
the interactions between vortical structures and particle clusters, and the role which they
Play in the increase in the settling velocity of particles. It is found that the counter-rotating
vortex pairs descending due to their self-induction play an essential role in the interaction.
We have observed the following scenario of the interaction (see Fig. 9).

(1) Particles accumulate in the downward fluid flow between the pair vortices to form $\mathrm{a}$

particle cluster. The settling velocity of the particles is increased through this process.
(2) The vortex pair moves downward owing to its self-induction. The particle cluster is

transfered downward not only by the sweep from the region above the vortex pair to
the region below but also by the vortex motion itself.

(3) The downward fluid flow is locally accelerated by the cluster, which further increases
the settling velocity of particles.

(4) The fluid pressure is lowered behind the particle cluster. This reduces the separation
between the pair vortices and enhances the accumulation of particles in the cluster.

(5) The particle cluster is transformed into amushroom-like structure after passing through
the vortex pair.

(6) The particle cluster activates the vortex pair and its downward motion. The lower
parts of the vortices axe finally stretched in the vertical direction.

(7) The regions of high horizontal vorticity are generated by particle clusters. They are
elongated in the vertical direction.
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Fig. 9Mechanism of the increase in the settling velocity of particles.

The response time of the cluster is generally much longer than the particle response time.
This means that the lifetime of the cluster needs to be long so that the two-way $\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{i}\cdot \mathrm{g}$

can be effective. Our results indicate that the vortex pair and its downward motion are
important to sustain the cluster for along time.

Aliseda et al. (2002) have found that the additional increase in settling velocity due to the
two way coupling effects can be estimated by asimple model where the particle cluster is
regarded as one larger solid particle descending in still fluid. If we employ the diameter of the
mushroom at $t^{*}=180$ as the dimension of the cluster, the descending velocity is estimated as
$1.3Vs$ by using the following formula for the drag coefficient, $C_{D}=24/Re_{\mathrm{p}}(1+0.15Re_{p}^{0.687})$ .
Here, $Re_{p}$ is the particle Reynolds number for the cluster ( $Re_{p}\approx 50$ in this case). $\mathrm{T}\underline{\mathrm{h}\mathrm{i}}\mathrm{s}$ is
close to the actual increase in settling velocity due to the two way coupling effect (about
$1.7Vs)$ . Judging from the complexity of the interaction between the vortices and the particle
cluster, however, this may be acoincidence. Further studies are needed to discuss the two
way coupling effect quantitatively.
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