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Abstract

In the present article, we recall the definitions of the Hermitian-representation ring
Gi1(R,G), the Grothendieck-Witt rings GW(G, R) and GWy(R,G), the Wall groups
L?(R|G],w), and the Bak groups L2(R[G], A, w) of a finite group G, and we discuss
induction theory concerned with these rings and groups using the notion of w-Mackey

functor:

1. INTRODUCTION

Throughout this article, let G be a finite group.

After works on surgery By J. Milnor, S. P. Novikov, W. Browder, and etc., C. T. C.
Wall [18], [19] formulated the surgery-dbstruction groups L?(Z|G], w) using quadratic
modules and automorphisms. In the case where the orientation homomorbhism w is

trivial, C. B. Thomas [17, Theorems 1, 3] in 1971 proved that L*(Z|G], w) is a module

Date: August 30, 2003.
*Partially supported by the Grant-in-Aid for Scientific Research (Kakenhi) No. 15540076.



over the Hermitian-representation ring G;(Z, G), and moreover the pairing of functors
Gi(Z,~) x La(Z[~],w|-) — L3(Z[~],]-)

is a Frobenius pairing (see Section 3). The Grothendieck-Witt ring GWy(Z, G) defined
in [7], [15] is the quotient ring of G;(Z, G) with respect to the Quillen relation. We
note that another Grothendieck-Witt ring GW(G, Z) is defined in [8] and the canonical
homomorphism GW(G,Z) — GWy(Z,G) is an isomorphism. It is a folklore since
1970’s, perhaps regarded as a corollary to [17, Theorems 1, 3], that if w is trivial, then

L2(Z|G],w) is a module over the ring GWo(Z, G) and
GWo(Z, —) x La(Z[~), wl|-) = Ly(Z[~], w|-)

is a Frobenius pairing. This was a main motivation of the study of GWy(Z, G) and
GW(G,Z) by A. Dress [6], [7], [8] in the respect of induction and restriction. By
using the Frobenius structure above and the induction theory of GWy(Z, —), various
authors computed L,(Z[G],w) for many finite groups G (cf. [9]). In addition, A. Bak
[1] introduced the notion of form parameter A and defined various K-theoretic groups
for the category of quadratic modules with form parameter (see Section 5). We [11],
[12] and [13] showed that certain Bak groups W,(Z[G], A; w) are equivariant-surgery-
obstruction groups, as the groups L’?(Z[G],w) are surgery-obstruction groups. The
groups W,(Z[G], A;w) are denoted by L2(Z[G],A,w) in the current paper. In the
“case where A is the minimal form parameter min, the group L!(Z|G], A, w) coincides
with the Wall group L?(Z[G], w). It is important to ask whether the Bak-group func-
tor Lﬁ(Z[-—], A_;w|.) is a Frobenius module over the Grothendieck-Witt-ring functor
GWy(Z, —). We have an affirmative answer as in the theorem below. Particularly if n
is an even integer, the answer was obtained in [15].
Let S(G) denote the set of all subgroups of G and let G(2) denote the set consisting

of all elements g in G of order 2. Let w : G — {1,—1} be a homomorphism. For
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each H € S(G), let wy : H — {1,—1} denote the restriction of w. The group ring
Z[H] has the involution — : Z[H] — Z[H] associated with wy. Let n be an integer
and set A = (—1)* and regard it as the symmetry of Z[H], where k is the integer such
that n = 2k or 2k + 1. Let Q be a conjugation-invariant subset of G(2) satisfying

w(g) = (—1)¥"! and set Qy = H N Q. The form parameter Ay of Z[{H] is defined by
Ay ={z - )T |z € Z[H]} + (Qn).

Similarly to the Wall-group functor, the bifunctor L*(Z[—],A_,w-) on S(G) with
canonical correspondence of morphisms is not a Mackey functor if w is nontrivial.

However, we have

Theorem 1.1. The bifunctor L*(Z|—], A_,w_) on S(G) with canonical correspondence
of morphisms is a w-Mackey functor (see Section 3) and furthermore a module over
the Grothendieck- Wilt ring functor GWo(Z, —) on S(G) with canonical correspondence
of morphisms.

Let H,(G) denote the set of all 2-hyperelementary subgroups and elementary sub-
groups of G By [8, Theorem 1] and [1, Theorem 12.13 (a)], the Green functor
GWy(Z,—) on §(G) is Ha(G)-computable. By replacing the correspondence of mor-
phisms as in (15, Proposition 2.3], the w-Mackey functor L2(R[-],A_,w_) on S(G) is

modified to a Mackey functor on S(G).

Corollary 1.2. The modified Mackey functor LE(Z[-], A_,w_) is Ha(G)-computable
(see Section 3). In particular, the restriction homomorphism
Res : L}(Z[G], Ag, w) — @ LM(Z[H), Ay, wy)
HeH(G)
18 injective, and the induction homomorphism

Ind : GB LY(Z[H), Ay, wy) — LE(Z]G), Ag,w)
HeHa(G)

18 surjective.
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Further results are discussed in Section 6. The other sections are organized as fol-
lows. In Section 2, we describe the definitions of the rings Gi1(R, G), GW(G, R), and
GWy(R,G). In Section 3, we give the definition of a Frobenius pairing and recall
results obtained by C. B. Thomas, A. Dress and A. Bak. In Section 4, we describe

the definitions of the category G (= G(G)) and a w-Mackey functor given in [15]
and recall relevant results. Section 5 is devoted to recalling the definitions of groups

L:(R[G], A, w).

2. THE GROTHENDIECK-WITT RINGS

Let R be a commutative ring with 1. Let B(G) denote the category of all pairs
(M, B) consisting of a finitely generated R-projective R[G]-module M and a symmetric,

G-invariant, nonsingular R-bilinear form B : M x M — R, namely
B(ax + a'z’,by) = abB(z,y) + a'bB(z',y),

B(z,y) = B(y,z),

B(gz,gy) = B(z,y),
forany a,a’, b€ R, z,z',y € M, g € G, and

M — Homg(M, R); x — B(z,—)
is & bijection. The set Morphgg)((M, B), (M', B')) of morphisms (M, B) — (M',B)
in B(G) consists of all R-linear maps f : M — M’ compatible with forms, namely
| BUf), /) = B@.)
for all z, y € M. For an R[G]-submodule U of M, we define the R[G]-submodule U +
of M by
Ut={zeM|B,y)=0VyeU)}

If U is R-projective and U = U+ then we say that U is a Lagrangian. More generally,
if an R[G)-submodule U of M is an R-direct summand of M and satisfies U C U4,
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then we refer to U as a Quillen submodule of (M, B) (or simply, M). In the case where
U is a Quillen submodule of (M, B), the pair (U*/U, B*) defined by
BY(z+ U,y +U) = B(z,y)
for z, y € U is an object in B(G). For a finitely generated R-projective R[G}-module
N, the associated hyperbolic module (in B(G)) H(N) = (N @& N*, By) is defined so
that By(N,N) = 0 = By(N*,N*), By(n,v) = v(n) for n € N and v € N*, where
N* = Homg(N, R) with (g-v)(n) = v(g~n).
C. B. Thomas [17] defined the group

Gi1(R,G)

to be the Grothendieck Group of the category B(G) with respect to orthogonal sum:
(M, Bi] + (M3, Bp] = [My @ M, By L By].
This set also has a product operation
((M1, By], [Ma, By]) = [M, Bi] - [My, Bp] = [M1 Qg M2, B ®r By,

and is a commutative ring with 1, actually

1 = (R, By}

such that R has the trivial G-action and By(a,b) = ab for a, b € R. The ring Gi1(R, G)
is called the Hermitian-representation ring. A. Dress [8] defined a Grothendieck-Witt
ring

GW(G, R)
to be the quotient G1(R, G)/(|(M, B)]), where (M, B) ranges over all objects in B(G)

having Lagrangians. In addition, A. Dress [7, p.472] defined the ring
GUo(R, G)

as the quotient

G1(R, G)/{[(M, B)] - [(U*/U, B*)] - [H(U)))
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and another Grothendieck-Witt ring
GWy(R,G)

as the quotient

Gi(R,G)/{((M, B)] - [(U*/U, B)]),
where (M, B) and U range over all objects (M, B) of B(G) with Quillen submodule
U. We remark that A. Bak [1] used the same notation GWy(R, G) to denote the group

GW(G, R) by it. Clearly, we have the canonical ring-epimorphisms
G:(R,G) — GW(G, R) — GWy(R, G).

By [8, Theorem 5], the last arrow is an isomorphism if R is a Dedekind domain and

|G| is invertible in its field of fractions.

3. FROBENIUS PAIRING

Let § be a category such that Obj(F) = S(G) the set of all subgroups of G, let 2
denote the category of abelian groups, and let L, M, N : § — 2 be bifunctors. Namely
L = (L*, L,) consists of a contravariant functor L* : § — 2 and a covariant functor
L, : ¥ — U such that L*(H) = L.(H) for all H € §(G). So, we usually write L(H)
instead of L*(H), L.(H).

We mean by a pairing L x M — N a family of biadditive maps

L(H)x M(H) - N(H);(z,y) — z v,

where H runs over S(G). We mean by a Frobenius pairing a paring satisfying the
conditions:
(1) N*(f)(zy) = L*(f)(=)-M*(f)(y) forz € L(H),-:y € M(H), f € Morphg(H, K),
(2) z-M*(f)(y) = Nu()(L*(F)(z)-y) for z € L(K),y € M(H), f € Morphg(H, K),
(3) Lu(f)(@)-y = Nu(f)(@-M*(f)(y)) forz € L(H),y € M(K), f € Morphg(H, K).

Let us note the following.
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(1) C. B. Thomas [17] showed that in the case where Morphg(H, K) consists of

inclusions H — K and w is the trivial homomorphism G — {1},
G1(Z, -) x Ln(Z[-],w-) — La(Z[~], w-)

is a Frobenius pairing.
(2) In the case where Morphg(H, K') consists of all monomorphisms H — K,

A. Dress [8, p. 292, 4. 3] claimed that
GW("’aZ) X L::(Z[_]a'w—) - LZ(Z[_]:'(U—)

is a Frobenius pairing. A similar version of quadratic forms with form parameter
is given by A. Bak [1, Theorems 12.6, 12.7] where proof of the odd-dimensional
case is omitted.

(3) In the case where Morphg(H, K) consists of inclusions H — K, conjugations
H — gHg™! and their compositions and w is trivial, one has perhaps regarded

that

CWo(Z, ) x LAZI=], w_) — LA(Z[~],w_)

is a Frobenius pairing, as a corollary to [17, Theorems 1, 3]. In fact, A. Dress
[8, p. 742, £4. —6-—5] claimed without showing a detailed and precise proof

that GUo(Z, —) acts on L%(Z|—],w_) as a Frobenius functor.

Thus, it would serve our convenience to describe a detailed and precise proof of the

fact that

GWyo(Z,-) x L2(Z[-],A_,w_) = LY(Z[-]),A_,w_)

is a Frobenius pairing for certain form parameters A_ and general w. For the case

n = 2k, one can find a proof with details in [15] (cf. [15, Theorem 12.10]).
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4. w-MACKEY FUNCTOR

We begin this section with recalling the category G = G(G): The set Obj(G) is same

as S(G). For H, K € 8(G), Morphg(H, K) is the set of all homomorphisms

CHor) : H— K; wmex)(h)=ghg™ (he H)

for ¢ € G such that gHg™! C K. The composition of morphisms is given by the

composition of maps. Adopting the notation in [15], we also use jm,x and c(,) for

O(H.e. k) aNd Y g.0Hg-1), TESPECtiVELY.

We mean by a bifunctor M = (M*, M,) : G — 2 a pair consisting of a contravariant
functor M* : G — 2 and covariant functor M, : Q — 2 such that M*(H) = M,(H),
which will be denoted by M(H), for all H € S(G). By [15, Proposition 2.1], we obtain
Proposition 4.1. Let M : G — 2 be a bifunctor satisfying M. (cgrg-1,0-1)) = M*(c(m,0))
for all H € §(G) and g € G. The Burnside ring Q(G) canonically acts on M(G) if

and only if
(1) M*(ci6,0) Ms(G,e)M* (jr,6) = Mu(jue) M (ju,6) M (c(c,q))
for all H € §(G) and g € G.
Let w: G — {1,—1} be a homomorphism.

Definition 4.2. A bifunctor M : G — 2 is called a w-Mackey functor if the following
conditions are fulfilled:

(1) Mu(cirg)) = M*(cigrg-1,0-1)) for all H € S(G) and g € G,

(2) M*(capy) = w(h)idmy (hence Mu(ciny) = w(h)idyer)) for all H € S(G)

and h € H,
(3) M*(jx,c) o Mu(ju,c) coincides with

@ M* (jKﬂgHy“l,K) ° (w(g)M*(c(Hﬁg"‘Kg.g)) o M* (jHﬁg‘lKg,H)
KgHeK\G/H

for any H, K € §(G).
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We note that a w-Mackey functor for trivial w is a Mackey functor.

Recall the next proposition.

Proposition 4.3 ([15, Proposition 2.3]). Let M : G — U be a w-Mackey functor.
Then bifunctor M™ : G — A given by

M“(H)= M(H),
M (p(r,g.)) = w(g) Mu(p(m,0,x)) and
M**(@r,g,5)) = w(g) M (pr,4,5))
for H, K € 8(G), ¢(#,4,x) € Morphg(H, K) with g € G is a Mackey functor.
For a w-Mackey functor M, we say that M™ is the Mackey functor associated with
M.

The next proposition is fundamental in geometric applications of the notion of w-

Mackey functor.

Proposition 4.4 (|15, Proposition 2.6]). A w-Mackey functor M : G — A is a module

over the Burnside-ring functor §2: G — A.

Proof. Since M*(c(c,q)) = Lidm(c), the equality (1) in Proposition 4.1 obviously holds.
Thus M(G) is a module over Q(G). Similarly, M(H) is a module over Q(H). The
naturalities (1)-(3) required for a Frobenius pairing in Section 3 can be checked in a

straightforward way. a

Let F be a conjugation-invariant lower-closed subset of S(G), namely gHg™! € F
‘and K € F both hold whenever H € F, g € G and K C H. A Mackey functor
L:G — 2 is said to be F-computable if

L(G)=1lim L(-) and L(G)=1lim L(-).

—Glr —Glr



5. EQUIVARIANT-SURGERY-OBSTRUCTION GROUPS

Let A = (4, —, ), A) be a form ring: A is a ring with 1, — is an involution on A such
that ab = b@, X is a symmetry, namely an element of Center(A) such that A =1, and

A is a form parameter, namely an additive subgroup satisfying

(1) {a-Xa|a€e A} CAC{a€A|a=-)a} and
(2) aAaC A foralla€ A

Let M be a finitely generated A-module. A biadditive map B : M x M — A is called

a A-Hermitian form if

(1) B(az,by) = bB(z,y)a and

(2) B(z,y) = AB(y,z)
foralla, be A, z, y € M. Amap qg: M — A/A is called a quadratic ‘form’ with

respect to B if

(1) g(z+y) - q(z) — q(y) = B(z,y) in A/A,
(2) ¢glax) = ag(z)a in A/A and

—_—— ==

(3) B(x,x) =q(z) + Ag(z) in A

——~—

for all @ € A, z, y € M, where g(z) € A is a lifting of g(z) € A/A. Such (M, B,q) is
referred to as an A-quadratic module.

Let H(A) denote the standard hyperbolic plane. That is, H(A) is the A-quadratic
module (M, B, q) consisting of an A-free module M with basis {e, f}, a A\-Hermitian

form B: M x M — A such that
B(e,e) = B(f,f)=0,B(e, f) =1,
and a quadratic ‘form’ ¢: M — A/A such that

q(e) = q(f) = 0.
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A hyperbolic module is an A-quadratic module isomorphic to
H(A™) =H(A) L --- L H(A)

the orthogonal sum of n copies of the standard hyperbolic plane. Let Q(A) denote the
category of A-quadratic modules (M, B, g) such that M is a free A-module and B is a

nonsingular form, namely
M — Homu(M, A); z +— B(z,—)

is a bijection. The set Morphg4)((M, B,q),(M’, B',q')) of morphisms (M, B,q) —
(M',B',q') in Q(A) consists of A-linear maps f : M — M’ satisfying B'o(f x f) =B
and ¢ o f =gq.

We define KQy(A)nee to be the Grothendieck Group of the category Q(A) with re-
spect to orthogonal sum. Let WQ,(A ). denote the quotient group KQq(A)pee/ (H(A)).

Let R be a commutative ring with 1, let w : G — {1, —1} be a homomorphism, let —
denote the involution on R[G] associated to w, let n be an integer, and set A = (—1)*,
where k € Z with n = 2k or 2k + 1. The involution — on R[G] associated with w is

the map

> ragr— Y wlg)reg™

9€G g€G
where ry € R.

First, consider the case where n = 2k is an even integer. Given a form parameter A

of (R[G], —, \), we define the group L2(R[G], A, w) by
La(RIG), Ay w) = WQo(A) sree-

Thus in particular, Wall’s group L?(R[G],w) is L?(R[G], min, w), where
min = {zx — AT | z € R[G]}.

For defining L2(R[G], min,w) with n odd, we use notation below. Let SUn(A,A)

denote the subgroup of GLj,,(A) corresponding to Aut(H(A™)), let EUn, (A, A) denote



the subgroup of SU,(A4,A) consisting of elementary A-quadratic matrices, and let
TU(A, A) denote the subgroup of SU,(A4, A) corresponding to the group consisting

of a € Aut(H(A™)) such that
a({e1,- - -, em)) = (€1,--+1m),
where {ey,...,en) is the canonical Lagrangian of H(A™). Let
(S SU] (A,A)
denote the matrix corresponding to o € Aut(H(A)) such that a(e) = f and a(f) = de.
We set
RUm(A7 A)= (TUm(Aa A)a a)-

Then, SU(A,A) is defined to be the direct limit lim SUn, (A, A) in a canonical way;
moreover EU(A,A), TU(A, A), and RU(A, A) are similarly defined.

We obtain the next lemma by using 3.5 (the Whitehead Lemma) and Corollary 3.9
of [1].
Lemma 5.1. If a subgroup K of SU(A, A) contains EU(A, A), then [K, K] = EU(A, A).

Define
and

WQ, (A, A) = KQ, (A, A)/{hyperbolic matrices),
where we mean by a hyperbolic matrix a matrix in SUn,(A4, A), for some m, of the form
a 0
H(O/) - (0 Of*)

with o € GL,,(A). It follows from arguments in [1, p. 27] that WQ, (A, A) coincides
with

KQ,(A,A)/[TU(A,A)].
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Now we consider the case where n = 2k 4 1 is an odd integer. Since RU(A4,A) 2

EU(A, A) (cf. {13, Propostion 2.7]), the quotient
L2(Z[G], A, w) = SU(A,A)/RU(A, A)
is an abelian group and coincides with

WQ,(4,4)/(0).

In particular, the Wall group L*(R[G), w) is L2(R[G], min, w).

6. RESULTS

Let G be a finite group, w : G — {1,—1} a homomorphism, n an integer, @ an
involution invariant subset of G(2) satisfying w(g) = —(~1)* for all g € Q, where k is

an integer with n =2k or 2k + 1. For H < G, we set Qu = Q N H, wy = wly, and
Ay = {z— (-1)*T | z € R[H]} + (Qu)r-
Then, our main result is
Theorem 6.1. The bifunctor LA(R[-],A_,w_): Q(G)v — A is a w-Mackey functor and
moreover a module over the Grothendieck- Witt-ring functor GWo(Z, —) : G(G) — .
The assertion for the case n = 2k follows from arguments in [15]. A detailed proof
for the case n = 2k + 1 will be given in a forthcoming paper.
Let H2(G) denote the set of all 2-hyperelementary subgroups and elementary sub-
groups of G.
Corollary 6.2. With respect to the associated-Mackey-functor structure, the bifunctor
LA(R[-],A-,w-) : G(G) — A is Ha(G)-computable. In particular, the restriction

homomorphism

Res : L} (R[G], Ag, w) — 6} L2 (R[H), Ay, wy)
HeHa(G)
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is injective, and the induction homomorphism

Ind: P Li(RIH), An,wr) — LA(R[G), Ag,w)
HeHa(G)

18 surjective.
This follows from [8, Theorem 1] and [1, Theorem 12.13 (a)].

Corollary 6.3. Let 3 be an element in the Burnside ring Q(G) such that xy(3) = 0
for all H € Hy(G) (resp. cyclic subgroup H of G). Then one has

BLE(R[G), Ag,w) =0 (resp. SH*TDLE(R[G), Ag,w) =0),

where a is the integer such that |G| = 2%m with odd integer m.

This follows from [7, Theorems 1, 3 (iii)] and [10, Proposition 6.3].
Finally we remark that the construction of smooth actions on spheres of finite groups

in {16] is a geometric application of the induction theory above.
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