INDUCTION THEORY OF EQUIVARIANT-SURGERY-OBSTRUCTION GROUPS

(同変手術障害類群の誘導理論)

XIANMENG JU (鞠 先孟), KATSUHIKO MATSUZAKI (松崎 勝彦), AND MASAHARU MORIMOTO* (森本 雅治)

Faculty of Environmental Science and Technology, Okayama University (岡山大学環境理工学部)

Abstract

In the present article, we recall the definitions of the Hermitian-representation ring $G_1(R,G)$, the Grothendieck-Witt rings GW(G,R) and $GW_0(R,G)$, the Wall groups $L_n^h(R[G],w)$, and the Bak groups $L_n^h(R[G],\Lambda,w)$ of a finite group G, and we discuss induction theory concerned with these rings and groups using the notion of w-Mackey functor.

1. Introduction

Throughout this article, let G be a finite group.

After works on surgery by J. Milnor, S. P. Novikov, W. Browder, and etc., C. T. C. Wall [18], [19] formulated the surgery-obstruction groups $L_n^h(\mathbb{Z}[G], w)$ using quadratic modules and automorphisms. In the case where the orientation homomorphism w is trivial, C. B. Thomas [17, Theorems 1, 3] in 1971 proved that $L_n^h(\mathbb{Z}[G], w)$ is a module

Date: August 30, 2003.

^{*}Partially supported by the Grant-in-Aid for Scientific Research (Kakenhi) No. 15540076.

over the Hermitian-representation ring $G_1(\mathbb{Z},G)$, and moreover the pairing of functors

$$G_1(\mathbb{Z},-) \times L_n^h(\mathbb{Z}[-],w|_-) \to L_n^h(\mathbb{Z}[-],w|_-)$$

is a Frobenius pairing (see Section 3). The Grothendieck-Witt ring $GW_0(\mathbb{Z}, G)$ defined in [7], [15] is the quotient ring of $G_1(\mathbb{Z}, G)$ with respect to the Quillen relation. We note that another Grothendieck-Witt ring $GW(G, \mathbb{Z})$ is defined in [8] and the canonical homomorphism $GW(G, \mathbb{Z}) \to GW_0(\mathbb{Z}, G)$ is an isomorphism. It is a folklore since 1970's, perhaps regarded as a corollary to [17, Theorems 1, 3], that if w is trivial, then $L_n^h(\mathbb{Z}[G], w)$ is a module over the ring $GW_0(\mathbb{Z}, G)$ and

$$\mathrm{GW}_0(\mathbb{Z},-) \times \mathrm{L}^h_n(\mathbb{Z}[-],w|_-) \to \mathrm{L}^h_n(\mathbb{Z}[-],w|_-)$$

is a Frobenius pairing. This was a main motivation of the study of $GW_0(\mathbb{Z}, G)$ and $GW(G, \mathbb{Z})$ by A. Dress [6], [7], [8] in the respect of induction and restriction. By using the Frobenius structure above and the induction theory of $GW_0(\mathbb{Z}, -)$, various authors computed $L_n(\mathbb{Z}[G], w)$ for many finite groups G (cf. [9]). In addition, A. Bak [1] introduced the notion of form parameter Λ and defined various K-theoretic groups for the category of quadratic modules with form parameter (see Section 5). We [11], [12] and [13] showed that certain Bak groups $W_n(\mathbb{Z}[G], \Lambda; w)$ are equivariant-surgery-obstruction groups, as the groups $L_n^h(\mathbb{Z}[G], w)$ are surgery-obstruction groups. The groups $W_n(\mathbb{Z}[G], \Lambda; w)$ are denoted by $L_n^h(\mathbb{Z}[G], \Lambda, w)$ in the current paper. In the case where Λ is the minimal form parameter min, the group $L_n^h(\mathbb{Z}[G], \Lambda, w)$ coincides with the Wall group $L_n^h(\mathbb{Z}[G], w)$. It is important to ask whether the Bak-group functor $L_n^h(\mathbb{Z}[-], \Lambda_-; w|_-)$ is a Frobenius module over the Grothendieck-Witt-ring functor $GW_0(\mathbb{Z}, -)$. We have an affirmative answer as in the theorem below. Particularly if n is an even integer, the answer was obtained in [15].

Let S(G) denote the set of all subgroups of G and let G(2) denote the set consisting of all elements g in G of order 2. Let $w: G \to \{1, -1\}$ be a homomorphism. For

each $H \in \mathcal{S}(G)$, let $w_H : H \to \{1, -1\}$ denote the restriction of w. The group ring $\mathbb{Z}[H]$ has the involution $-: \mathbb{Z}[H] \to \mathbb{Z}[H]$ associated with w_H . Let n be an integer and set $\lambda = (-1)^k$ and regard it as the symmetry of $\mathbb{Z}[H]$, where k is the integer such that n = 2k or 2k + 1. Let Q be a conjugation-invariant subset of G(2) satisfying $w(g) = (-1)^{k+1}$ and set $Q_H = H \cap Q$. The form parameter Λ_H of $\mathbb{Z}[H]$ is defined by

$$\Lambda_H = \{ x - \lambda \overline{x} \mid x \in \mathbb{Z}[H] \} + \langle Q_H \rangle.$$

Similarly to the Wall-group functor, the bifunctor $L_n^h(\mathbb{Z}[-], \Lambda_-, w_-)$ on $\mathcal{S}(G)$ with canonical correspondence of morphisms is not a Mackey functor if w is nontrivial. However, we have

Theorem 1.1. The bifunctor $L_n^h(\mathbb{Z}[-], \Lambda_-, w_-)$ on S(G) with canonical correspondence of morphisms is a w-Mackey functor (see Section 3) and furthermore a module over the Grothendieck-Witt ring functor $GW_0(\mathbb{Z}, -)$ on S(G) with canonical correspondence of morphisms.

Let $\mathcal{H}_2(G)$ denote the set of all 2-hyperelementary subgroups and elementary subgroups of G. By [8, Theorem 1] and [1, Theorem 12.13 (a)], the Green functor $GW_0(\mathbb{Z}, -)$ on $\mathcal{S}(G)$ is $\mathcal{H}_2(G)$ -computable. By replacing the correspondence of morphisms as in [15, Proposition 2.3], the w-Mackey functor $L_n^h(R[-], \Lambda_-, w_-)$ on $\mathcal{S}(G)$ is modified to a Mackey functor on $\mathcal{S}(G)$.

Corollary 1.2. The modified Mackey functor $L_n^h(\mathbb{Z}[-], \Lambda_-, w_-)$ is $\mathcal{H}_2(G)$ -computable (see Section 3). In particular, the restriction homomorphism

Res:
$$L_n^h(\mathbb{Z}[G], \Lambda_G, w) \longrightarrow \bigoplus_{H \in \mathcal{H}_2(G)} L_n^h(\mathbb{Z}[H], \Lambda_H, w_H)$$

is injective, and the induction homomorphism

Ind:
$$\bigoplus_{H \in \mathcal{H}_2(G)} \mathrm{L}^h_n(\mathbb{Z}[H], \Lambda_H, w_H) \longrightarrow \mathrm{L}^h_n(\mathbb{Z}[G], \Lambda_G, w)$$

is surjective.

Further results are discussed in Section 6. The other sections are organized as follows. In Section 2, we describe the definitions of the rings $G_1(R,G)$, GW(G,R), and $GW_0(R,G)$. In Section 3, we give the definition of a Frobenius pairing and recall results obtained by C. B. Thomas, A. Dress and A. Bak. In Section 4, we describe the definitions of the category \mathcal{G} (= $\mathcal{G}(G)$) and a w-Mackey functor given in [15] and recall relevant results. Section 5 is devoted to recalling the definitions of groups $L_n^h(R[G],\Lambda,w)$.

2. THE GROTHENDIECK-WITT RINGS

Let R be a commutative ring with 1. Let $\mathfrak{B}(G)$ denote the category of all pairs (M,B) consisting of a finitely generated R-projective R[G]-module M and a symmetric, G-invariant, nonsingular R-bilinear form $B: M \times M \to R$, namely

$$B(ax + a'x', by) = abB(x, y) + a'bB(x', y),$$

$$B(x,y) = B(y,x),$$

$$B(gx, gy) = B(x, y),$$

for any $a, a', b \in R$, $x, x', y \in M$, $g \in G$, and

$$M \longrightarrow \operatorname{Hom}_R(M,R); x \longmapsto B(x,-)$$

is a bijection. The set $\operatorname{Morph}_{\mathfrak{B}(G)}((M,B),(M',B'))$ of morphisms $(M,B)\to (M',B')$ in $\mathfrak{B}(G)$ consists of all R-linear maps $f:M\to M'$ compatible with forms, namely

$$B'(f(x), f(y)) = B(x, y)$$

for all $x, y \in M$. For an R[G]-submodule U of M, we define the R[G]-submodule U^{\perp} of M by

$$U^{\perp} = \{ x \in M \mid B(x, y) = 0 \ (\forall \ y \in U) \}.$$

If U is R-projective and $U = U^{\perp}$ then we say that U is a Lagrangian. More generally, if an R[G]-submodule U of M is an R-direct summand of M and satisfies $U \subseteq U^{\perp}$,

then we refer to U as a Quillen submodule of (M, B) (or simply, M). In the case where U is a Quillen submodule of (M, B), the pair $(U^{\perp}/U, B^{\perp})$ defined by

$$B^{\perp}(x+U,y+U) = B(x,y)$$

for $x, y \in U^{\perp}$ is an object in $\mathfrak{B}(G)$. For a finitely generated R-projective R[G]-module N, the associated hyperbolic module (in $\mathfrak{B}(G)$) $H(N) = (N \oplus N^*, B_N)$ is defined so that $B_N(N, N) = 0 = B_N(N^*, N^*)$, $B_N(n, v) = v(n)$ for $n \in N$ and $v \in N^*$, where $N^* = \operatorname{Hom}_R(N, R)$ with $(g \cdot v)(n) = v(g^{-1}n)$.

C. B. Thomas [17] defined the group

$$G_1(R,G)$$

to be the Grothendieck Group of the category $\mathfrak{B}(G)$ with respect to orthogonal sum:

$$[M_1, B_1] + [M_2, B_2] = [M_1 \oplus M_2, B_1 \perp B_2].$$

This set also has a product operation

$$([M_1, B_1], [M_2, B_2]) \mapsto [M_1, B_1] \cdot [M_2, B_2] = [M_1 \otimes_R M_2, B_1 \otimes_R B_2],$$

and is a commutative ring with 1, actually

$$1 = [R, B_0]$$

such that R has the trivial G-action and $B_0(a, b) = ab$ for $a, b \in R$. The ring $G_1(R, G)$ is called the *Hermitian-representation ring*. A. Dress [8] defined a Grothendieck-Witt ring

to be the quotient $G_1(R,G)/\langle [(M,B)]\rangle$, where (M,B) ranges over all objects in $\mathfrak{B}(G)$ having Lagrangians. In addition, A. Dress [7, p.472] defined the ring

$$GU_0(R,G)$$

as the quotient

$$G_1(R,G)/\langle [(M,B)] - [(U^{\perp}/U,B^{\perp})] - [H(U)]\rangle$$

and another Grothendieck-Witt ring

$$GW_0(R,G)$$

as the quotient

$$G_1(R,G)/\langle [(M,B)] - [(U^{\perp}/U,B^{\perp})] \rangle$$
,

where (M, B) and U range over all objects (M, B) of $\mathfrak{B}(G)$ with Quillen submodule U. We remark that A. Bak [1] used the same notation $GW_0(R, G)$ to denote the group GW(G, R) by it. Clearly, we have the canonical ring-epimorphisms

$$G_1(R,G) \longrightarrow GW(G,R) \longrightarrow GW_0(R,G).$$

By [8, Theorem 5], the last arrow is an isomorphism if R is a Dedekind domain and |G| is invertible in its field of fractions.

3. FROBENIUS PAIRING

Let $\mathfrak F$ be a category such that $\mathrm{Obj}(\mathfrak F)=\mathcal S(G)$ the set of all subgroups of G, let $\mathfrak A$ denote the category of abelian groups, and let $L,M,N:\mathfrak F\to\mathfrak A$ be bifunctors. Namely $L=(L^*,L_*)$ consists of a contravariant functor $L^*:\mathfrak F\to\mathfrak A$ and a covariant functor $L_*:\mathfrak F\to\mathfrak A$ such that $L^*(H)=L_*(H)$ for all $H\in\mathcal S(G)$. So, we usually write L(H) instead of $L^*(H),L_*(H)$.

We mean by a pairing $L \times M \to N$ a family of biadditive maps

$$L(H) \times M(H) \rightarrow N(H); (x, y) \mapsto x \cdot y,$$

where H runs over S(G). We mean by a *Frobenius pairing* a paring satisfying the conditions:

- (1) $N^*(f)(x \cdot y) = L^*(f)(x) \cdot M^*(f)(y)$ for $x \in L(H), y \in M(H), f \in Morph_{\mathfrak{F}}(H, K),$
- (2) $x \cdot M^*(f)(y) = N_*(f)(L^*(f)(x) \cdot y)$ for $x \in L(K), y \in M(H), f \in \text{Morph}_{\mathfrak{F}}(H, K),$
- (3) $L_*(f)(x) \cdot y = N_*(f)(x \cdot M^*(f)(y))$ for $x \in L(H), y \in M(K), f \in Morph_{\mathfrak{F}}(H, K)$.

Let us note the following.

(1) C. B. Thomas [17] showed that in the case where $\operatorname{Morph}_{\mathfrak{F}}(H,K)$ consists of inclusions $H \to K$ and w is the trivial homomorphism $G \to \{1\}$,

$$G_1(\mathbb{Z},-) \times L_n^h(\mathbb{Z}[-],w_-) \to L_n^h(\mathbb{Z}[-],w_-)$$

is a Frobenius pairing.

(2) In the case where $\operatorname{Morph}_{\mathfrak{F}}(H,K)$ consists of all monomorphisms $H\to K$, A. Dress [8, p. 292, ℓ . 3] claimed that

$$GW(-,\mathbb{Z}) \times L_n^h(\mathbb{Z}[-],w_-) \to L_n^h(\mathbb{Z}[-],w_-)$$

is a Frobenius pairing. A similar version of quadratic forms with form parameter is given by A. Bak [1, Theorems 12.6, 12.7] where proof of the odd-dimensional case is omitted.

(3) In the case where $\operatorname{Morph}_{\mathfrak{F}}(H,K)$ consists of inclusions $H\to K$, conjugations $H\to gHg^{-1}$ and their compositions and w is trivial, one has perhaps regarded that

$$\mathrm{GW}_0(\mathbb{Z},-) \times \mathrm{L}^h_n(\mathbb{Z}[-],w_-) \to \mathrm{L}^h_n(\mathbb{Z}[-],w_-)$$

is a Frobenius pairing, as a corollary to [17, Theorems 1, 3]. In fact, A. Dress [8, p. 742, $\ell\ell$. -6--5] claimed without showing a detailed and precise proof that $GU_0(\mathbb{Z}, -)$ acts on $L_n^h(\mathbb{Z}[-], w_-)$ as a Frobenius functor.

Thus, it would serve our convenience to describe a detailed and precise proof of the fact that

$$\mathrm{GW}_0(\mathbb{Z},-) \times \mathrm{L}^h_n(\mathbb{Z}[-],\Lambda_-,w_-) \to \mathrm{L}^h_n(\mathbb{Z}[-],\Lambda_-,w_-)$$

is a Frobenius pairing for certain form parameters Λ_{-} and general w. For the case n=2k, one can find a proof with details in [15] (cf. [15, Theorem 12.10]).

4. w-Mackey functor

We begin this section with recalling the category $\mathcal{G} = \mathcal{G}(G)$: The set $\mathrm{Obj}(\mathcal{G})$ is same as $\mathcal{S}(G)$. For $H, K \in \mathcal{S}(G)$, $\mathrm{Morph}_{\mathcal{G}}(H,K)$ is the set of all homomorphisms

$$\varphi_{(H,g,K)}: H \to K; \ \varphi_{(H,g,K)}(h) = ghg^{-1} \ (h \in H)$$

for $g \in G$ such that $gHg^{-1} \subseteq K$. The composition of morphisms is given by the composition of maps. Adopting the notation in [15], we also use $j_{H,K}$ and $c_{(H,g)}$ for $\varphi_{(H,e,K)}$ and $\varphi_{(H,g,gHg^{-1})}$, respectively.

We mean by a bifunctor $M = (M^*, M_*) : \mathcal{G} \to \mathfrak{A}$ a pair consisting of a contravariant functor $M^* : \mathcal{G} \to \mathfrak{A}$ and covariant functor $M_* : \mathcal{G} \to \mathfrak{A}$ such that $M^*(H) = M_*(H)$, which will be denoted by M(H), for all $H \in \mathcal{S}(G)$. By [15, Proposition 2.1], we obtain **Proposition 4.1.** Let $M : \mathcal{G} \to \mathfrak{A}$ be a bifunctor satisfying $M_*(c_{(gHg^{-1},g^{-1})}) = M^*(c_{(H,g)})$ for all $H \in \mathcal{S}(G)$ and $g \in G$. The Burnside ring $\Omega(G)$ canonically acts on M(G) if and only if

(1)
$$M^*(c_{(G,g)})M_*(j_{H,G})M^*(j_{H,G}) = M_*(j_{H,G})M^*(j_{H,G})M^*(c_{(G,g)})$$

for all $H \in \mathcal{S}(G)$ and $g \in G$.

Let $w: G \to \{1, -1\}$ be a homomorphism.

Definition 4.2. A bifunctor $M: \mathcal{G} \to \mathfrak{A}$ is called a *w-Mackey functor* if the following conditions are fulfilled:

- (1) $M_*(c_{(H,g)}) = M^*(c_{(gHg^{-1},g^{-1})})$ for all $H \in \mathcal{S}(G)$ and $g \in G$,
- (2) $M^*(c_{(H,h)}) = w(h)id_{M(H)}$ (hence $M_*(c_{(H,h)}) = w(h)id_{M(H)}$) for all $H \in \mathcal{S}(G)$ and $h \in H$,
- (3) $M^*(j_{K,G}) \circ M_*(j_{H,G})$ coincides with

$$\bigoplus_{KgH\in K\backslash G/H} M_*(j_{K\cap gHg^{-1},K}) \circ (w(g)M_*(c_{(H\cap g^{-1}Kg,g)}) \circ M^*(j_{H\cap g^{-1}Kg,H})$$
 for any $H, K \in \mathcal{S}(G)$.

We note that a w-Mackey functor for trivial w is a Mackey functor.

Recall the next proposition.

Proposition 4.3 ([15, Proposition 2.3]). Let $M : \mathcal{G} \to \mathfrak{A}$ be a w-Mackey functor. Then bifunctor $M^w : \mathcal{G} \to \mathfrak{A}$ given by

$$M^w(H) = M(H),$$

$$M_*^w(\varphi_{(H,g,K)}) = w(g)M_*(\varphi_{(H,g,K)}) \quad and$$

$$M^{w*}(\varphi_{(H,g,K)}) = w(g)M^*(\varphi_{(H,g,K)})$$

for $H, K \in \mathcal{S}(G), \varphi_{(H,g,K)} \in \text{Morph}_{\mathcal{G}}(H,K)$ with $g \in G$ is a Mackey functor.

For a w-Mackey functor M, we say that M^w is the Mackey functor associated with M.

The next proposition is fundamental in geometric applications of the notion of wMackey functor.

Proposition 4.4 ([15, Proposition 2.6]). A w-Mackey functor $M: \mathcal{G} \to \mathfrak{A}$ is a module over the Burnside-ring functor $\Omega: \mathcal{G} \to \mathfrak{A}$.

Proof. Since $M^*(c_{(G,g)}) = \pm id_{M(G)}$, the equality (1) in Proposition 4.1 obviously holds. Thus M(G) is a module over $\Omega(G)$. Similarly, M(H) is a module over $\Omega(H)$. The naturalities (1)–(3) required for a Frobenius pairing in Section 3 can be checked in a straightforward way.

Let \mathcal{F} be a conjugation-invariant lower-closed subset of $\mathcal{S}(G)$, namely $gHg^{-1} \in \mathcal{F}$ and $K \in \mathcal{F}$ both hold whenever $H \in \mathcal{F}$, $g \in G$ and $K \subset H$. A Mackey functor $L: \mathcal{G} \to \mathfrak{A}$ is said to be \mathcal{F} -computable if

$$L(G) = \lim_{\longleftarrow g|_{\mathcal{F}}} L(-)$$
 and $L(G) = \lim_{\longrightarrow g|_{\mathcal{F}}} L(-)$.

5. EQUIVARIANT-SURGERY-OBSTRUCTION GROUPS

Let $A=(A,-,\lambda,\Lambda)$ be a form ring: A is a ring with 1, - is an involution on A such that $\overline{ab}=\overline{ba}$, λ is a symmetry, namely an element of Center(A) such that $\overline{\lambda}\lambda=1$, and Λ is a form parameter, namely an additive subgroup satisfying

(1)
$$\{a - \lambda \overline{a} \mid a \in A\} \subseteq \Lambda \subseteq \{a \in A \mid a = -\lambda \overline{a}\}$$
 and

(2)
$$a\Lambda \overline{a} \subseteq \Lambda$$
 for all $a \in A$.

Let M be a finitely generated A-module. A biadditive map $B: M \times M \to A$ is called a λ -Hermitian form if

(1)
$$B(ax, by) = bB(x, y)\overline{a}$$
 and

(2)
$$B(x,y) = \lambda \overline{B(y,x)}$$

for all $a, b \in A, x, y \in M$. A map $q: M \to A/\Lambda$ is called a *quadratic 'form'* with respect to B if

(1)
$$q(x+y) - q(x) - q(y) = B(x,y)$$
 in A/Λ ,

(2)
$$q(ax) = aq(x)\overline{a}$$
 in A/Λ and

(3)
$$B(x,x) = \widetilde{q(x)} + \lambda \overline{\widetilde{q(x)}}$$
 in A

for all $a \in A$, $x, y \in M$, where $\widetilde{q(x)} \in A$ is a lifting of $q(x) \in A/\Lambda$. Such (M, B, q) is referred to as an A-quadratic module.

Let $\mathbf{H}(A)$ denote the standard hyperbolic plane. That is, $\mathbf{H}(A)$ is the A-quadratic module (M,B,q) consisting of an A-free module M with basis $\{e,f\}$, a λ -Hermitian form $B:M\times M\to A$ such that

$$B(e,e) = B(f,f) = 0, B(e,f) = 1,$$

and a quadratic 'form' $q:M\to A/\Lambda$ such that

$$q(e)=q(f)=0.$$

A hyperbolic module is an A-quadratic module isomorphic to

$$\mathbf{H}(A^n) = \mathbf{H}(A) \perp \cdots \perp \mathbf{H}(A)$$

the orthogonal sum of n copies of the standard hyperbolic plane. Let $\mathcal{Q}(A)$ denote the category of Λ -quadratic modules (M, B, q) such that M is a free Λ -module and B is a nonsingular form, namely

$$M \longrightarrow \operatorname{Hom}_A(M,A); x \longmapsto B(x,-)$$

is a bijection. The set $\operatorname{Morph}_{\mathcal{Q}(A)}((M,B,q),(M',B',q'))$ of morphisms $(M,B,q) \to (M',B',q')$ in $\mathcal{Q}(A)$ consists of A-linear maps $f:M\to M'$ satisfying $B'\circ (f\times f)=B$ and $q'\circ f=q$.

We define $KQ_0(A)_{free}$ to be the Grothendieck Group of the category $\mathcal{Q}(A)$ with respect to orthogonal sum. Let $WQ_0(A)_{free}$ denote the quotient group $KQ_0(A)_{free}/\langle \mathbf{H}(A)\rangle$.

Let R be a commutative ring with 1, let $w: G \to \{1, -1\}$ be a homomorphism, let -1 denote the involution on R[G] associated to w, let n be an integer, and set $k = (-1)^k$, where $k \in \mathbb{Z}$ with n = 2k or 2k + 1. The involution -1 on R[G] associated with w is the map

$$\sum_{g \in G} r_g g \longmapsto \sum_{g \in G} w(g) r_g g^{-1},$$

where $r_g \in R$.

First, consider the case where n=2k is an even integer. Given a form parameter Λ of $(R[G], -, \lambda)$, we define the group $L_n^h(R[G], \Lambda, w)$ by

$$L_n^h(R[G], \Lambda, w) = WQ_0(A)_{free}.$$

Thus in particular, Wall's group $L_n^h(R[G], w)$ is $L_n^h(R[G], min, w)$, where

$$min = \{x - \lambda \overline{x} \mid x \in R[G]\}.$$

For defining $L_n^h(R[G], min, w)$ with n odd, we use notation below. Let $SU_m(A, \Lambda)$ denote the subgroup of $GL_{2m}(A)$ corresponding to $Aut(\mathbf{H}(A^m))$, let $EU_m(A, \Lambda)$ denote

the subgroup of $SU_m(A, \Lambda)$ consisting of elementary Λ -quadratic matrices, and let $TU_m(A, \Lambda)$ denote the subgroup of $SU_m(A, \Lambda)$ corresponding to the group consisting of $\alpha \in Aut(\mathbf{H}(A^m))$ such that

$$\alpha(\langle e_1,\ldots,e_m\rangle)=\langle e_1,\ldots,e_m\rangle,$$

where $\langle e_1, \ldots, e_m \rangle$ is the canonical Lagrangian of $\mathbf{H}(A^m)$. Let

$$\sigma \in \mathrm{SU}_1(A,\Lambda)$$

denote the matrix corresponding to $\alpha \in \operatorname{Aut}(\mathbf{H}(A))$ such that $\alpha(e) = f$ and $\alpha(f) = \overline{\lambda}e$. We set

$$\mathrm{RU}_m(A,\Lambda) = \langle \mathrm{TU}_m(A,\Lambda), \sigma \rangle.$$

Then, $SU(A, \Lambda)$ is defined to be the direct limit $\varinjlim SU_m(A, \Lambda)$ in a canonical way; moreover $EU(A, \Lambda)$, $TU(A, \Lambda)$, and $RU(A, \Lambda)$ are similarly defined.

We obtain the next lemma by using 3.5 (the Whitehead Lemma) and Corollary 3.9 of [1].

Lemma 5.1. If a subgroup K of $SU(A, \Lambda)$ contains $EU(A, \Lambda)$, then $[K, K] = EU(A, \Lambda)$.

Define

$$\mathrm{KQ}_1(A,\Lambda) = \mathrm{SU}(A,\Lambda)/\mathrm{EU}(A,\Lambda)$$

and

$$WQ_1(A, \Lambda) = KQ_1(A, \Lambda)/\langle \text{hyperbolic matrices} \rangle$$
,

where we mean by a hyperbolic matrix a matrix in $SU_m(A, \Lambda)$, for some m, of the form

$$\mathbf{H}(\alpha) = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^* \end{pmatrix}$$

with $\alpha \in \mathrm{GL}_m(A)$. It follows from arguments in [1, p. 27] that $\mathrm{WQ}_1(A,\Lambda)$ coincides with

$$KQ_1(A, \Lambda)/[TU(A, \Lambda)].$$

Now we consider the case where n=2k+1 is an odd integer. Since $RU(A,\Lambda)\supseteq EU(A,\Lambda)$ (cf. [13, Propostion 2.7]), the quotient

$$L_n^h(\mathbb{Z}[G], \Lambda, w) = SU(A, \Lambda)/RU(A, \Lambda)$$

is an abelian group and coincides with

$$WQ_1(A, \Lambda)/\langle \sigma \rangle$$
.

In particular, the Wall group $L_n^h(R[G], w)$ is $L_n^h(R[G], min, w)$.

6. Results

Let G be a finite group, $w: G \to \{1, -1\}$ a homomorphism, n an integer, Q an involution invariant subset of G(2) satisfying $w(g) = -(-1)^k$ for all $g \in Q$, where k is an integer with n = 2k or 2k + 1. For $H \leq G$, we set $Q_H = Q \cap H$, $w_H = w|_H$, and

$$\Lambda_H = \{x - (-1)^k \overline{x} \mid x \in R[H]\} + \langle Q_H \rangle_R.$$

Then, our main result is

Theorem 6.1. The bifunctor $L_n^h(R[-], \Lambda_-, w_-) : \mathcal{G}(G) \to \mathfrak{A}$ is a w-Mackey functor and moreover a module over the Grothendieck-Witt-ring functor $GW_0(\mathbb{Z}, -) : \mathcal{G}(G) \to \mathfrak{A}$.

The assertion for the case n=2k follows from arguments in [15]. A detailed proof for the case n=2k+1 will be given in a forthcoming paper.

Let $\mathcal{H}_2(G)$ denote the set of all 2-hyperelementary subgroups and elementary subgroups of G.

Corollary 6.2. With respect to the associated-Mackey-functor structure, the bifunctor $L_n^h(R[-], \Lambda_-, w_-) : \mathcal{G}(G) \to \mathfrak{A}$ is $\mathcal{H}_2(G)$ -computable. In particular, the restriction homomorphism

Res:
$$L_n^h(R[G], \Lambda_G, w) \longrightarrow \bigoplus_{H \in \mathcal{H}_2(G)} L_n^h(R[H], \Lambda_H, w_H)$$

is injective, and the induction homomorphism

Ind:
$$\bigoplus_{H \in \mathcal{H}_2(G)} \mathcal{L}_n^h(R[H], \Lambda_H, w_H) \longrightarrow \mathcal{L}_n^h(R[G], \Lambda_G, w)$$

is surjective.

This follows from [8, Theorem 1] and [1, Theorem 12.13 (a)].

Corollary 6.3. Let β be an element in the Burnside ring $\Omega(G)$ such that $\chi_H(\beta) = 0$ for all $H \in \mathcal{H}_2(G)$ (resp. cyclic subgroup H of G). Then one has

$$\beta L_n^h(R[G], \Lambda_G, w) = 0 \quad (resp. \quad \beta^{2(a+1)} L_n^h(R[G], \Lambda_G, w) = 0),$$

where a is the integer such that $|G| = 2^a m$ with odd integer m.

This follows from [7, Theorems 1, 3 (iii)] and [10, Proposition 6.3].

Finally we remark that the construction of smooth actions on spheres of finite groups in [16] is a geometric application of the induction theory above.

REFERENCES

- A. Bak, K-Theory of Forms, Annals of Mathematics Studies 98, Princeton Univ. Press, Princeton, 1981.
- 2. A. Bak, Induction for finite groups revisited, J. Pure and Applied Alg. 104 (1995), 235-241.
- 3. T. tom Dieck, Transformation Groups and Representation Theory, Lecture Notes in Mathematics 766, Springer Verlag, Berlin-Heidelberg-New York, 1979.
- 4. T. tom Dieck, *Transformation Groups*, de Gruyter Studies in Mathematics 8, Walter de Gruyter, Berlin, 1987.
- 5. A. Dress, A characterization of solvable groups, Math. Z. 110 (1969), 213-217.
- A. Dress, Contributions to the theory of induced representations, in: Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic, Proc. Conf., Battelle Memorial Inst., Seattle, 1972, Lecture Notes in Mathematics 342, pp. 183–240, Springer Verlag, Berlin-Heidelberg-New York, 1973.
- 7. A. Dress, Induction and structure theorems for Grothendieck and Witt rings of orthogonal representations of finite groups, Bull. Amer. Math. Soc. 79 (1973), 741-

- 8. A. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. 102 (1975), 291-325.
- 9. I. Hambleton and L. Taylor, A guide to the calculation of the surgery obstruction groups for finite groups, in: Surveys on Surgery Theory vol. 1 (ed. S. Cappell, A. Ranicki and J. Rosenberg), Annals of Mathematics Studies 145, pp. 225–274, Princeton Univ. Press, Princeton, 2000.
- 10. E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479-520.
- 11. M. Morimoto, Bak groups and equivariant surgery, K-Theory 2 (1989), 465-483.
- 12. M. Morimoto, Bak groups and equivariant surgery II, K-Theory 3 (1990), 505-521.
- 13. M. Morimoto, G-surgery on 3-dimensional manifolds for homology equivalences, Publ. Res. Inst. Math. Sci., Kyoto University 37 (2001), 191–220.
- 14. M. Morimoto, *The Burnside ring revisited*, in: Current Trends in Transformation Groups (eds. A. Bak, M. Morimoto and F. Ushitaki), K-Monographs in Mathematics 7, pp.129–145, Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.
- 15. M. Morimoto, *Induction theorems of surgery obstruction groups*, Trans. Amer. Math. Soc. **355** (2003), 2341–2384.
- M. Morimoto and K. Pawałowski, Smooth actions of finite Oliver groups on spheres, Topology 42 (2003), 395–421.
- 17. C. B. Thomas, Frobenius reciprocity of Hermitian forms, J. Algebra 18 (1971), 237-244.
- 18. C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. 84 (1966), 217–276.
- 19. C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, London-New York, 1970.

FACULTY OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
OKAYAMA UNIVERSITY
TSUHSIMANAKA 3-1-1
OKAYAMA, 700-5360