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On the construction and classification of
almost complex curves in a nearly Kahler 6-sphere

Seiichi UDAGAWA (FHIJIl 3&—)
Nihon University, School of Medicine (AZARXZEEZER)

This report is based on a joint work with Prof H. Hashimoto( Meijo University),
Dr. T. Taniguchi(Tohoku University) (cf. [HTU]).

It is well known that a standard 6-dimensional sphere S has a nearly Kahler
structure. We denote it by J. Although a submanifold whose tangent space is
invariant under the action of J is 2-dimensional or 4-dimensional, there is no 4-
dimensional J-invariant submanifold by the result of A. Gray([Gr]). Therefore, the
only possible case of J-invariant submanifold is that of immersed surface. We ex-
press the J-invariant surface as the image of almost complex conformal immersion
of some Riemann surface M. In this case, we denote it by f : M — S5 On
the other hand, (totally real or CR) 3-dimensional submanifold can be often con-
structed as a tube of some radius over some almost complex curve(cf. Mashimo’s
article in this volume). For example, Ejiri immersion : $*(5) — S® can be re-
alized as a tube of radius % in the direction of second normal space over almost

complex curve S?(%) — S®  Almost complex curves of S® is divided into the
four types of the following : (I) linearly full and superminimal in S%, (II) linearly
full and non-superminimal in S8, (III) linearly fully immersed in some totally geo-
desic 53-dimensional sphere S® (which is necessarily non-superminimal), (IV) totally
geodesic almost complex 2-sphere.

Since the automorphism group of the nearly Kéhler structure is the exceptional
Lie group G2, S® can be expressed as a homogeneous space S® = G»/SU(3), which
is a 3-symmetric space. For Type (I), it can be lifted to a horizontal holomox—
phic curve in Q® = G5/U(2) which is the twister space over S® = G3/SU(3)
Bryant([Br]) gave the representation formula for almost complex curve of type (I)
using this twister space. For types (II) and (III), Bolton-Pedit-Woodward ([BPW])
showed that f has a Toda-framing into a 6-symmetric space ]?: M — Gy/T?,
where T2 is the maximal torus of SU(3). From these points of views, we may
consider the following problem : “Construct and classify the cases of type (II) and
(IIT)”. For the classification of type (II) and (III), there are some pioneering works
by Bolton-Vrancken-Woodward([BVW]). In this note, we present some construction
and classification of almost complex 2-tori of type (III).

1. Primitive map of finite type into 6-symmetric space

Theorem 1.1([BPW]). Any almost complezx 2-torus of type (II) or (III) f :



T? — S% can be lifted to a primitive map of finite type into 6-symmetric space

G /T2,

This theorem, together with the results of McIntosh([Mc1], [Mc2]), says that any
almost complex 2-torus can be constructed from the spectral data. However, since
the spectral data describes the moduli space of primitive map of finite type from
2-tori, it is not so easy to pick up only the data for almost complex 2-tori.

In the following, we consider only the almost complex curves of type (III). We
denote by V; the hyperplane of R7 whose sixth coordinate is identically zero. We
then consider the following correspondence.

Xy + i:IJ7
(%) Ve 3 xp = ' (21,29,23,74,25,0,27) ¢— Xo = | 3 +ix, | € C°.
~Z3 + 1T5

By this correspondence (*), we identify an almost complex curve of type (III)
f: M — S5NVg(= S%) with a conformal immersion f, : M — 8% C C3. We
have the following theorem.

Theorem 1.2. Let f. : T? — S° C C? be the one corresponding to an almost
complezx 2-torus f : T? —s S% by (x). Then, f, may be lifted to a primitive
map of finite type into 6-symmetric space SU(3)/T". Moreover, its homogeneous
projection into S°, fo : T? — 8% = Go/SU(3), is a harmonic map of finite type.

Remark. (1) If a harmonic map into a symmetric space has a lift f into a

generalized flag manifold so that f is a primitive map of finite type, then its homo-
geneous projection into some symmetric space is a harmonic map of finite type in
very many cases (cf. [OU]).
(2) Arbitrary non-isotropic harmonic map of 2-torus ¢ : T? — S® = S0O(7)/SO(6)
can be lifted to a primitive map of finite type ¢ : T? — SO(7)/T?, where
SO(7)/T? is a 6-symmetric space and the above G,/7T? is a 6-symmetric sub-
manifold of SO(7)/T?2.

We then have an diagram :

SO(N)/T? > G»/T? > SU(@3)/T*
\J \J !
S% = S0O(7)/SO(6) = G2/SU(3) D S§° = SU(3)/SU(2)

The last inclusion is due to the correspondence ().

2. Kahler angle of conformal
immersion into S° and examples

Since an almost complex curve of type (III) f. : M — S° is a horizontal curve
with respect to the Hopf fibration §° — CP?, f_ can be realized as a horizontal
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lift of a totally real minimal surface in CP2?. However, to construct an almost
complex curve as a horizontal lift of a totally real minimal surface in CP?, we need
to know the Kéhler angle of the lift with respect to the nearly Kahler structure
J. Once we come to know the Kahler angle, we may make the lifted horizontal
curve into an almost complex curve by rotating it in C2. The latter fact is due to
[BVW]. Hence, we need to know the Kihler angle of a horizontal surface in $° and
the following proposition gives the answer.

Proposition 2.1. Suppose that f : M — S3y C S® is a conformal immersion.
Let 0 be the Kéhler angle of f with respect to the nearly Kéhler structure J on S8.
If fo : M — S5 C C3 is horizontal with respect to the Hopf fibration S5 — CP?,
then

_ : —%afc —%—%
(2.2) cosH—Re{z det (fce 5 ¢ 32)}

Proposition 2.1 yields the machinary method of constructing almost complex
curves of type (III) as follows.

Theorem 2.3. Let so : M — C3 be a smooth map and w : M — R a smooth
function. Set s; = e~ % ‘820,32 = e*"“f—;}_ﬂ. If S = (sg s1 s2) has values in U(3)
and satisfies detS = —i, then f: M — S, C S® corresponding to fo, : M —>
S5 C C3 defined by f., = sq is a conformal immersion and an almost complez curve
with respect to J. The converse is also true.

Using Theorem 2.3, we may construct a 1l-parameter family of almost complex
curve of type (III) in terms of Jacobi elliptic functions based on the known example
of totally real minimal surface due to Castro-Urbano([CUJ).

[Example] Define f : R? — S by

¢ T2 z . "1 _TL — r ‘
f= (‘ / o cos (rly + 6) dn(rz,p), 4/ a—— cos (6 Tgy) cn(rz,p),
2 n
P (2 e [ (2 )
2.4)

ropt Ty T
————sin

S i rgy) sn(rz, p),0, _{: sin (7'13/ + %) dn(m,p)),

ry T+ Te

(

where

(2.5) o SRS B WIE /e
___\/a3+1+1 Vad +1-1 2

1 y T = y T3 =—,
« (8% «




and a(2 2) is a real number. Then, it follows from the correspondence (*) and

Theorem 2.3 that f gives a 1-parameter family of almost complex curves of type
(1I1).

3. Spectral data and representation
formula in term of Prym-theta function

The spectral data for constructing almost complex 2-torus of type (III), £ :
T? — S° is given by the triplet (C’, L, ﬂ') which satisfies the following four condi-
tions : For d = 1 mod 6
(1) C : compact Riemann surface of genus § = 2d admitting an anti-holomorphic
involution p and a holomorphic involution ¢, which satisfy po = op.
(2) m : ¢ — CP! is a three-fold holomorphic covering map with 7 o p = 7L,
Moreover, the divisor () and the ramification divisor R of 7 are given by

(-7()=3P0-3P00, R:2P0+2P00+D0+pD07

where two points Py and Py, satisfy 0(Pp) = Py, 0(Ps) = Pa, p(Py) = P, and
Dy is defined by

Pyyj=o0p(P;) for j=1,---,g

{ Do = {Py,--+ , Py, Pgy1, - . Py},
and arbitrary two points of Dy are distinct each other.

(3) A complex line bundle £ = Ox(2Py + Dy) of degree (§ + 2) over C.

(4) 7 has no branch points over S} = {A € P(C):| A |= 1} and p fixes each point
of m=1(S}).
If we define a complex line bundle £y over C by Lo = Oa(2Py — 2P+ Dy), then

we have deg (ﬁo) = §. It is known ([Mc1]) that £y is non-special, hence HY(C, L)

is of 1-dimension. Therefore, if we express a non-trivial section 1 of Ly explicitly,
then we can write down f. : T? — S® explicitly. The section v is given in terms
of Prym-theta function n (cf. [Fa], [MaMa], [HTU]) as follows :

(3.1)

1(B(P) - e) Po

where 0y and (2. are normalized(= “zero A-periods”) Abelian differentials of sec-
ond kind. They satisfy the relations p*Qq = Qg,0*Q = —Q,0* Qe = —Neo and
have the asymptotic behaviors as follows :

P P
f Qo =cv™ +0o(r7?) / Qo =v™t +o(v?)

Sy e A P P
H(P) = n(B(P)+ iUz +iVZ — e) v~ exp (/ 12000 +/ iEQg) ,

P Py
P P
/ Qoo =v+o0(r~?) around P, Qoo = cv +0o(v®) around Py,
By P
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where ¢ € R and U = (U, ,U,),V = (V4,--+,V,) are B-periods given by
Uj = fB,» oo, V; = jB Q. Let e be the one define by

(3.2) e” =20,0zlogn(iUz+iVZi—e) +c.

This gives a finite gap solution for Tzitzéica equation, which is the integrability
condition for almost complex curve of type (III). The induced metric on 77 may
be expressed as 2¢“dzdz. That e“ is R-valued follows from the relation ¢ (o (P)) =
v=4Y(p(P)). If we define Yo, and ¥g by

(3.3) do =1, $1=0., =il

then the expression (3.1) of ¢ follows from the integrability condition of the system
of differential equations formed by g, W1, Po.
Now, we obtain the following theorem.

Theorem 3.4. Given the spectral data (C’,[Z, 71'), we define Yo, ¢, 10 by (3.8).
Moreover, define S by

o [%0(@1) €Ty 6:3:'1/:12(@1)
(3.5) S = 7 Yo(Q2) €7 791(Q2) eT12(Q2)
0(Qs) e TP1(Q3) eTYa(Qs)
. 2n A\ F 4 . .
Then, S = exp(§z + ~§~m) <det(5)) S, (n =0,1,2), gives a Toda-framing for

almost complezx curve of type (111). Thus, the first column vector of S gives an almost
complex curve of type (11I), f : R? — S3%,. Moreover, the necessary condition for f
be doubly-periodic is that there are two complez numbers ¢y, co satisfying ¢1¢3 # Tica
such that

Q
Re (cUj), Re (ck/ Qoo) €nZ for j=1,---,9;k=1,2;1=1,2,3.
Py

kold.

Remark. There are some overlapps in fundamental concepts of the works be-
tween [Mc3] and [HTU]. Although the paper [Mc3] has been already published, our
work had been announced in [U].
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