Bell＇s results on，and representations of finitely connected planar domains

谷口雅彦（Masahiko Taniguchi）
京都大学大学院理学研究科
Department of Mathematics，Kyoto University，

1 Ahlfors maps and Bergman kernels

Let D be a domain in \mathbb{C} ．Consider the subspace $A^{2}(D)$ of the Hilbert space $L^{2}(D)$（of all square integrable functions on D with respect to the Lebesque meaure on \mathbb{C} ）consisting of all elements in $L^{2}(D)$ holomorphic on D ．Then there is the natural projection

$$
P: L^{2}(D) \rightarrow A^{2}(D),
$$

which is called the Bergman projection．The coresponding kernel $K(z, w)$ is called the Bergman kernel．

When D is the unit disc，

$$
K(z, w)=\frac{1}{\pi(1-z \bar{w})^{2}} .
$$

Hence the Bergman kernel function $K(z, w)$ associated to a simply con－ nected domain D can be written by using the Riemann map $f_{a}(z)$（de－ termined uniquely by the conditions $f_{a}(a)=0$ and $\left.f_{a}^{\prime}(a)>0\right)$ and its derivative：

$$
K(z, w)=\frac{f_{a}^{\prime}(z) \overline{f_{a}^{\prime}(w)}}{\pi\left(1-f_{a}(z) \overline{f_{a}(w)}\right)^{2}} .
$$

Let D be a non－degenerate multiply connected planar domain with smooth boundary．Fix a point a in D ，and let f_{a} be the Ahlfors map
associated with the pair (D, a). Among all holomorphic functions h which map D into the unit disc and satisfy $h(a)=0$, the Ahlfors map f_{a} is the unique function which maximizes $h^{\prime}(a)$ under the condition $h^{\prime}(a)>0$. Such proper holomorphic maps can recover the Bergman projections and kernels in general.

Theorem 1 Let $f: D_{1} \rightarrow D_{2}$ be a proper holomorphic map between planar (proper) domains. Let P_{j} be the Bergman projection for D_{j}. Then

$$
P_{1}\left(f^{\prime} \cdot(\phi \circ f)\right)=f^{\prime} \cdot\left(\left(P_{2} \phi\right) \circ f\right)
$$

for all $\phi \in L^{2}\left(D_{2}\right)$.
But the translation formula for the Bergman kernels is not so simple in general. For instance, it is hard to write down the following formula explicitly.

Proposition 2 Let $f: D_{1} \rightarrow D_{2}$ be a proper holomorphic map between planar (proper) domains. Then the Bergman kernels $K_{j}(z, w)$ associated to D_{j} transform according to

$$
f^{\prime}(z) K_{2}(f(z), w)=\sum_{k=1}^{m} K_{1}\left(z, F_{k}(w)\right) \overline{F_{k}^{\prime}(w)}
$$

for $z \in D_{1}$ and $w \in D_{2}-V$ where the multiplicity of the map f is m and the functions $F_{k}, k=1, \cdots, m$, denote the local inverses to f and V is the set of critical values.
S. Bell obtained several kinds of simpler representations of Bergman kernel functions.

Theorem 3 ([1]) For a non-degenarate multiply connected planar domain D, we can find two points a, b in D such that

$$
K(z, w)=f_{a}^{\prime}(z) \overline{f_{b}^{\prime}(w)} R(z, w)
$$

with a rational combination $R(z, w)$ of f_{a} and f_{b}.

Here we say that a function $R(z, w)$ is a rational combination of f_{a} and f_{b} if it is a rational function of

$$
f_{a}(z), f_{b}(z), \overline{f_{a}(w)}, \overline{f_{b}(w)}
$$

Such representation as above has the following variant.
Theorem 4 ([5]) For a non-degenarate multiply connected planar domain D, we can find two points a, b in D such that

$$
K(z, w)=\frac{f_{a}^{\prime}(z) \overline{f_{a}^{\prime}(w)}}{\left(1-f_{a}(z) \overline{f_{a}(w)}\right)^{2}}\left(\sum_{j, k} H_{j}(z) \overline{K_{k}(w)}\right)
$$

where f_{a}, f_{b} are the Ahlfors functions, H and K are rational functions of them, and the sum is a finite sum.

Actually, we can use any proper holomorphic maps.
Theorem 5 ([2]) Let D be a non-degenarate multiply connected planar domain, and f a proper holomorphic map of D onto the unit disk U. Then $K(z, w)$ is an algebraic function of

$$
f(z), f^{\prime}(z), \overline{f(w)}, \overline{f^{\prime}(w)}
$$

Moreover, we have the following
Theorem 6 ([2]) Let D be a non-degenerate multiply connected planar domain. The following conditions are equivalent.
(1) The Bergman kernel $K(z, w)$ associated to D is algebraic, i.e. an algebraic function of z and \bar{w}.
(2) The Ahlfors map $f_{a}(z)$ is an algebraic function of z.
(3) There is a proper holomorphic mapping $f: D \rightarrow U$ which is an algebraic function.
(4) Every proper holomorphic mapping from D onto the unit disc U is an algebraic function.

Also we have

Theorem 7 ([4]) Let D be a non-degenerate multiply connected planar domain. There are two holomorphic functions F_{1} and F_{2} on D such that the Bergman kernel on D is a rational combination of F_{1} and F_{2} if and only if there is a proper holomorphic map f of D onto U such that f and f^{\prime} are algebraically dependent: i.e. there is a polynomial Q such that $Q\left(f, f^{\prime}\right)=0$.

Then, for every proper holomorphic map f of D to U, f and f^{\prime} are algebraically dependent.

Proposition 8 ([4]) Let D be a simply connected planar (proper) domain. The Bergman kernel on D is a rational combination of a function of a complex variable if and only if the Riemann map f of D and f^{\prime} are algebraically dependent.

Finally, we note the following facts.
Proposition 9 ([2]) lf $K(z, w)$ is algebraic, and f be a proper holomorphic map to U. Then $K(z, w)$ is an algebraic function of $f(z)$ and $\overline{f(w)}$.

Corollary 1 ([2]) Let D_{1} and D_{2} have algebraic Bergman kernels, then every biholomorphic map of D_{1} onto D_{2} is algebraic.

2 Bell representations

Now the issue is to find a family of canonical domains which admit a simple proper holomorphic map to U. Bell proposed such a family, and actually, they are enough.

Theorem 10 ([6]) Every non-degenerate n-connected planar domain with $n>1$ is mapped biholomorphically onto a domain $W_{\mathbf{a}, \mathrm{b}}$ defined by

$$
W_{\mathbf{a}, \mathbf{b}}=\left\{z \in \mathbb{C}:\left|z+\sum_{k=1}^{n-1} \frac{a_{k}}{z-b_{k}}\right|<1\right\}
$$

with suitable complex vectors $\mathbf{a}=\left(a_{1}, a_{2}, \cdots, a_{n-1}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \cdots, b_{n-1}\right)$.

The above theorem is considered as a natural generalization of the classical Riemann mapping theorem for simply connected planar domains. The function $f_{\mathbf{a}, \mathbf{b}}$ defined by

$$
f_{\mathbf{a}, \mathbf{b}}(z)=z+\sum_{k=1}^{n-1} \frac{a_{k}}{z-b_{k}}
$$

is a proper holomorphic mapping from $W_{\mathbf{a}, \mathbf{b}}$ to the unit disc which is rational. Actually, it is a very classical fact that, for such an $f=f_{\mathrm{a}, \mathrm{b}}$ as above, f and f^{\prime} are algebraically dependent. Hence the above proposition implies the following corollary.

Corollary 2 Every non-degenerate n-connected planar domain D with $n>1$ is biholomorphic to a domain with the algebraic Bergman kernel.

Corollary 3 There are two holomorphic functions F_{1} and F_{2} such that the Bergman kernel on $W_{\mathrm{a}, \mathrm{b}}$ is a rational combination of F_{1} and F_{2}.

Definition The locus \mathbf{B}_{n} in $\mathbb{C}^{2 n-2}$ consisting of (\mathbf{a}, \mathbf{b}) such that the corresponding domain $W_{\mathbf{a}, \mathrm{b}}$ is a non-degenerate n-connected planar domain.

We call this locus \mathbf{B}_{n} the coefficient body for non-degenerate n-connected canonical domains.

It is obvious that \mathbf{B}_{n} is contained in the product space

$$
\left(\mathbb{C}^{*}\right)^{n-1} \times F_{0, n-1} \mathbb{C},
$$

which has the same homotopy type as that of

$$
X=\left(S^{1}\right)^{n-1} \times F_{0, n-1} \mathbb{C}
$$

where

$$
F_{0, n-1} \mathbb{C}=\left\{\left(z_{1}, \cdots, z_{n-1} \in \mathbb{C}^{n-1} \left\lvert\, z_{j} \frac{1}{\tau} z_{k} \quad\right. \text { if } \quad j \frac{1}{\tau} k\right\}\right.
$$

is called a configuration space.
To clearify the topological structure of the coefficent body, it is more convenient to use the following modified representation space.

Definition We set

$$
\mathbf{B}_{n}^{*}=\left\{\left(a_{1}, \cdots, a_{n-1}, \mathbf{b}\right) \in(\mathbb{C})^{2 n-2} \mid\left(a_{1}^{2}, \cdots, a_{n-1}^{2}, \mathbf{b}\right) \in \mathbf{B}_{n}\right\},
$$

and call it the modified coefficient body.

Theorem $11 \mathbf{B}_{n}^{*}$ is a circular domain, and has the same homotopy type as that of the product space X.

Corollary 4 The homotopy type of \mathbf{B}_{n} is the same as that of X.
Remark The fundamental group of $F_{0, n-1} \mathbb{C}$ is called the pure braid group, and its structure is well-known.

Problem

1. Determine the Ahlfors locus of \mathbf{B}_{n} which consists of all (\mathbf{a}, \mathbf{b}) such that $f_{\mathrm{a}, \mathrm{b}}$ gives an Ahlfors map (, or more precisely, $e^{i \theta} f_{\mathrm{a}, \mathrm{b}}$ with a suitable $\theta \in \mathbb{R}$ is an Ahlfors map).
2. Fix a point (\mathbf{a}, \mathbf{b}) in \mathbf{B}_{n}, and let $W=W_{\mathbf{a}, \mathbf{b}}$ be the corresponding n conenncted canonical domain. Determine the leaf $E(W)$ of \mathbf{B}_{n} for W, consisting of all points which correspond to n-connected canonical domains biholomorphically equivalent to W.
3. Determine the collision locus C of \mathbf{B}_{n} which consists of all (\mathbf{a}, \mathbf{b}) such that the correcponding map $f_{\mathrm{a}, \mathrm{b}}$ has a pair of critical points (counted with multiplicities) whose image is the same. (Note that $\mathbf{B}_{n}-C$ is a finite-sheeted holomorphic smooth cover of the intersection of $F_{0,2 n-2} \mathbb{C}$ and the unit polydisc.)

Example 1

$$
\mathbf{B}_{2}^{*}=\left\{(a, b) \in \mathbb{C}^{2}: a \neq 0,|b+2 a|<1,|b-2 a|<1\right\}
$$

which is biholomorphic to the polydisc deleted the diagonal.
Next, the set

$$
\left\{(a, b) \in \mathbf{B}_{2}^{*}:\left|\frac{4 a^{2}}{1-\overline{(b+2 a)}(b-2 a)}\right|=\frac{4 r}{4+r^{2}}\right\}
$$

corresponds to a leaf of \mathbf{B}_{2} for every given $r>2$, and the collision locus of \mathbf{B}_{2} is empty.

参考文献

［1］S．Bell，Ahlfors maps，the double of a domain，and complexity in potential theory and conformal mapping，J．d＇Analyse Math．， 78 （1999），329－344．
［2］S．Bell，Finitely generated function fields and complexity in potential theory in the plane，Duke Math．J．， 98 （1999），187－207．
［3］S．Bell，A Riemann surface attached to domains in the plane and complexity in potential theory，Houston J．Math．，26，（2000），277－ 297.
［4］S．Bell，Complexity in Complex analysis，Adv．Math．， 172 （2002）， 15－52．
［5］S．Bell，Möbius transformations，the Caratheodory metric，and the objects of complex analysis and potensial theory in maltiply connected domains，preprint．
［6］M．Jeong and M．Taniguchi，Bell representation of finitely connected planar domains，Proc．AMS．， 131 （2003），2325－2328．
［7］M．Jeong and M．Taniguchi，Algebraic kernel functions and represen－ tation of planar domains，J．Korea Math．Soc．， 40 （2003），447－460．
［8］M．Jeong and M．Taniguchi，in preparation．

