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Curvature instability of a vortex ring
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1 Introduction
Vortex rings are invariably susceptible to wavy distortions, leading sometimes to violent
wiggles and eventually to disruption. It prevails that the Moore-Saffman-Tsai-Widnall
instability, being abbreviated as the MSTW instability, is responsible for genesis of un-
stable waves (Widnal, Bliss & Tsai 1974; Moore & Saffman 1975; Tsai & Widnall 1976;
Widnall & Tsai 1977). Remember that this is an instability for a straight vortex tube
subjected to a straining field.

When viewed locally, a thin vortex ring looks like a straight tube. For simplicity, we
restrict our attention to the Rankine vortex, a circular core of uniform vorticity. Because
of circular-cylndrical symmetry, the Rankine vortex is neutrally stable and supports a
family of three-dimensional waves of infinitesimal amplitude, being well known as the
Kelvin waves. The vortex ring induces, on itself, not only a local uniform flow that drives
a translational motion as a whole, but also a local straining field akin to a pure shear, in
the meridional plane, with principal axes tilted by $\pi/4$ from the symmetric axis (Widnall,
Bliss & Tsai 1974). This is a quadrupole field proportional to $\cos 2\theta$ and $\sin 2\theta$ , in terms
of local polar coordinates $(r, \theta)$ in the meridional plane, with its origin at the core center
and with $\theta=0$ along the traveling direction. This field breaks the circular symmetry of
the core by deforming it into ellipse, and feeds parametric resonance between two Kelvin
waves whose azimuthal wavenumbers are separated by 2 (Moore & Saffman 1975, Tsai &
Widnall 1976; Eloy & Le Dizes 2001; Fukumoto 2003). In the short-wavelength regime,
the MSTW instability crosses over to the elliptical instability found by Bayly (1986) and
Waleffe (1990).

However this might be a picture too crude to fit into a curved vortex tube. The
asymptotic solution of the Navier-Stokes or the Euler equations for a thin vortex ring
in powers of a small parameter $\epsilon$ , the ratio of the core to the ring radii, starts with a
circular-cylindrical vortex tube at $O(\epsilon^{0})$ . A vortex ring is featured by curvature of vortex
lines. This feature manifests itself, at $O(\epsilon^{1})$ , as a local dipole field proportional to $\cos\theta$

and $\sin\theta$ . The quadrupole field comes merely as a correction at $O(\epsilon^{2})$ (Fukumoto &
Moffatt 2000; Fukumoto 2002). Despite its dominance, the dipole field has not attracted
as much attention as it deserves. This investigation addresses a possible instability when
the dipole field comes into play.
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According to Krein’s theory of parametric resonance in Hamiltonian systems (MacKay
1986), a single Kelvin wave cannot be fed by perturbations breaking the circular symmetry.
An instability becomes permissible only for superposition of at least two modes with the
same wavenumber and the same frequency. Subjected to the dipole field, two Kelvin waves
with angular dependence $e^{:}m\theta$ and $e^{*n\theta}$

.
can cooperatively be amplified at the intersection

points of dispersion curves if the condition $|m-n|=1$ is met.
A formulation of the linear stability analysis was fully performed by Widnall & Tsai

(1977), hereinafter being referred to as WT77, but the dipole effect has gone untouched.
Fukumoto & Hattori (2002) verified that a combination of the ctisyrnrnetric $(m=0)$
and the bending $(n=1)$ waves indeed leads to parametric resonance. The local stability
analysis of Hattori & Fukumoto (2003) disclosed the existence of more unstable resonance
via the dipole field.

These results stimulate us to exhaust all possible resonant azimuthal-wavenumber
pairs $(m, m+1)$ of Kelvin waves. It will be shown that the most dangerous instability
mode takes place in the limit of $marrow\infty$ . Contrary to the instability of quadrupole field
origin, all of multiple eigenvalues do not result in resonance. The necessary condition for
instability, brought out by Krein’s theory, is either that the eigenvalue collision occurs
between a positive- and a negative-energy modes or that the collision eigenvalue is zero.
Energy of the Kelvin waves, which was calculated by Fukumoto (2003), is instrumental
in making distinction between resonant and non-resonant eigenvalue collisions.

In \S 2, we give a concise description of the problem setting for linear stability analysis.
The Kelvin waves are recalled in Appendix A. Section 3 seeks the solution of the linearized
Euler equations. Remarkably Kelvin’s vortex ring admits a closed-form solution, in terms
only of the Bessel and the modified Bessel functions, for the disturbance velocity field,
and so is for the growth rate and the width of unstable wavenumber band. The detailed
form of solution is relegated to Appendix B. In \S 4, we present a numerical example and
the short-wave asymptotics is dealt with in \S 5.

The detail is described in Fukumoto & Hattori (2004).

2 Setting of linear stability problem
The formulation of the global linear stability analysis in three dimensions was made by
WT77. We employ its notation.

Kelvin’s vortex ring is a thin axisymmetric vortex ring, in an incompressible inviscid
fluid, with vorticity proportional to the distance from the axis of symmetry. We assume
that the ratio $\epsilon$ of core rsdius $\sigma$ to ring radius $R$ is very small:

$\epsilon=\sigma/R\ll 1$ . (2.1)

Introduce toroidal coordinates $(r, \theta, s)$ comoving with the ring. In the meridional plane
$s=0,$ the origin $r=0$ is maintained at the center of the circular core and the angle $\theta$ is
measured bom the direction parallel to the axis of symmetry, the $x$-axis say. The center
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circle penetrating inside the toroidal ring is parameterized by the arclength $s$ . The global
Cartesian coordinates $(x, y, z)$ are then expressed by

$x=r\cos\theta$ , $y=(R+r\sin\theta)$ co$\mathrm{s}s$ , $z=$ ($R+$ $r$ sin&) $\sin s$ . (2.2)

We normalise the radial coordinate $r$ by the core radius $\sigma$ , the velocity by the maximum
azimuthal velocity $\Gamma/2\pi\sigma$ with $\Gamma$ being the circulation, the time $t$ by $2\pi\sigma^{2}/\Gamma$ and the
pressure by $\rho_{f}(\Gamma/2\pi\sigma)^{2}$ with $\rho_{f}$ being the density of fluid. Let the $r$ and 0 components
of velocity field be $U$ and $V$ , respectively, and the pressure be $P$ inside the core $(r<1)$ .
The velocity potential for the exterior irrotational flow is denoted by $\Phi$ .

The basic flow is expanded in powers of $\epsilon$ , the first-0rder truncation of which takes
the form:

$U=\epsilon U_{1}(r, \theta)+\cdot$ ..
’

$V=V_{0}(r)+\epsilon V_{1}(r, \theta)+\cdots$ ,
$P=P_{0}(r)+\epsilon P_{1}(r, \theta)+\cdots$ for $r<1$ , (2.3)
$\Phi=\Phi_{0}(\theta)$ $+$ $\epsilon\Phi_{1}(r,\theta)+\cdots$ for $r>1$ . (2.4)

The leading-0rder flow is the Rankine vortex as expressed, in dimensionless form, by

$V_{0}=r$ , $P_{0}=|$ $(r^{2}-1)$ , $\Phi_{0}=\theta$ . (2.2)

The first-0rder flow field is a dipole field:

$U_{1}$ $=$ $\frac{5}{8}(1-r^{2})\cos\theta$ , $V_{1}=(- \frac{5}{8}+$ $\mathrm{q}r2)$ $\sin\theta$ , $P_{1}---(- \frac{5}{8}r+\frac{3}{8}r^{3})\sin\theta$ ,

$\Phi_{1}$ $=$ ( $\frac{1}{8}r-\frac{3}{8r}-$ $1^{r}$ $\log r$) $\cos\theta$ . (2.6)

To this order circular form of core boundary $(r=1)$ remains intact.
We inquire into evolution of three- imensional disturbances of infinitesimal amplitude

superposed on the above steady flow. Following the prescription of Moore & Saffman
(1975) and Tsai & Widnall (1976), we expand the disturbance velocity $\tilde{v}$ , the disturbance
pressure $\tilde{p}$ and the external disturbance velocity-potential $\overline{\phi}$ in powers of $\epsilon$ to first order

$\tilde{v}={\rm Re}[(v_{0}+\epsilon v_{1}+\cdots)e^{:(\mathrm{k}s-\mathrm{I}dt)}]$ , $\tilde{p}={\rm Re}[(\pi_{0}+\epsilon\pi_{1}+\cdots)e"‘]\mathrm{k},-\omega)$ ,
$\tilde{\phi}={\rm Re}[(\phi_{0}+\epsilon\phi_{1}+\cdots)e" \mathrm{k}" t)]$ , (2.7)

where the symbol ${\rm Re}$ designates the real part. In keeping with this form, the wavenumber
$k$ and the frequency $\omega$ , nondimensionalised by $1/\sigma$ and $\Gamma/(2\pi\sigma^{2})$ respectively, are also
expanded as

$k=k_{0}+\epsilon k_{1}+\cdots$ : $tt$ $=\omega_{0}+\epsilon\omega_{1}+\cdot\cdot\iota$ (2.8)

The disturbed edge of the core is expanded as

$r=1+\tilde{f}_{0}(\theta, s, t)+$ $\epsilon f\sim 1(’, s, t)+\cdots$ (2.9)
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3 Effect of dipole field
The flow field Vo, $\pi_{0}$ and $\phi_{0}$ and the dispersion relation $\omega_{0}$ $=\omega_{0}(k_{0})$ of Kelvin waves are
accommodated in Appendix A (see, for example, Saff man 1992; Fukumoto 2003). Our
concern lies in the modification of Kelvin’s dispersion relation due to symmetry-breaking
action of the $O(\epsilon)$ dipole field.

3.1 Governing equations
We denote the toroidal component of disturbance velocity by $\mathrm{J}\mathrm{j}\mathrm{F}$ . The amplitude vector $v_{1}$

of disturbance velocity and the amplitude $\pi_{1}$ of disturbance pressure of $O(\epsilon)$ are governed,
inside the core $(r<1)$ , by

$-\mathrm{i}_{\mathrm{W}(0}u_{1}$ $+ \frac{\partial u_{1}}{\partial r}-2v_{1}+\frac{\partial\pi_{1}}{\partial r}=(i\omega_{1}-\frac{\partial U_{1}}{\partial r})u_{0}-U_{1}\frac{\partial u_{0}}{\partial r}-\frac{V_{1}}{r}\frac{\partial u_{0}}{\partial\theta}-(\frac{1}{r}\frac{\partial U_{1}}{\partial\theta}-\frac{2V_{1}}{r})v_{0}$,

(3.1)

$-i \omega_{0}v1+2u_{1}+\frac{\partial v_{1}}{\partial\theta}+\frac{1}{r}\frac{\partial\pi_{1}}{\partial\theta}=(i\omega_{1}-\frac{1}{r}\frac{\partial V_{1}}{\partial\theta}-\frac{U_{1}}{r}$ ) $v_{0}-$ $( \frac{\partial V_{1}}{\partial r}+\frac{V_{1}}{r}$ ) $u_{0}$

$-U_{1}$ $\frac{\partial v_{0}}{\partial r}-\frac{V_{1}}{r}\frac{\partial v_{0}}{\partial\theta}$ , (3.2)

$-i\omega$70111 $+ \frac{\partial w_{1}}{\partial\theta}+ik_{07}\mathrm{r}_{1}$ $=-ik_{1^{7\mathrm{i}}0}$ $+(i \omega_{1}-r\cos\theta)w_{0}-\frac{V_{1}}{r}\frac{\partial w_{0}}{\partial\theta}-U_{1}\frac{\partial w_{0}}{\partial r}+iA_{0}\tau$ $\sin\theta\pi_{0}$ ,

(3.3)

$\frac{\partial u_{1}}{\partial r}+\frac{u_{1}}{r}+\frac{1}{r}\frac{\partial v_{1}}{\partial\theta}+ik_{0}w_{1}=-\sin\theta u_{0}-\cos\theta v_{0}+ik_{0}r\sin\theta w_{0}$ . (3.1)

The last one is the equation of continuity. The amplitude function $\phi_{1}$ of velocity potential
for the disturbance flow of $O(\epsilon)$ , outside the core $(r>1)$ , satisfies

$\frac{\partial^{2}\phi_{1}}{\partial r^{2}}+\frac{1}{r}\frac{\partial\phi_{1}}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}\phi_{1}}{\partial r^{2}}-k_{0}^{2}\phi_{1}=2k_{0}k_{1}\phi_{0}-\sin\theta\frac{\partial\phi_{0}}{\partial r}-\frac{\cos\theta}{r}\frac{\partial\phi_{0}}{\partial\theta}-2k_{0}^{2}r\sin\theta\phi_{0}(.3.5)$

The boundary conditions require that the normal component of velocity and the pres-
sure be continuous across the interface $(r=1)$ of the core:

$u_{1}$ $=$ $\frac{\partial\phi_{1}}{\partial r}$ ,

$\pi_{1}-$ iu0 $5_{1}+ \frac{\partial\phi_{1}}{\partial\theta}$ $=$ $i_{\mathrm{I}} \omega_{1}6_{0}-\frac{\partial\Phi_{1}}{\partial\theta}\frac{\partial\phi_{0}}{\partial\theta}$ . (3.6)

The shape of disturbed core boundary is found from

i(J0f1 $- \frac{\partial f_{1}}{\partial\theta}fu_{1}=-i\omega_{1}f_{0}+V_{1}\frac{\partial f_{0}}{\partial\theta}-\frac{\partial U_{1}}{\partial r}f_{0}$ . (3.7)
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The right-hand sides of (3.1)-(3.7) include the coupling of Kelvin waves with the
dipole field (2.6) of $O(\epsilon)$ . We delineate WT77’s formulation, as generalised to higher
azimuthal-wavenumber resonance.

Suppose that a pair of Kelvin waves whose azimuthal wavenumbers differ by 1 are
simultaneously sent to $O(\epsilon^{0})$ :

$v_{0}=v_{0}^{(1)}e^{im\theta}+v_{0}^{(2)}e^{\dot{|}(m+1)\theta}$ (3.8)

Here and hereafter, we make use of superscripts of (1) and (2) for the $m$ and the $mf$ $1$

waves respectively. In view of the dipole field on the right-hand sides of (3.1)-(3.5) and
the boundary conditions (3.6), the wave excited at $O(\epsilon)$ is found to possess the following
angular dependence:

$v_{1}=v\mathrm{i}^{\mathrm{D}}e^{\mathrm{j}}m\theta$ $+v_{1}^{(2)}$e.$\cdot$

$(m+1)\theta+v_{1}^{(3)}e^{:(m-}1)0$ $+v_{1}^{(4)}e^{i(m+2)\theta}$ (3.9)

The similar form is posed on $\pi_{0},$ /0 and $\pi_{1}$ , $\phi_{1}$ . Excitation, at $O(\epsilon)$ , of a pair of waves
with the same azimuthal wavenumbers as at $O(\epsilon^{0})$ implies a possibility of parametric
resonance.

The leading-0rder disturbance is, from Appendix $\mathrm{A}$ ,
$\phi_{0}=$ $K_{m}(A_{0}r)\alpha_{0}^{(1)}e^{\dot{|}m\theta}+K_{m+1}(A_{0}r)\alpha_{0}^{(2)}e^{(m+1)\theta}.\cdot$ ,
$\pi_{0}$ $=$ $J_{m}(\eta_{1}r)\beta_{0}^{(1)}e^{m\theta}\dot{.}+J_{m+1}(\eta_{2}r)\beta_{0}^{(2)}e^{(m+1)\theta}\dot{.}$

: (3.10)

where $J_{m}$ and $K_{m}$ are, respectively, the Bessel function of the first kind and the modified
Bessel function of the second kind, $m$ being their order, $\alpha_{0}^{(1)}$ , $\alpha_{0}^{(2)}$ , $\beta_{0}^{(1)}$ and $69^{2)}$ are
constants, and $\eta_{1}$ and $\eta_{2}$ are the radial wavenumbers of the $m$ and the $m+1$ waves
respectively as defined by (A.4) and (A.5). Likewise, the interior velocity field $(u_{0}, v_{0}, w_{0})$

is expressible as superposition of the expressions (A.3) for the $m$ and $m+1$ waves.
Upon substituting from (3.10), (3.5) is integrated to yield

$\phi_{1}^{(1)}$ $=K_{m}(A_{0}r)\alpha_{1}^{(1)}-k_{1}rK_{m+1}(A_{0}r)\alpha_{0}^{(1)}$

$+ \frac{i}{4}\{A_{0}r^{2}K_{m}(A_{0}r)+(2m+1)rK_{m+1}(k_{0}r)\}\alpha_{0:}^{(2)}$ (3.11)

$\phi_{1}^{(2)}$

$=$ $K_{m+1}(k_{0}r)\alpha_{1}^{(2)}-k_{1}rK_{m}(A_{0}r)\alpha_{0}^{(2)}$

$+ \frac{i}{4}\{(2m+1)rK_{m}(k_{0}r)-k_{0}r^{2}K_{m+1}(A_{0}r)\}\alpha_{0}^{(1)}$ , (3.12)

where $\alpha)^{1)}$ and $\alpha_{1}^{(2)}$ are constants imparted to the homogeneous parts of solution.
Analytical handling of the interior field becomes feasible by collapsing (3.1)-(3.4), at

the outset, to second-0rder ordinary differential equations for the disturbance pressure
$\pi_{1}^{(1)}$ are $\pi_{1}^{(2)}$ . After some computer algebra, we are left with

$L^{(1)}[ \pi_{1}^{(1)}]=\{\frac{8k_{0}^{2}\omega_{1}}{(\omega_{0}-m)^{3}}-\frac{2A_{1}}{k_{0}}\eta$ r $\}J_{m}(\eta_{1}r)\beta_{0}^{(1)}-i\{[$ $\frac{1}{2}+\frac{3m}{2(\omega_{0}-m-1)}$

$- \frac{5k_{0}^{2}}{4}(\frac{1}{(\omega_{0}-m)^{2}}-\frac{1}{(\omega_{0}-m-1)^{2}})(r^{2}-1)]\eta_{2}J_{m}(\eta_{2}r)$

$+[1+ \frac{8\omega_{0}-9m-1}{2(\omega_{0}-m)^{2}}-\frac{7\omega_{0}-9m-19}{4(\omega_{0}-m-1)^{2}}]A_{0}^{2}rJ_{m+1}(\eta_{2}r)\}\beta_{0}^{(2)}$, (3.13)
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$L^{(2)}[ \pi_{1}^{(2)}]=\{\frac{8k_{0}^{2}\omega_{1}}{(\omega_{0}-m-1)^{3}}-\frac{2k_{1}}{k_{0}}\eta_{2}^{2}\}J_{m\mathit{6}1}$

” $( \eta_{2}r)\beta_{0}^{(2)}+\frac{i}{4}\{[$ $4+ \frac{71v_{0}-9m+10}{(\omega_{0}-\sqrt)^{2}}$

$- \frac{2(8\omega_{0}-9m-8)}{(\omega_{0}-m-1)^{2}}]k_{0}^{2}rJ_{m}(\eta_{2}r)-[2+\frac{6(m+1)}{\omega_{0}-m-2}$

$+5k_{0}^{2}( \frac{1}{(\omega_{0}-m)^{2}}-\frac{1}{(\omega_{0}-m-1)^{2}})(r^{2}-1)\mathrm{I}\eta_{1}J_{m+}1(\eta_{1}r)\}\beta_{0}^{(1)}$ , (3.14)

where
$L^{(*)}.= \frac{d^{2}}{dr^{2}}+\frac{1}{r}\frac{d}{dr}-\frac{m_{1}^{2}}{r^{2}}$

.
$+\eta_{\dot{l}}^{2}$ $(i=1,2)$ . (3.13)

The boundary conditions (3.6) read, for the $m$ wave,

(1)
$\partial\phi_{1}^{(1)}$

$u_{1}$ $-\overline{\partial r}=0$ , $\pi_{1}^{(1)}-i(\omega_{0} -m)\phi_{1}^{(1)}=i\mathrm{r}\omega 1\phi_{0}^{(1)}+\frac{m+1}{8}\phi_{0}^{(2)}$ , (3.16)

and, for the $m+1$ wave,

(2)
$\partial\phi_{1}^{(\mathit{2})}$

$u_{1}$ $-\overline{\partial r}=0$ , $\pi_{1}^{(2)}-i(\omega_{0}-m-1)\phi_{1}^{(2)}=i\omega_{1}\phi_{0}^{(2)}-\frac{m}{8}\mathrm{p}6^{1)}$ (3.17)

3.2 Disturbance field and growth rate
WT77 skipped the solution for $v_{1}$ . We are now ready to build the solution of (3.13) and
(3.14) and to calculate the $O(\epsilon)$ correction $\omega_{1}$ to the eigenfrequency from the boundary
conditions (3. 16) and (3. 17).

By appealing to symbolic calculus, Mathematica say, the solution of (3.13) and (3.14)
is obtained in closed form solely in terms of the Bessel functions. The resulting expressions
for $\pi_{1}^{(1)}$ , $\pi_{1}^{(2)}$ , $u_{1}^{(1)}$ and $u_{1}^{(2)}$ , the enforcement of the boundary conditions (3.16) and (3.17)
and the solvability conditions on them are written down in Appendix B.

We recapitulate the procedure of Moore & Saffman (1975) and Tsai & Widnall (1976).
Simultaneous excitation of at least two Kelvin waves is requisite for instability, being
indicative of parametric resonance. The postulation that the solvability conditions (B.7)
and (B.8) have a nontrivial solution of $\beta_{0}^{(1)}7$ $0$ and $\beta_{0}^{(2)}\neq 0$ gives rise to $\omega_{1}$ . Instability
is implied when ${\rm Im}[\omega_{1}]>0$ and we write its growth rate as $\sigma_{1}=|{\rm Im}[\mathrm{c}\mathrm{i}_{1}]|$ . In case
of instability, the growth rate takes its local maximum value $\sigma_{1\max}$ at $k=A_{0}$ , namely
$k_{1}=0,$ and ${\rm Im}[\omega_{1}]>0$ only over a limited wavenumber range of width $2\epsilon\Delta k_{1}$ centered
on $k=k_{0}$ . The desired formulae of $\sigma_{1\max}$ and $\Delta k_{1}$ are gained from (B.7) and (B.8) as

$\sigma_{1\max}^{2}=$ $- \frac{(\omega_{0}-m)^{3}(\omega_{0}-m-1)^{3}(\omega_{0}-m+1)(\omega_{0}-m+2)(\omega_{0}-m-2)(\omega_{0}-m-3)}{1024A_{0}^{4}(2\omega_{0}-2m-1)^{4}}$

$\mathrm{x}\frac{h^{2}}{f^{(1)}f^{(2)}}$ , (3.18)

$\Delta k_{1}^{2}$ $=$ $- \frac{(\omega_{0}-m)^{3}(\omega_{0}-m-1)^{3}(\omega_{0}-m+1)(\omega_{0}-m+2)(\omega_{0}-m-2)(\omega_{0}-m-3)}{1024A_{0}^{2}(2\omega_{0}-2m-1)^{4}}$

$\mathrm{x}\frac{f^{(1)}f^{(2)}h^{2}}{d^{2}}$ , (3.19)
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where

$d=$ $(\omega_{0}-m)\mathrm{C}’ 0-m+2)(\omega_{0}-m-2)f^{(2)}g^{(1)}$

$-(\omega_{0}-m-1)(\omega_{0}-m+1)(\omega_{0}-m-3)f^{(1\rangle}g^{(2)}$ , (3.20)

and the form of $f^{(1)}$ , $f^{(2)}$ , $g^{(1)}$ , $g^{(2)}$ and $h$ is provided by $(\mathrm{B}.9)-(\mathrm{B}.13)$ .

4 Example

4.1 Resonance between the 0, 1 waves
To give an illustration, we carry through numerical computation of stability characteristics
for the copling between the axisymmetric $(m=0)$ and the bending $(m=1)$ waves. The
dispersion relation of Kelvin waves of $m=0$ (dashed lines) and $m=1$ (solid lines) is
displayed in figure 1. The isolated branch of $m=1,$ starting from $\omega_{0}=0,$ is drawn with a
thick solid line. Infinitely many branches emanate from $(k_{0}, \omega_{0})=$ $(0, 1)$ for $m=1$ among
which twenty branches, ten upgoing and ten downgoing, are drawn. Theses modes are
named the radial modes since the eigenfunctions have nontrivial radial nodal structure.
A wave with $|\omega_{0}|>1$ rotates faster than the basic circulatory flow and is called a cograde
mode, which is distinguished from a wave with $|\omega_{0}|<1,$ a retrograde mode (Sdman 1992).
In contrast, an isolated branch and the counterpart of retrograde modes are missing for
the axisymmetric mode. Given the wavenumber $k_{0}$ , the modes with $\omega_{0}$ and with $-?!0$

share a common property of cograde radial mode.
A positive axisymmetric mode $(\omega_{0}>0)$ crosses every retrograde mode of $m=1$ once,

and may cross, twice, some of higher cograde branches of $m=1.$ A negative axisymmetric
mode $(\omega_{0}<0)$ collides, if its branch index is high enough, with some of retrograde radial
modes of $m=1,$ twice per each. The isolated mode of $m=1$ crosses branches of $m=0$

at small values of $k_{0}$ .
The growth rate (3.18) is calculated at many of intersection points. Collision of eigen-

values of the 0, 1 waves does not necessarily result in instability. Stability is lost only at
intersection points between positive branches of $m=0$ and retrograde radial modes of
$m=1,$ and otherwise this is not the case. This behaviour lies in stark contrast with that
of the MSTW instability. In the latter case, every eigenvalue collision invites paramet-
ric resonance (Eloy & Le Dies 2001; Fukumoto 2003). The energetics holds the key to
distinguish non-resonant collisions from resonant ones, as will be described in \S 4.3.

In Table 1, we list the evaluated values of the growth rate and the unstable band-
width for low wavenumbers. The first three rows correspond to the first three intersection
points of the first positive axisymmetric mode $(m=0)$ with retrograde radial modes of
$m$ $=1,$ and are marked with circles in figure 1. The next three rows are along the second
mode of $m=0$ (thick dotes), and the last three along the third mode of $m=0$ (squares).
Since the torus center is a circle of radius $R$, an unstable mode is realizable only when the
arclength $2\pi R$ coincides with some integral multiple of a half of the wavelength $2\pi/h$ .
The unstable band-width needs to be sufficiently broad.
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$\omega_{0}$

Figure 1: Dispersion relation of the axisymmetric wave $m=0$ (dashed lines) and the
helical wave $m=1$ (solid lines) on the Rankine vortex. The isolated branch of $m=1$ is
shown with a thidc line.

$k_{0}$
$\omega_{0}$ $\sigma_{1\max}$ $\Delta k_{1}$

0.8134868347 0.5970895378 0.05434123370 0.1022075453
1.018687659 0.7162537484 0.007063858086 0.01725321243
1.136862167 0.7794574187 0.008676095366 0.02449637577
1.224505620 0.4217998862 0.03931853915 0.1093080415
1.650449151 0.5528357882 0.03769686682 0.1381880078
1.927505750 0.6329096309 0.004366456551 0.01889368333
1.464572874 0.3290672352 0.02466638188 0.08406115354
2.059092345 0.4537065585 0.01547299060 0.07032354299
2.472533079 0.5364030938 0.03273541819 0.1773468081

Table 1: The maximum growth rate $\epsilon\sigma_{1\max}$ and the half-wi th $\epsilon\Delta k_{1}$ of unstable wavenum-
ber band to $O(\epsilon)$ for $(0,1)$ resonance
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Figure 2: Contour of disturbance toroidal velocity field $w_{0}$ on the meridional plane $hs$ $=$

$\omega_{0}t$ for the first principal mode of the $(0, 1)$ resonance. The dashed line depicts the core
boundary $r=1.$

Large growth rate is maintained to short wavelengths at intersection points between
the $i$-th branch of $m=0$ and the $i$-th branch of the retrograde radial modes of $m=1.$
This sequence belongs to what we call the principal modes. The origin $(k_{0},\omega_{0})=(0,0)$ is
the intersection point between the isolated branch of $m=1$ and all branches of $m=0.$

This is considered to be a neutrally stable point (Pukumoto & Hattori 2004).
Among the intersection points examined so far, the maximum of growth rate is attained

at the first principal mode, namely at $(k_{0},\omega_{0})\approx$ (0.8134868347, 0.5970895378), though
the maximum value $\sigma_{1\mathrm{m}\mathrm{a}\mathrm{e}\mathrm{c}}\approx 0.05434123370$ is not very large. The correspon $\mathrm{i}\mathrm{g}$ flow
field is calculated, to $o(\epsilon^{0})$ , from (3.8) with $v_{0}^{(1)}$ and $v_{0}^{(2}$

) provided in Appendix A. The
solvability conditions bring in $\beta_{0}^{(2)}/\beta_{0}^{(1)}\approx$ 0.7276318666 at this point.

The contour of toroidal velocity $w_{0}$ on the crosssectional plane $k_{0}s=\omega_{0}t$ is drawn in
figure 2. Only the interior region $(r<1)$ is shown. A strong toroidal or axial current
is induced over a massive region with the location of peak velocity deviated backward
ffom the core center, and is accompanied by a minor counter current in the front part
of the core. The location of peak velocity winds helically around the torus center, and
executes a circulatory motion around the center. Figure $3(\mathrm{a})$ displays the disturbance
vorticity field $(\omega_{0r},\omega_{0\theta})$ of $O(\epsilon^{0})$ projected to the same crosssectional plane. The contour
of toroidal vorticity $\omega_{0s}$ is shown in figure $3(\mathrm{b})$ . The ring-lke vorticity structure in figure
$3(\mathrm{a})$ corresponds to strong toroidal flow in figure 2. The toroidal vorticity is large at
points where the toroidal current is week.

We reason that, as with the cases of the elliptical instability (Waleffe 1990) and of the
instability due to multi-polar strain (Eloy & Le Dizes 2001), the instability mechanism
is attributable to parallelization between the stretching direction of local shear and the
disturbance vorticity. Fukumoto & Hattori (2002) calculated the probability distribution
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Figure 3: Disturbance vorticity field in the meridional plane $k_{0}s=\omega_{0}t$ of the first principal
mode of the $(0, 1)$ resonance, (a) The meridional components $(\iota v_{0r},\omega_{0\theta})$ . (b) Contour of
disturbance toroidal vorticity field $\omega_{0s}$ . The dashed line depicts the core boundary $r=1.$

function of angles between the disturbance vorticity vector and the eigenvectors of the
rate of strain for the first principal mode at $(k_{0},\omega_{0})\approx$ (0.8134868347, 0.5970895378).
Tendency of alignment of the vorticity vector was recognized only with the unit toroidal
vector. It follows that vortex-line stretching in the toroidal direction plays the leading
role of driving instability.

The magnitude of strain increases with the distance $r$ from the core center and takes
its maximum at the core boundary $r=1.$ In the geometric-0ptics approximation, the
growth rate for the wave-packet disturbance of short wavelength attains its maximum
on the streamline circuiting the edge of the core (Hattori & Pukumoto 2003). In the
short-wave limit, only the disturbance vorticity near the core boundary is relevant to the
growth rate.

The growth rate of the principal modes diminishes as the branch label becomes larger.
Calculation of intersection points of the dispersion curves and of the growth rate at the
points is extended to large wavenumbers and is plotted in figure 4. The growth rate stays
at relatively large values, approaching $\sigma_{1\max}\approx$ 0.02374715242, along the two sequences
of intersection points rapidly converging to $\omega_{0}=0.5$ (figure $4(\mathrm{a})$ ). One sequence is
intersection points between the $i$-th cograde mode of $m=0$ and the $i$-th retrograde
mode of $m=1$ for which the growth rate monotonically decreases with $k_{0}$ , and the other
sequence is a collection of intersection points between the $(i+1)$-th cograde mode of
$m=0$ and the $i$-th retrograde mode of $m=1$ for which the growth rate is, except for a
first few intersection points, an increasing function of $k_{0}$ . Eloy & Le Dizes (2001) called
the latter the principal modes. We include both into the principal modes.

In order to grasp overall instability characteristics in the $(A_{0},\{v_{0})$ space, calculation of
degenerate eigenvalues of the $i\mathrm{t}\mathrm{h}$-ith radial modes of $(m,m+1)$ resonance is carried out
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Figure 4: Large wavenumber behaviour of the $(0, 1)$ resonance, (a) The intersection
points $(k_{0},\iota v_{0})$ of the dispersion curves, (b) The maximum growth rate $\sigma_{1\max}$ .

over a wide range of $k_{0}$ and $m$ . The growth rate is plotted in figure 5. The modes of
$m=1,2$ , $\cdots$ , 10 and 20, 30, $\cdots$ , 60 are shown. Given $m$ , the growth rate of $(m, m+1)$

resonance decreases with the branch label or the wavenumber $k_{0}$ and tends to $\sigma_{1\max}\approx$

0.02374715242 as $k_{0}arrow\infty$ . On the other hand, given the branch label, the growth rate
increases monotonicaUy with $m$ and approaches $\sigma_{1-}=$ 0.64453125 as $marrow\infty$ . The
ways of approach to the two different short-wave limits will be expounded in \S 5.

4.2 Energetics
Krein’s theory of Hamiltonian spectra underlies the preceding numerical results. A nec-
essary condition for loss of stability at a double eigenvalue is either that the eigenfunction
consists of waves with opposite signed energy or that the eigenvalue is 0 (MacKay 1986;
Dellnitz, Melbourne & Marsden 1992; Knobloch, Mahalov & Marsden 1994).

By taking advantage of Cairns’ formula (Cairns 1979), Fukumoto (2003) reached a
tidy expression for energy required to excite the Kelvin wave of azimuthal wavenumber
$m$ as

$E= \frac{2\pi\omega_{0}}{\omega_{0}-m}\{1+\frac{(k_{0}/\eta_{1})^{2}K_{|m|}(b)}{k_{0}K_{|m|-1}(k_{0})+|m|K_{|m|}(k_{0})}[$ $\frac{2(\omega_{0}+\sqrt)}{\omega_{0}-m}$

$+( \frac{m(\omega_{0}+m)}{2}+k_{0}^{2}$ ) $\frac{K_{|m|}(k_{0})}{k_{0}K_{|m|-1}(k_{0})+|m|K_{|m|}(k_{0})}]\}(f_{0}^{(1)})^{2}$ : (4.1)

where $f_{0}^{(1)}$ is the displacement amplitude of the disturbed core $r=1+f_{0}^{(1)}\exp[i(m\theta+$

$k_{0}z-\omega_{0}t)]$ , and is linked to the amplitude 56)) of the disturbance pressure through

$f_{0}^{(1\rangle}= \frac{1}{4-(\omega_{0}-m)^{2}}\{-\eta_{m}J_{|m|-1}(\eta_{m})+\frac{|m|}{(v_{0}-m}(\omega_{0}-$ rn $+ \frac{2m}{|m|}$) $J_{|m|}(\eta_{m})\}\beta_{0}^{(1)}$ (4.2)

By a computation of the above formula, we find that the energy of the axisymmetric
wave is all positive. At a given $k_{0}$ , the $i$-th branch of negative mode $(\omega_{0}<0)$ has the same
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Figure 5: The growth rate of the principal modes between the $i$-th cograde modes of $m$

wave and the $i$-th retrograde modes of $m+1$ wave. The same symbol is used for the same
azimuthal wavenumber pair $(m, m+ 1)$ . The lowest sequence $(+)$ corresponds to $m=0.$

The highest sequence (0) corresponds to $m=60.$

energy as the $i$-th branch of positive mode. The energy of the bending wave $(m=1)$ was
illustrated in figure 8 of Fukumoto (2003). The energy of the isolated mode and cograde
radial modes of $m=1$ is positive over the entire range of $k_{0}$ , and therefore resonance
with the $m=0$ mode is ruled out. As is evident from (4.1), alteration of energy sign
occurs at the point, $k_{0}^{*}$ say, where a dispersion curve crosses the $k_{0}$ axis. The energy of
retrograde radial modes of $m=1$ is negative in the range $0<k_{0}<k_{0}^{*}$ , and is positive for
$t_{0}>I?.$ Eigenvalue collisions of negative- and positive energy modes occur only between
retrograde radial modes of $m=1$ and upgoing modes of $m=0$ in frequency range of
$0<\omega_{0}<1,$ being in no contradiction with the numerical example of \S 4.1.

Krein’s criterion by means of the energy signature furnishes merely a necessary con-
dition for instability, yet it in effect serves as a sufficient condition for instability as well.
The same is true of the MSTW instability (Pukumoto 2003).

5 Short-wavelength asymptotics
The expression (3.18) of growth rate suggests that a resonance pair with $\omega_{0}$ closer to
$m+1/2$ is more influential. A universal feature manifests itself in the short wavelength
limit in which $\omega_{0}$ converges to $m+1/2$. Here we omit the derivation. The detail is found
in Fukumoto & Hattori (2004).

We have two wavelengths at our disposal, namely, the axial and the azimuthal wave-
lengths, and there are two ways of taking short wavelength limit. We begin with simple
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azimuthal structure by fixing $m$ , and thereafter we turn to the limit of $marrow\infty$ .

5.1 Large $k_{0}$ with m fixed
Let $l_{1}$ and $l_{2}$ be large integers indexing branches of the $m$ and the $m+1$ waves respectively
as $A_{0}$ with $m$ fixed. Define

$\Delta l=l_{2}-l_{1\prime}$ $\Delta’l=2\Delta l-1$ . (5.1)

Asymptotic expansions of $(k_{0},\omega_{0})$ for degenerate eigenvalues of the $m$ , $m+1$ waves are
manipulated from the dispersion relation (A.7) and the counterpart of $m+$ l. The inter-
section frequency is

$\omega_{0}=m+\frac{1}{2}+\frac{\sqrt{15}\pi\Delta’l}{128k_{0}}-\frac{1}{128A_{0}^{2}}\{m+\frac{1}{2}+\frac{\sqrt{15}\pi\Delta’l}{16}\}+O(A_{0}^{-3})$ . (5.2)

The intersection wavenumber is obtained by solving iteratively

$k_{0}$ $=$ $\frac{1}{\sqrt{15}}\{\frac{\pi(l_{1}+l_{2}+m-1)}{2}+$ $\arctan$ $( \frac{1}{\sqrt{15}})\mathrm{t}$ $- \frac{1}{30k_{0}}\{m^{2}+m+1+\frac{29\pi^{2}(\Delta’l)^{2}}{256}\}$

$+O(k_{0}^{-2})$ . (5.3)

Substituting from (5.2), (3.18) and (3.19) give,

$\sigma_{1\max}$ $=$ $\frac{15}{64\pi^{2}(\Delta’l)^{2}}+\frac{\sqrt{15}}{32k_{0}}\{\frac{m}{\pi\Delta’l}[\frac{21}{8}+\frac{1}{\pi^{2}(\Delta l)^{2}},]+\frac{1}{2}[$
$- \frac{9\sqrt{15}}{64}+\frac{21}{8\pi\Delta l}$,

$+ \frac{\sqrt{15}}{16\pi^{2}(\Delta l)^{2}},+\frac{1}{\pi^{3}(\Delta l)^{3}},]\}+O(k_{0}^{-2})$ ,

$\Delta k_{1}$ $=$ $\frac{A_{0}}{2\pi^{2}(\Delta l)^{2}},+\frac{m}{\sqrt{15}\pi\Delta’l}[\frac{21}{8}+\frac{1}{\pi^{2}(\Delta l)^{2}},]+\frac{1}{2\sqrt{15}}[-\frac{\mathrm{g}\sqrt{15}}{64}+\frac{21}{8\pi\Delta l}$,

$+ \frac{\sqrt{15}}{8\pi^{2}(\Delta l)^{2}},+\frac{1}{\pi^{3}(\Delta l)^{3}},]+O(k_{0}^{-1})$ . (5.4)

Finite value $15/(64\pi^{2}(\Delta’l)^{2})$ of the growth rate is asymptoted in the limit of $A_{0}arrow$

$\infty$ , among which the modes specified by $\Delta l=0$ and 1 have the largest growth rate
$15/(64\pi^{2})\approx$ 0.02374715242. This Umiting value is shared by all resonant pairs $(m, m+1)$

for finite values of $m$ . These are the principal modes with slightly larger growth rate for
$\Delta l=1.$ Correspondingly, the eigenfrequency $\omega_{0}$ of the principal modes with $\Delta l=0,1$

achieves a relatively rapid convergence to the limit $\omega_{0}=m+1/2$ from below and above
respectively as is seen from (5.2). The unstable wavenumber band, to leading order, broad-
ens linearly in $k_{0}$ , and this broad-band nature guarantees the validity of the geometric

. optics approach used by Hattori & Pukumoto (2003).
For the principal modes, (5.4) become, for $\Delta l=1,$

$\sigma_{1\max}\approx$ $0.02374715242$ $+0.02104135307/A_{0}$ ,
$\Delta k_{1}$ $\approx$ 0.050660591824 $+$ 0.04805450688 , (5.5)
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and, for $\Delta l=0,$

$\sigma 1\max\approx 0.02374715242-0.08399092777/A_{0}$ ,
$\Delta k_{1}$ $\approx$ 0.05066059182 $k_{0}-$ 0.1760143589 , (5.6)

They fit fairly well with the values shown in figure 4.
Taking a careful look at figure $4(\mathrm{b})$ for the $(0,1)$ resonance, modes other than the

principal ones survive in the limit of $k_{0}arrow\infty$ , which is confirmed ffom (5.4). This
situation is contrasted with the MSTW instability for which the $\Delta l=0$ mode holds a
special status (Eloy & Le Dizes 2001; Pukumoto 2003).

Notice that the coefficients of correction terms in the asymptotic expansions (5.2),
(5.3) and (5.4) grow with $m$ , being indicative of nonuniformity in the expansions. At
large values of $m$ , a new regime shows up, in which vigorous modes reside.

5.2 Large $k_{0}$ and m with $771\sim\eta_{2}\sim m$

As $marrow\infty$ , the intersection points $(k_{0},\omega_{0})$ between cograde radial modes of $m$ and
retrograde radial modes of $m+1$ are arranged so as to satisfy $\eta_{1}\sim\eta_{2}\sim m$ (Eloy & Le
Dizes 2001). The asymptotic expansions for $(k_{0},\omega_{0})$ for those points are performed, to a
high order in $1/m^{1/3}$ , as

$k_{0}$ $=$ $\frac{m}{\sqrt{15}}-\frac{a_{1}+a_{2}}{2^{4}/\epsilon\sqrt{15}}m^{1/3}+\frac{1}{56}+\frac{1}{2\sqrt{15}}-\frac{49(a_{1}^{2}+a_{2}^{2})-290a_{1}a_{2}}{640\cdot 2^{1/3}\sqrt{15}m^{1/3}}$

$+ \frac{1}{87808\cdot 2^{1/3}}[\frac{2}{3\sqrt{15}}(-64429a_{1}+42477a_{2})-$ $725$ ($a_{1}+$ a2)$] \frac{1}{m^{2/3}}+O(m^{-1})$ ,

(5.7)

$\mathrm{P}_{0}$

$=m+ \frac{1}{2}+\frac{15(a_{1}-a_{2})}{64\cdot 2^{1/3}m^{2/3}}+\frac{435}{1792m}+\frac{3(a_{1}^{2}-a_{2}^{2})}{64\cdot 2^{2/3}m^{4/3}}$

$+ \frac{5}{1404928\cdot 2^{1/3}}[2535\sqrt{15}$( $-a_{1}+$ a2) $+169a_{1}+44073a_{2}] \frac{1}{m^{5/3}}+O(m^{-2})$ .
(5.8)

In these, $a_{1}(<0)$ and $\mathrm{Q}$ $(<0)$ are the zeros of the Airy function Ai and play the role of the
branch labels for the $m$ and the $m+1$ waves respectively. The first zero $a_{1}\approx$ -2.338107410
is tied with the first cograde radial mode of $m$ and $a_{2}\approx$ -2.338107410 with the first
retrograde radial mode of $m+$ l.

A rapid approach to $\omega_{0}=m+1/2$ as $marrow$ oo demands $\Delta a=$ a2 $-a_{1}=0.$ They sit
at the crossing points between the $i$-th branches of both $m$ and $m+$ $1$ radial waves, and
thus are inherited from the principal modes of $\Delta l=1.$ The growth rate and the unstable
band width for the case of $\Delta a=0$ are, from (3.18) and (3.19),

$\sigma_{1\max}=$ $\frac{165}{256}(1-\frac{33499|a_{1}|}{25872\cross 2^{1/3_{\sqrt}2/3}})+O(m^{-1}$ ) , (5.9)

$\Delta k_{1}$ $=$ $8\mathrm{e}$ $m(1- \frac{7627|a_{1}|}{25872\mathrm{x}2^{1}\mathit{1}^{3}m^{2/3}})+O(m^{0})$ (5.10)
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Figure 6: Variation of the maximum growth rate $\sigma_{1\max}$ with $m$ for the resonance between
the first-first radial modes of the $m$ , $m+1$ waves, $m=1,2$ , $\cdots$ , 60. The short-wave
asymptotics (5.11) and (5.7) are included with $\square$ .

The common value $\sigma_{1-=}$ 165/256 is asymptoted. Among them, the longest wave pair
with $a_{1}=a_{2}\approx$ -2.338107410, the first principal mode, has the largest growth rate

$\sigma_{1\max}$ $\approx$ 0.64453125- $1.548698742/m^{2/3}$ , (5.11)
$\Delta k_{1}$ $\approx$ 0.3550234734 $m$ -0.1942235728 $m^{1/3}$ . (5.12)

This is the most dominant mode over the all possible resonance pairs. The way of increase,
in $m$ , of growth rate for the first principal mode is illustrated, with crosses, to $m=60$
in figure 6. It is worth noting that $\sigma_{1-}=165/256$ was derived through the geometric
optics approach by Hattori & Fukumoto (2003). The present solution supplies us with its
structure globally in space.

In case $\Delta a=$ a2 $-a_{1}\neq 0,$ convergence of the eigenvalue to $\omega_{0}=m+1/2$ is slower.
Modes with $\Delta a\neq 0$ vanish in the limit of $marrow\infty$ .

A Kelvin waves
The expressions of the velocity field and the dispersion relation of Kelvin waves are col-
lected in this appendix. The leading-0rder disturbance flow field of azimuthal wavenumber
$m$ is obtained in the form of normal mode as

$v_{0}=$ vSD $(r)e^{\dot{*}m\theta}$ ., $\pi_{0}=\pi_{0}^{(1)}(r)e_{:}^{m\theta}\dot{.}$ $\phi_{0}=\phi_{0}^{(1)}(r)e^{|m\theta}$
.

(A.1)
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By integrating the linearized Euler equations outside and inside the core with radius given
by (2.9), separately, we find that

$\phi_{0}^{(1)}=K_{m}(k_{0}r)\alpha_{0}^{(1)}$ for $r>1+\tilde{f_{0}}$ , (A.2)

and

$\pi_{0}^{(1)}=J_{m}(\eta_{1}r)\beta_{0}^{(1)}$ ,

$u_{0}^{(1)}= \frac{i}{\omega_{0}-m+2}\{-\frac{m}{r}J_{m}(\eta_{1}r)+\frac{\omega_{0}-m}{\omega_{0}-m-2}\eta_{1}J_{m+1}(\eta_{1}r)\}\beta_{0}^{(1)}$ ,

$v_{0}^{(1)}= \frac{1}{\omega_{0}-m+2}\{\frac{m}{r}J_{m}(\eta_{1}r)+\frac{2}{\omega_{0}-m-2}\eta_{1}J_{m+1}(\eta_{1}r)\}\beta_{0:}^{(1)}$

$UJ_{0}(’$ $= \frac{k_{0}}{\omega_{0}-m}J_{m}(\eta_{1}r)\beta_{0}^{(1)}$ for $r<1+\tilde{f}_{0}$ , (A.3)

where the radial wavenumber $\eta_{1}$ is given by

$\eta_{1}^{2}=[4/(\omega_{0}-m)^{2}-1]k_{0}^{2}$ , (A.4)

and $J_{m}$ and $K_{m}$ are respectively the Bessel function of the ffist kind and the modified
Bessel function of the second kind, $m$ being their order, and $\alpha_{0}^{(1)}$ and $79^{1)}$ are arbitrary
constants. The non-singular conditions $\omega_{0}f$ $m$ and $\omega_{0}\neq m\mathrm{i}$ $2$ are to be kept in view.
The radial wavenumber of the $m+1$ wave is

$\eta_{2}^{2}=[4/(\omega_{0}-m-1)^{2}-1]A_{0}^{2}$ . (A.5)

The boundary conditions supply the relation between $\alpha_{0}^{(1)}$ and $\beta_{0}^{(1)}$ as

$\alpha_{0}^{(1)}=-\frac{iJ_{m}(\eta_{1})}{(\omega_{0}-m)K_{m}(k_{0})}79^{1)}$ : (A.6)

and the dispersion relation

$J_{m+1}( \eta_{1})=\{\frac{2m}{\omega_{0}-m+2}-\frac{k_{0}K_{m+1}(A_{0})}{K_{m}(k_{0})}\}\frac{\eta_{1}}{k_{0}^{2}}J_{m}(\eta_{1})$ . (A.7)

B Closed-form solution for disturbance field and the
solvability conditions

This appendix is concerned with the closed-form solution of the $O(\epsilon)$ disturbance field, the
boundary conditions, and the solvability conditions for a possible parametric resonance
between Kelvin waves with azimuthal wavenumbers $m$ and $m1$ $1$ . The superscript 1 refers
to the $m$ wave, and 2 refers to the $m+1$ wave.
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By inspection and with the help of computer algebra, a general solution of (3.13) for
the $m$ wave, finite at $r=0,$ is manipulated as

$\pi \mathrm{P})$ $=J_{m}( \eta_{1}r)\beta_{1}^{(1)}+\{\frac{4k_{0}^{2}\omega_{1}}{(\omega_{0}-m)^{3}}-\frac{\eta_{1}^{2}A_{1}}{k_{0}}$} $\frac{r}{\eta_{1}}J_{m+1}(\eta_{1}r)\beta_{0}^{(1)}$

$+ \frac{i}{16}\{[5(r^{2}-1)+\frac{(\omega_{0}-m-1)^{2}(\omega_{0}-m)^{2}(\omega_{0}-m+2)}{2k_{0}^{2}(2\omega_{0}-2m-1)^{2}(\omega_{0}-m+1)}A_{1}]\eta_{2}J_{m}(\eta_{2}r)$

$+ \frac{A_{2}}{2\omega_{0}-2m-1}rJ_{m+1}(\eta_{2}r)\}\mathrm{j}3_{0}^{(2)}$ , (B.1)

where $3(^{1)}$ is a constant and

$A_{1}$ $=9\omega_{0}^{4}-18(2m+1)\omega_{0}^{3}+(54m^{2}+54m+1)\omega_{0}^{2}-2(2m+1)(3m-2)(3m+5)\omega_{0}$

$+977$ $4+18m^{3}-23m^{2}-32m-$ $8$ ,
$A_{2}$ $=9\omega_{0}^{4}-$ $9(4m+1)\omega_{0}^{3}+(54m^{2}+27m-26)\omega_{0}^{2}-(36m^{3}+27m^{2}-56m-20)\omega_{0}$

$+9\mathrm{v}\mathrm{n}^{4}$ $+9m^{3}-30m^{2}-$ $22$$m-$ $2$ . (B.2)

Returning to the Euler equations (3.1) and (3.2), the disturbance radial velocity $u_{1}^{(m)}$ is
found to be

$u_{1}^{(1)}=i \{-\frac{mJ_{m}(\eta_{1}r)}{(\omega_{0}-m+2)r}+\frac{1}{2}(\frac{1}{\omega_{0}-m+2}+\frac{1}{\omega_{0}-m-2})\eta_{1}J_{m+1}(\eta_{1}r)\}\beta_{1}^{(1)}$

$+ \frac{i\omega_{1}}{(\omega_{0}-m+2)^{2}}\{[\frac{m}{r}+\frac{4\eta_{1}^{2}r}{(\omega_{0}-m-2)^{2}}]J_{m}(\eta_{1}r)$

$- \frac{1}{(\omega_{0}-m-2)^{2}}[\omega_{0}^{2}-2m\omega_{0}+(m+2)^{2}+\frac{8m}{\omega_{0}-m}]\eta_{1}J_{m+1}(\eta_{1}r)\}\beta_{0}^{(1)}$

$-iA_{1} \{\frac{k_{0}}{\omega_{0}-m}rJ_{m}\mathrm{C}’/\mathrm{i}^{\mathrm{V})}$ $+ \frac{m}{A_{0}(\omega_{0}-m-2)}71J_{m+1}(\eta_{1}r)\}\beta_{0}^{(1)}$

$+ \frac{1}{16}\{\frac{1}{\omega_{0}-m+1}[$$m( \frac{(\omega_{0}-m)^{2}(\iota v_{0}-m-1)^{2}}{2k_{0}^{2}(2\omega_{0}-2m-1)^{2}}A_{1}-5)\frac{1}{r}$

$+ \frac{A_{3}}{(\omega_{0}-m-3)(2\omega_{0}-2m-1)}r]\eta_{2}J_{m}(\eta_{2}r)$

$+[ \frac{A_{4}}{2(\omega_{0}-m-3)(2_{\mathfrak{l}}v_{0}-2m-1)^{2}}+\frac{5k_{0}^{2}}{\omega_{0}-m-1}(r^{2}-1)]J_{m+1}(\eta_{2}r)\}\beta_{0}^{(2)}$ ,

(B.3)

where

A3 $=$ $9\omega_{0}^{5}-9(5m+3)\omega_{0}^{4}+$ ($90m^{2}+$ 108m $+1$ )$\omega_{0}^{3}-(90m^{3}+162m^{2}-11m-11)\omega_{0}^{2}$

$+(45771^{4}+108m^{3}-25m^{2}-63m+14)\omega_{0}-9m^{5}-27m^{4}+13m^{3}+52m^{2}+3m-8$ ,
$A_{4}$ $=$ $9\omega_{0}^{8}-18(4m+3)\omega_{0}^{7}+2$( $126m^{2}+$ 189m $+41$ )$\omega_{0}^{6}-2(252m^{3}+567m^{2}+$ 252m
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$-8)\omega_{0}^{5}+(630m^{4}+1890m^{3}+1290m^{2}-98m-87)\omega_{0}^{4}$

$-2(252m^{5}+945m^{4}+880m^{3}-116m^{2}-262m-27)\omega_{0}^{3}$

+2$(126m^{6}+567m^{5}+675m^{4}-134m^{3}-533m^{2}-154m+18)\omega_{0}^{2}$

-2$(36m^{7}+189m^{6}+276m^{5}-76m^{4}-454m^{3}-235m^{2}+32m+28)\omega_{0}$

$+9m^{8}+54m^{7}+94m^{6}-34m^{5}-$ $279m^{4}-$ $216m^{3}+24m^{2}+68m+16$ . (B.4)

Substituting from (3.11), (B. $\mathrm{I}$ ), (B.3) and the expressions in Appendix A and evalu-
ating them at $r=1,$ the boundary conditions (3.16) for the $m$ wave are converted into
linear algebraic equations for $\alpha_{1}^{(1)}$ and $\beta \mathrm{g}1$):

$[mK_{m}-k_{0}K_{m+1}-i(\omega_{0}-m)K_{m}$ $\frac{1}{\omega 0-m+2}[mJ_{m}(\eta_{1})-\frac{w\mathrm{o}-m}{\mathrm{t}d\mathrm{p}-m-2,1)},$$/\mathrm{i}^{\mathrm{j}_{m+1}(\eta_{1})]}J_{m}(\eta][_{\beta_{1}^{(1)}}\alpha_{1}^{(1)}]=\{\begin{array}{l}F^{(1)}G^{(1)}\end{array}\}$ ,

(B.5)
where we have made use of the shorthand notation $K_{m}=K_{m}(k_{0})$ and $K_{m+1}=K_{m+1}(k_{0})$ .
The dispersion relation (A.7) helps to simplify $F^{(1)}$ and $G^{(1)}$ by eUminating $J_{m+1}(\eta_{1})$ from
these equations.

As is usually the case, the matrix in (B.5) is singular, and hence the vector $(F^{(1)}, G^{(1)})$

must be constrained to its image space in order for (B.5) to be solvable for $(\alpha_{1}^{(1)}, 5\mathrm{P}^{)})$ .
This solvability condition reads

$i( \omega_{0}-m)F^{(1)}+(m-\frac{A_{0}K_{m+1}}{K_{m}})G^{(1)}=0$ . (B.5)

The same procedure is repeated for the $m+$ $1$ wave.
These conditions are rewritten into homogeneous linear algebraic equations for $65^{1)}$

and $\beta_{0}^{(2)}$ as

$\{\frac{\omega_{1}f^{(1)}}{(\omega_{0}-m+2)(\omega_{0}-m-2)}+\frac{2k_{1}}{k_{0}}(\omega_{0}-m)g^{(1)}\}\beta_{0}^{(1)}$

$+ \frac{i(\iota v_{0}-m)^{4}J_{m+1}(\eta_{2})}{32k_{0}^{2}(2\omega_{0}-2m-1)^{2}(\omega_{0}-m-1)J_{m}(\eta_{1})}h\beta_{0}^{(2)}=0$ , (B.7)

$- \frac{\overline{\iota}(\omega_{0}-m-1)^{4}J_{m}(\eta_{1})}{32k_{0}^{2}(2\omega_{0}-2m-1)^{2}(\omega_{0}-m)J_{m+1}(\eta_{2})}h\beta_{0}^{(}$
’

$+\{$ $\frac{\omega_{1}f^{(2)}}{(\omega_{0}-m+1)(\omega_{0}-m-3)}+\frac{2k_{1}}{k_{0}}(\omega_{0}-m-1)g^{(2)}\}\beta_{0}^{(2)}=0$ . (B.8)

In these,

$f^{(1)}$ $=$ $m[\omega_{0}^{3}- (3\mathrm{v}\mathrm{r}\mathrm{z} + 4)\omega_{0}^{2}+ 3\mathrm{v}\mathrm{r}\omega_{0}-270(m^{2}- 4\mathrm{r}\mathrm{n}-8)]$ $+2k_{0}^{2}(\omega_{0}-m)^{2}$

$+4[(771+1) \omega_{0}^{2}-2m^{2}\omega_{0}+m(m^{2}-m-4)]\frac{k_{0}K_{m+1}}{K_{m}}$

$-2( \omega_{0}-m+2)(\omega_{0}-m-2)\frac{k_{0}^{2}K_{m+1}^{2}}{K_{m}^{2}}$ , (B.9)
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$f^{(2)}$ $=$ $(m+1)[\omega_{0}^{3}-(3m-1)\omega_{0}^{2}+3(m+1)^{2}\omega_{0}-m^{3}-7m^{2}-3m+3]$

$+2A_{0}^{2}( \omega_{0}-m-1)^{2}-4[m\omega_{0}^{2}-2(m+1)^{2}\omega_{0}+(m+1)(m^{2}+3m-2)]\frac{A_{0}K_{m}}{K_{m+1}}$

$-2( \omega_{0}-m+1)(\omega_{0}-m-3)\frac{k_{0}^{2}K_{m}^{2}}{K_{m+1}^{2}}$ , (B.13)

$g^{(1)}$ $=$ $-(m- \frac{k_{0}K_{m+1}}{K_{m}})[m(\omega_{0}-m-1)+\frac{k_{0}K_{m+1}}{K_{m}}]$ , (B.13)

$g^{(2)}$ $=$ $(m+1+ \frac{k_{0}K_{m}}{K_{m+1}})[(m+1)(\omega_{0}-m)+\frac{k_{0}K_{m}}{K_{m+1}}]$ : (B.12)

$h=( \omega_{0}-m)(\omega_{0}-m-1)\{(m+1)(\omega_{0}-m+2)\frac{k_{0}K_{m+1}}{K_{m}}+$ $\mathrm{t}\mathrm{n}(\omega_{0}-m-3)\frac{k_{0}K_{m}}{K_{m+1}}$

-2$m(m+1) \}A_{1}+2k_{0}^{2}A_{5}+(2\omega_{0}-2m-1)k_{0}^{3}\{[A_{1}-6(3\omega_{0}^{2}-3\omega_{0}-3m^{2}+1)]\frac{K_{m+1}}{K_{m}}$

$-[A_{1}-6(3\omega_{0}^{2}+3\omega_{0}-3m^{2}-6m- 2)]$ $\frac{K_{m}}{K_{m+1}}\}$ , (B.13)

where

$A_{5}$ $=$ $9\omega_{0}^{6}-36(2m+1)\omega_{0}^{5}+(225m^{2}+225m+46)\omega_{0}^{4}-9(2m+1)(20m^{2}+20m-3)\omega_{0}^{S}$

$+(315m^{4}+630m^{3}+126m^{2}-189m-38)\omega_{0}^{2}$

$-\mathrm{m}(\mathrm{m}+1)(2\mathrm{m}+1)(72m^{2}+72m-115)\omega_{0}$

$+27m^{6}+81m^{5}+12m^{4}-111m^{3}-71m^{2}-2m+4$ . (B.14)
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