FitzHugh－Nagumo 方程式に現れる微細パターンについて

東京大学大学院数理科学研究科 大下 承民（Yoshihito Oshita）
Graduate School of Mathematical Sciences， University of Tokyo

1 Introduction

FitzHugh－Nagumo equation was introduced as a reduced equation of Hodgkin－ Huxley model，which describes propagation of signals along a nerve axon．It has turned out to be related to the theory of the pattern formation in mathematical biology and wave propagation in excitable media．Refer to $[2,3,5,6,7,8]$ ．FitzHugh－Nagumo equation is a system of reaction－diffusion equation consisting of two unknown func－ tions u and v representing concentrations of activator and inhibitor respectively，and typically of the form
$(E-1)_{\varepsilon}$

$$
\begin{array}{ll}
u_{t}=\varepsilon^{2} \Delta u+f(u)-\kappa v, & \text { in } \Omega \times \mathbb{R}_{+} \\
\tau v_{t}=D \Delta v+u-m-\gamma v,
\end{array}
$$

with the homogeneous Neumann boundary condition on $\partial \Omega$ ，where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain；$f(u)=-W^{\prime}(u)\left(W \in C^{2}(\mathbb{R})\right.$ is a double－well potential which has global minima exactly at ± 1 ，and $W(\pm 1)=0)$ is a bistable nonlinearity；$m \in(-1,+1)$ is a constant；κ, τ, D and γ are positive constants and ε is a positive parameter． Throughout this survey we always impose the homogeneous Neumann boundary con－ dition．We study the parameter scaling $\varepsilon \rightarrow 0$ in $(E-1)_{\varepsilon}$ ．We also study the following scaling．

$$
\begin{array}{ll}
u_{t}=\varepsilon^{2} \Delta u+f(u)-\frac{\varepsilon}{\mu} v, & \text { in } \Omega \times \mathbb{R}_{+} \tag{E-2}\\
\tau v_{t}=D \Delta v+u-m-\gamma v,
\end{array}
$$

where μ, τ, D and γ are positive constants and $\varepsilon(\rightarrow 0)$ is a positive parameter．In addition，we study another scaling，that is，

$$
\begin{array}{ll}
u_{t}=\varepsilon^{2} \Delta u+f(u)-\frac{\varepsilon}{\mu} v, & \text { in } \Omega \times \mathbb{R}_{+} \tag{E-3}\\
\tau v_{t}=D \Delta v+u-m-\gamma v,
\end{array}
$$

where μ, τ and γ are positive constants and $\varepsilon(\rightarrow 0)$ and $D(\rightarrow \infty)$ are positive parameters. Stationary solutions of $(E-1)_{\varepsilon}$ are functions u, v which satisfy the following system of elliptic equations

$$
\begin{array}{ll}
\varepsilon^{2} \Delta u+f(u)-\kappa v=0, & \text { in } \Omega \tag{1}\\
D \Delta v+u-m-\gamma v=0, &
\end{array}
$$

Similarly the stationary solutions of $(E-2)_{\varepsilon}$ and $(E-3)_{\varepsilon, D}$ solve

$$
\begin{array}{ll}
\varepsilon^{2} \Delta u+f(u)-\frac{\varepsilon}{\mu} v=0, & \text { in } \Omega \tag{2}\\
D \Delta v+u-m-\gamma v=0,
\end{array}
$$

Note that these equations are independent of the constant τ. It is easy to see that if u, v solves (1), then u is a critical point of the functional I_{ε} defined by

$$
\begin{gathered}
I_{\varepsilon}[u]=\int_{\Omega} \frac{\varepsilon^{2}}{2}|\nabla u|^{2}+W(u)+\frac{D \kappa}{2}|\nabla(T(u-m))|^{2}+\frac{\kappa \gamma}{2}\{T(u-m)\}^{2} d x \\
u \in H^{1}(\Omega)
\end{gathered}
$$

where $T=(-D \Delta+\gamma)^{-1}$ is the Green operator of $-D \Delta+\gamma$ with the homogeneous Neumann boundary condition. We remark that if $\tau=0$ were satisfied, the activator of $(E-1)_{\varepsilon}, u(\cdot, t)$ would be the gradient flow of I_{ε}. However since $\tau>0$, the activator $u(\cdot, t)$ of $(E-1)_{\varepsilon}$ is different from a gradient flow of I_{ε}. In case of $(E-2)_{\varepsilon}$ and $(E-3)_{\varepsilon, D}$, we deal with the functionals J_{ε} and $J_{\varepsilon, D}$ respectively defined as follows:

$$
J_{\varepsilon(, D)}[u]=\int_{\Omega} \frac{\varepsilon^{2}}{2}|\nabla u|^{2}+W(u)+\frac{D \varepsilon}{2 \mu}|\nabla(T(u-m))|^{2}+\frac{\varepsilon \gamma}{2 \mu}\{T(u-m)\}^{2} d x
$$

(Note that the operator T depends on D.) It is easy to see that the family of the functionals I_{ε} and $J_{\varepsilon(, D)}$ admit a global minimizer for each parameter. We are concerned with the asymptotic behavior of such minimizers for each parameter-scalings stated above. (For the stability, refer to [13].)

The homogenization problems with two length scales have been studied recently (refer to $[1,4,9])$. Also refer to $[10,12,15]$ for the problem related to diblock copolymer.

We assume that f has polynomial growth at infinity and has three zeros: $-1, a, 1$ $(a \in(-1,1))$ with $f^{\prime}(\pm 1)<0, f^{\prime}(a)>0$.

2 Statement of Main Results

To state the first result, we use the notion of Young measure, a useful tool for studying a sequence of functions which is oscillating and not convergent. We use the Young measure which is a map from Ω to the set of all probability measures on \mathbb{R}. A usual function $u(x)$ corresponds to the family of Dirac measures $\delta_{u(x)}$. The fundamental theorem for Young measure states the sufficient condition for relative compactness of a sequence of Young measures in an appropriate topology. We can get the limit Young measure instead of the limit function. (Refer to [14].)

In order to state the main result, define the constant

$$
c_{o}=\frac{\sqrt{2}}{\int_{-1}^{1} \sqrt{W(s)} d s}
$$

and the set of all admissible functions in the limiting problem which we will obtain later,

$$
\begin{gathered}
\mathcal{G}(\Omega)=\{u \in B V(\Omega) ;|u(x)|=1 \quad \text { for almost all } x \in \Omega\} \\
\mathcal{M}(\Omega)=\left\{u \in \mathcal{G} ;\langle u\rangle_{\Omega}=m\right\}
\end{gathered}
$$

Here $\langle\cdot\rangle_{\Omega}$ denotes the average on Ω. We use the following notation: $P_{\Omega}(G)$ denotes the perimeter of $G \subset \Omega$ with respect to Ω.

Theorem 2.1. The following statements hold:

(i) For any $\varepsilon>0$, there exists a stable stationary solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ of $(E-1)_{\varepsilon}$ such that for any sequence $\varepsilon_{n} \rightarrow 0, u_{\varepsilon_{n}}$ is not convergent in $L^{1}(\Omega)$ and generates Young measure $\nu=\left(\nu_{x}\right)_{x \in \Omega}$ with $\nu_{x}=\frac{1-m}{2} \delta_{-1}+\frac{1+m}{2} \delta_{1}$ for almost all $x \in \Omega$.
(ii) For any sequence $\varepsilon_{n} \rightarrow 0$, there exists a subsequence $\varepsilon_{k}=\varepsilon_{n_{k}}$ and stable stationary solutions $\left(u_{k}, v_{k}\right)$ of $(E-2)_{\varepsilon_{k}}$ such that u_{k} converges strongly in $L^{1}(\Omega)$ to a solution of

$$
(P)^{\mu} \quad \min _{u \in \mathcal{G}} B^{\mu}(u), \quad B^{\mu}(u)=\frac{2}{c_{0}} P_{\Omega}(\{u=1\})+\frac{1}{2 \mu} \int_{\Omega}(u-m) T(u-m) d x
$$

(iii) For any sequence $\varepsilon_{n} \rightarrow 0, D_{n} \rightarrow \infty$, there exist subsequences $\varepsilon_{k}=\varepsilon_{n_{k}}, D_{k}=D_{n_{k}}$ such that for each $k,(E-3)_{\varepsilon_{k}, D_{k}}$ has a stable stationary solution $\left(u_{k}, v_{k}\right)$ which has the
property that u_{k} converges strongly in $L^{1}(\Omega)$ to a solution of

$$
(\widetilde{P})^{\mu} \quad \min _{u \in \mathcal{G}} \widetilde{B}(u), \quad \widetilde{B}(u)=\frac{2}{c_{0}} P_{\Omega}(\{u=1\})+\frac{1}{2 \mu \gamma}|\Omega|(\langle u\rangle-m)^{2}
$$

Note that the solutions in Theorem 2.1 (i) do not have a limit. In fact, from the result of [11], for $(E-1)_{\varepsilon}$, any stationary solutions which has a smooth surface as a limit must be unstable. In Theorem 2.1, we obtained the two limiting problems, $(P)^{\mu}$ and $(\widetilde{P})^{\mu}$, which are the geometric minimization problem with a parameter dependence, and determine the location of interior boundary layers. The next theorem concerns the asymptotic behavior of solutions of the two problems $(P)^{\mu}$ and $(\widetilde{P})^{\mu}$ as $\mu \rightarrow 0$.

Theorem 2.2. The following statements hold:
(i) Let u^{μ} be a solution of $(P)^{\mu}$. Then for any sequence $\mu_{k} \rightarrow 0$, u^{μ} generates the same Young measure ν as in Theorem 2.1 (i).
(ii) Let \widetilde{u}^{μ} be a solution of $(\widetilde{P})^{\mu}$. Then for any sequence $\mu_{n} \rightarrow 0$, there exists a subsequence $\mu_{k}=\mu_{n_{k}}$ such that $\widetilde{u}^{\mu_{k}}$ converges strongly in $L^{1}(\Omega)$ to a solution u^{*} of

$$
\min _{u \in \mathcal{M}} P_{\Omega}(\{u=1\})
$$

and generates the Young measure $\nu=\left(\nu_{x}\right)_{x \in \Omega}$ with $\nu_{x}=\delta_{u^{*}(x)}$ for almost all $x \in \Omega$.
Note that for the problem $(P)^{\mu}$, we obtained a similar result as Theorem 2.1 (i), which corresponds to the case $\varepsilon=\mu \kappa$. We see that we can construct a sequence of solutions for $(E-2)_{\varepsilon}$ which converges to a pattern with an arbitrary large perimeter if we choose sufficiently small μ.

In the next Theorem, we derive the geometric interface equation associated with the solutions of $(P)^{\mu}$ and $(\widetilde{P})^{\mu}$. We use the following notations: We take the sign of mean curvature such that principal curvature of the sphere is negative when the normal vector points to the center. ∂^{\prime} denotes the relative boundary with respect to Ω.

Theorem 2.3. The following statements hold:

(i) For fixed $\mu>0$, let u be a solution of $(P)^{\mu}$ and $\Gamma=\partial^{\prime}\{u=1\}$. Assume that Γ is smooth in a neighborhood U of a point $x_{o} \in \Gamma$. Then there holds

$$
\mu H=c_{o} T(u-m), \quad \text { on } \Gamma \cap U
$$

where H denotes the mean curvature of Γ (when the normal vector points from $\{u=$ $-1\}$ to $\{u=1\}$).
(ii) For fixed $\mu>0$, let \widetilde{u} be a solution of $(\widetilde{P})^{\mu}$ and $\widetilde{\Gamma}=\partial^{\prime}\{\widetilde{u}=1\}$. Assume that $\widetilde{\Gamma}$ is smooth in a neighborhood \tilde{U} of a point $\widetilde{x}_{o} \in \widetilde{\Gamma}$. Then there holds

$$
\mu H=\frac{c_{o}}{\gamma}(\langle\widetilde{u}\rangle-m), \quad \text { on } \tilde{\Gamma} \cap \tilde{U}
$$

where H denotes the mean curvature of $\widetilde{\Gamma}$ (when the normal vector points from $\{\widetilde{u}=$ $-1\}$ to $\{\widetilde{u}=1\}$).

Theorem 2.3 (ii) implies that solutions of $(\widetilde{P})^{\mu}$ typically involve a partition of Ω into regions separated by surfaces of a constant mean curvature. In [3], they obtained a limiting free boundary problem from an Allen-Cahn equation with a nonlocal term, which arises as a limit of a reaction-diffusion system. Then we see that any surface which corresponds to stationary solutions of the motion law obtained in [3] has also a constant mean curvature.

3 Remarks on Two Dimensional Problems

$u \in \mathcal{G}(\Omega)$ is called planar if $u=u\left(x_{1}, \ldots, x_{N}\right),\left(x_{1}, \ldots, x_{N}\right) \in \Omega$ depends only on x_{1}.
Proposition 3.1. Let $N=2$ and $\Omega=(0,1)^{2}$. Then there exists a constant $m \in$ $(-1,1)$, sufficiently close to -1 , and a sequence $\mu_{k} \rightarrow 0$ such that every solution $u^{\mu_{k}}$ of $(P)^{\mu_{k}}$ is not planar.

We think typical interfaces for solutions of $(\widetilde{P})^{\mu}$ should be lines or circles when $N=2$. We believe that, for sufficiently close to 1 , and μ small, an interface approximated by a circle of a small radius, centered near the points on the boundary, which have the maximum mean curvature, should arise as in Cahn-Hilliard theory.

Figure 1 Typical Patterns; the black part is the region $u \sim 1$ and the white part is the region $u \sim-1$. (i) the left picture is the case $m<0$; (ii) the central picture is the case $m \sim 0$; and the right picture is the case $m>0$

We cannot expect that the minimizers of I_{ε} are precisely periodic in two dimensional arbitrary domain unlike the one dimensional case. However the Young measure generated by the global minimizers is constant in $x \in \Omega$. (See, Theorem 2.1 (i).) This suggests that the energy of global minimizers distribute somewhat uniformly. Then if the minimizers are not planar, what do they look like? In fact, non-planar minimizers which have hexagonal structures are observed (see Figure 1). We would like to give a mathematical account of this hexagonal pattern selection drawn in Figure 2.

Figure 2 hexagon structure

Since the formal discussion suggests that we should study the pattern of the order $\varepsilon^{1 / 3}$, we use the following scaling and transformed functions

$$
\begin{gathered}
\hat{\epsilon}=\varepsilon^{2 / 3}, y=\frac{x}{\varepsilon^{1 / 3}} \\
u(x)=U(y), v(x)=\varepsilon^{2 / 3} V(y) \\
-D \Delta V+\gamma \hat{\epsilon} V=U-m
\end{gathered}
$$

Now let U, V be extended to the whole \mathbb{R}^{N} in a symmetric and periodic way with a periodic unit domain Y. Then if $\{y ; \hat{\epsilon} y \in \Omega\}$ is packed with a finite number of translated Y, we have

$$
\begin{aligned}
& \varepsilon^{-2 / 3}|\Omega|^{-1} I_{\varepsilon}[u]= \\
& \frac{1}{|Y|} \int_{Y} \frac{\hat{\epsilon}}{2}|\nabla U|^{2}+\frac{W(U)}{\hat{\epsilon}}+\frac{\left(\langle U\rangle_{Y}-m\right)^{2}}{2 \gamma \hat{\epsilon}}+\frac{D \kappa}{2}|\nabla V|^{2}+\frac{\kappa \gamma \hat{\epsilon}}{2}\left(V-\langle V\rangle_{Y}\right)^{2} d y .
\end{aligned}
$$

By using this rescaling argument and the Modica-Mortola theorem, we are led to the following reduced energy density:

$$
\mathcal{E}[U]=\frac{1}{|Y|}\left[\frac{2}{c_{o}} P_{Y}(\{U=1\})+\frac{D \kappa}{2} \int_{Y}|\nabla V|^{2} d y\right]
$$

if U, V are Y-periodic functions such that $W(U)=0,\langle U\rangle_{Y}=m$ and $-D \Delta V=U-m$. Then we get

$$
I_{\varepsilon}[u] \sim|\Omega| \mathcal{E}[U] \varepsilon^{2 / 3}
$$

Note that the isoperimetric constant, the minimum of the perimeter with a volume constraint, is achieved if and only if the interface is the sphere. Now consider the dimension $N=2$ and define the periodic circular patterns as follows. Let α, β be two complex numbers with $\operatorname{Im}(\beta / \alpha)>0$, and $\Sigma=\mathbb{Z} \alpha+\mathbb{Z} \beta$ be a lattice in the complex plane. Then let $U_{\Sigma}: \mathbb{R}^{2} \rightarrow\{ \pm 1\}$ be a function satisfying $U_{\Sigma}\left(x_{1}, x_{2}\right)=1$ if $\operatorname{dist}\left(x_{1}+i x_{2}, \Sigma\right) \leq r$ and $U_{\Sigma}\left(x_{1}, x_{2}\right)=-1$ if $\operatorname{dist}\left(x_{1}+i x_{2}, \Sigma\right)>r$, with a constant $r>0$ being determined by $\langle U\rangle_{Y}=m$. We assume that $r<\min \{|\alpha|,|\beta|\}$, which can be satisfied for a certain Σ if and only if $m \in(-1, \sqrt{3} \pi / 3-1)$. Let $Y_{\Sigma}=\left\{\left(x_{1}, x_{2}\right)\right.$; there exist $s, t \in(0,1)$ such that $\left.x_{1}+i x_{2}=s \alpha+t \beta\right\}$ be a unit of parallelogram. See Figure 3.

Figure 3 Periodic Circular Patterns U_{Σ}

One can show that the energy density for the triangle pattern (Figure 4) is larger than the hexagonal pattern (Figure 2).

Figure 4 triangle structure

We will show that the energy density defined above achieves the minimum when Σ is a hexagonal structure. Then we will obtain the upper bound for the $\min I_{\varepsilon}$ for arbitrary domains by hexagonal structures, making a close study of the error by $\partial \Omega$.

Proposition 3.2 (X. Chen \& Y. Oshita). The following statements hold:
(1) For $\Sigma=\mathbb{Z} \alpha+\mathbb{Z} \beta, \zeta=\beta / \alpha, \operatorname{Im}(\zeta)>0$,

$$
\mathcal{E}\left[U_{\Sigma}\right]=\frac{2}{c_{o}} \sqrt{\frac{2 \pi(1+m)}{\left|Y_{\Sigma}\right|}}+\frac{\kappa(1+m)^{2}\left[R(\zeta)+c_{1}(m)\right]\left|Y_{\Sigma}\right|}{2 D},
$$

where

$$
R(\zeta)=-\frac{1}{2 \pi} \log \left|\sqrt{\operatorname{Im}(\zeta)} q^{1 / 12} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\right|, \quad q=e^{2 \pi i \zeta}
$$

and

$$
c_{1}(m)=\frac{1}{4 \pi}\left(1+\frac{m}{2}-\log (2 \pi(1+m))\right) .
$$

(2) The minimum of $\mathcal{E}\left[U_{\Sigma}\right]$ among all possible periodic circular patterns is

$$
\mathcal{E}^{*}=3(1+m)\left(c_{o}\right)^{-2 / 3} D^{-1 / 3}\left[\pi \kappa\left(c_{1}(m)+R\left(\zeta^{*}\right)\right)\right]^{1 / 3}, \quad \zeta^{*}=e^{i \pi / 3}
$$

which is attained when Σ is equal to the lattice $\mathbb{Z} \alpha^{*}+\mathbb{Z} \beta^{*}$,

$$
\left|\alpha^{*}\right|=\left|\beta^{*}\right|=2 \pi^{1 / 6} 3^{-1 / 4}(1+m)^{-1 / 2} D^{1 / 3}\left[c_{o} \kappa\left(c_{1}(m)+R\left(\zeta^{*}\right)\right)\right]^{-1 / 3}, \quad \frac{\beta^{*}}{\alpha^{*}}=\zeta^{*} .
$$

(3) Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with the smooth boundary $\partial \Omega$. Then

$$
\min _{u \in H^{1}(\Omega)} I_{\varepsilon}[u] \leq|\Omega| \varepsilon^{2 / 3}\left[\mathcal{E}^{*}+O\left(\varepsilon^{1 / 3}|\log \varepsilon|\right)\right],
$$

as $\varepsilon \rightarrow 0$.

References

[1] G. Alberti and S. Müller. A new approach to variational problems with multiple scales. Comm. Pure Appl. Math., Vol. 54, pp. 761-825, 2001.
[2] X. Chen. Generation and propagation of interfaces in reaction-diffusion systems. Trans. Amer. Math. Soc., Vol. 334, pp. 877-913, 1992.
[3] X. Chen, D. Hilhorst, and E. Logak. Asymptotic behavior of solutions of an allen-cahn equation with a nonlocal term. Nonlinear Anal. TMA., Vol. 28, pp. 1283-1298, 1997.
[4] R. Choksi. Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci., Vol. 11, No. 3, pp. 223-236, 2001.
[5] G.B. Ermentrout, S.P. Hastings, and W.C. Troy. Large amplitude stationary waves in an excitable lateral-inhibitory medium. SIAM. J. Appl. Math., Vol. 44, No. 6, pp. 1133-1149, 1984.
[6] P. C. Fife. Dynamics for internal layers and diffusive interfaces. CCMS-NSF Regional Conf. Ser. in Appl. Math. SIAM, Philadelphia, 1988.
[7] P. C. Fife and L. Hsiao. The generation and propagation of internal layers. Nonlinear Analysis, Vol. 12, pp. 19-41, 1988.
[8] G.A. Klaasen and W.C. Troy. Stationary wave solutions of a system of reactiondiffusion equations derived from the FitzHugh-Nagumo equations. Siam. J. Appl. Math., Vol. 44, pp. 96-110, 1984.
[9] S. Müller. Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differential Equations, Vol. 1, No. 2, pp. 169-204, 1993.
[10] Y. Nishiura and I. Ohnishi. Some mathematical aspects of the micro-phase separation in diblock copolymers. Phys. D, Vol. 84, pp. 31-39, 1995.
[11] Y. Nishiura and H. Suzuki. Noexistence of higher dimensional stable turing patterns in the singular limit. Siam. J. Math. Anal., Vol. 29, pp. 1087-1105, 1998.
[12] I. Ohnishi, Y. Nishiura, M. Imai, and Y. Matsushita. Analytical solution describing the phase separation driven by a free energy functional containing a long-range interaction term. Chaos, Vol. 9, pp. 329-341, 1999.
[13] Y. Oshita. On stable stationary solutions and mesoscopic patterns for FitzHughNagumo equations in higher dimensions. J. Differential Equations, Vol. 188, No. 1, pp. 110-134, 2003.
[14] P. Pedregal. Parametrized Measures and Variational Principles, Progress in Nonlinear Partial Differential Equations. Birkhäuser, 1997.
[15] X. Ren and J. Wei. Concentrically layered energy equilibria of the di-block copolymer problem. Func. Jnl of Applied Math., Vol. 13, pp. 479-496, 2002.

