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FitzHugh-Nagumo 方程式に現れる微細パターンについて
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1 Introduction

FitzHugh-Nagumo equation was introduced as a reduced equation of Hodgkin-

Huxley model, which describes propagation of signals along a nerve axon. It has turned
out to be related to the theory of the pattern formation in mathematical biology and
wave propagation in excitable media. Refer to [2, 3, 5, 6, 7, 8]. FitzHugh-Nagumo
equation is a system of reaction-diffusion equation consisting of two unknown func-
tions $u$ and $v$ representing concentrations of activator and inhibitor respectively, and
typically of the form

$u_{t}=\epsilon^{2}\Delta u$ $+f(u)-\kappa v,$
$(E- 1)_{\epsilon}$ in $El$ $\mathrm{x}\mathbb{R}_{+}$

$\tau v_{t}=D\Delta v+u-m-\gamma v,$

with the homogeneous Neumann boundary condition on 90, where $\Omega\subset \mathbb{R}^{N}$ is a
bounded domain; $f(u)=-\mathrm{I}\mathrm{I}\mathrm{f}(\mathrm{u})$ ( $W\in C^{2}(\mathbb{R})$ is a double-well potential which has
global minima exactly at $\mathrm{f}1$ , and $W(\pm 1)=0)$ is a bistable nonlinearity; $m\in(-1, +1)$

is a constant; $\kappa$ , $\tau$ , $D$ and $\mathrm{y}$ are positive constants and $\epsilon$ is a positive parameter.

Throughout this survey we always impose the homogeneous Neumann boundary con-
dition. We study the parameter scaling $\epsilon$ $arrow$p 0 in $(E- 1)_{\epsilon}$ . We also study the following
scaling.

$u_{t}=\epsilon^{2}\Delta u+$ $\mathrm{j}(u)$
$- \frac{\epsilon}{\mu}v$ ,

(E-1) $\cdot$ in 0 $\mathrm{x}\mathbb{R}_{+}$

$\tau v_{t}=D\Delta v+-$ $u-m-\gamma v,$

where $\mu$ , $\tau$ , $D$ and $\mathrm{y}$ are positive constants and $\epsilon(arrow 0)$ is apositive parameter. In
addition, we study another scaling, that is,

$u_{t}=\epsilon^{2}\Delta u+$ $\mathrm{j}(\mathrm{t}\mathrm{z})$

$- \frac{\epsilon}{\mu}v$ ,
$(E-3)_{\epsilon,D}$ in $\Omega\cross \mathbb{R}_{+}$

$\tau v_{t}=D\Delta v+u-m-\gamma v,$

数理解析研究所講究録 1356巻 2004年 82-90



83

where $\mu$ , $\mathrm{r}$ and $\mathrm{y}$ are positive constants and $\epsilon(arrow 0)$ and $D(arrow\infty)$ are positive parame-
ters. Stationary solutions of $(E- 1)_{\epsilon}$ are functions $u$ , $?\mathrm{J}$ which satisfy the following system
of elliptic equations

(1) in Q.
$\epsilon^{2}\Delta u+f(u)-\kappa v$ $=0,$

$D\Delta v+u-m-\gamma v=0,$

Similarly the stationary solutions of $(E- 2)_{\epsilon}$ and $(E- 3)_{\epsilon,D}$ solve

(2)
$\epsilon^{2}\Delta u+f(u)-$ $\mathit{7}$ $v=0,$

in $\Omega$ .
$D\Delta v+-$ $u-m-\gamma v=0,$

Note that these equations are independent of the constant $\tau$ . It is easy to see that if
$u$ , $v$ solves (1), then $u$ is a critical point of the functional $I_{\epsilon}$ defined by

$I_{\epsilon}[u]= \int_{\Omega}\frac{\epsilon^{l}}{2}|\nabla u|^{2}+W(u)+\frac{D\kappa}{2}|\nabla(T(u-m))|^{2}+\frac{\kappa\gamma}{2}\{T(u-m)\}^{2}dx$,

$u\in H^{1}.(\Omega)$ ,

where $T=(-D\Delta+\gamma)^{-1}$ is the Green operator of $-Di^{\mathit{5}}$ $+\gamma$ with the homogeneous
Neumann boundary condition. We remark that if $\tau=0$ were satisfied, the activator
of $(E- 1)_{\epsilon}$ , $u(\cdot, t)$ would be the gradient flow of $I_{\epsilon}$ . However since $\tau>0,$ the activator
$u(\cdot, t)$ of $(E- 1)_{\epsilon}$ is different from a gradient flow of $I_{\epsilon}$ . In case of $(E- 2)_{\epsilon}$ and $(E-3)_{\epsilon,D}$ ,
we deal with the functionate $J_{\epsilon}$ and $J_{\epsilon}$ , $D$ respectively defined as follows:

$J_{\epsilon(,D)}[u]= \int_{\Omega}\frac{\epsilon^{l}}{2}|$Vu $|^{2}+$ W{u) $+ \frac{D\epsilon}{2\mu}|\nabla(7(u-m))|^{2}+\frac{\epsilon\gamma}{2\mu}\{T(u-m)\}^{2}dx$.

(Note that the operator $T$ depends on $D.$ ) It is easy to see that the family of the $\mathrm{f}$ nc-
tionals $I_{\epsilon}$ and $J_{\epsilon(,D)}$ admit a global minimizer for each parameter. We are concerned
with the asymptotic behavior of such minimizers for each parameter-scalings stated
above. (For the stability, refer to [13].)

The homogenization problems with two length scales have been studied recently (refer
to [1, 4, 9] $)$ . Also refer to [10, 12, 15] for the problem related to diblock copolymer.

We assume that $f$ has polynomial growth at infinity and has three zeros: -1, $a$ , 1
$(a\in(-1,1))$ with $f’(\pm 1)<0$ , $f’(a)>0.$
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2 Statement of Main Results

To state the first result, we use the notion of Ybung measure, auseful tool for studying

a sequence of functions which is oscillating and not convergent. We use the Young

measure which is a map ffom $\Omega$ to the set of all probability measures on R. A usual

function $u(x)$ corresponds to the family of Dirac measures $\delta_{u(x)}$ . The fundamental
theorem for Young measure states the sufficient condition for relative compactness of
a sequence of Young measures in an appropriate topology. We can get the limit Young

measure instead of the limit function. (Refer to [14].)

In order to state the main result, define the constant

$c_{o}= \frac{\sqrt{2}}{\int_{-1}^{1}\sqrt{W(s)}ds}$

and the set of all admissible functions in the limiting problem which we will obtain
later,

$\mathcal{G}(\Omega)=$ {tz $\in BV(\Omega);.|\mathrm{t}\mathrm{z}(x)|=1$ for almost all $x\in\Omega$ },

$\mathcal{M}(\Omega)=$ {tz $\in \mathcal{G}$ ; $\langle u)_{0}=m$ }.

Here $\langle\cdot\rangle_{\Omega}$ denotes the average on $\Omega$ . We use the following notation: Pq (G) denotes the
perimeter of $G\subset\Omega$ with respect to $\Omega$ .

Theorem 2.1. The following statements hold:

(i) For any $\epsilon$ $>0,$ there exists a stable stationary solution $(u_{\epsilon}, v_{\epsilon})$ of $(E- 1)_{\epsilon}$ such that

for any sequence $\epsilon_{n}arrow 0,$
$u_{\epsilon_{n}}$ is not convergent in $L^{1}(\Omega)$ and generates Young measure

$\nu=(\nu_{x})_{x\in\Omega}$ with $\nu_{x}=\frac{1-m}{2}\delta_{-1}+\ovalbox{\tt\small REJECT} 12$ $\delta_{1}$ for almost all $x\in\Omega$ .
(ii) For any sequence $\epsilon_{n}arrow 0,$ there exists a subsequence $\epsilon_{k}=\epsilon_{n_{k}}$ and stable station-

ary solutions $(u_{k}, v_{k})$ of $(E- 2)_{\text{\’{e}}_{k}}$ such that $u_{k}$ converges strongly in $L^{1}(\Omega)$ to a solution

of

$(P)^{\mu}$
$\min_{u\in \mathcal{G}}B^{\mu}(u)$ , $B^{\mu}(u)= \frac{2}{c_{0}}P_{\Omega}(\{u=1\})+\frac{1}{2\mu}\int_{\Omega}(u-m)T(u-m)dx$ .

(iii) For any sequence $\epsilon_{n}arrow 0$ , $D_{n}arrow\infty$ , there $e$$\dot{m}t$ subsequences $\epsilon_{k}=\epsilon_{n_{k}}$ , $D_{k}=D_{n_{k}}$

such that for each $k$ , $(E- 3)_{\epsilon_{k},D_{k}}$ has a stable stationary solution $(u_{k}, Jk)$ which has the
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property that $u_{k}$ converges strongly in $L^{1}(\Omega)$ to a solution of
$(\overline{P})^{\mu}$

$\min_{u\in \mathcal{G}}\tilde{B}(u)$ , $\overline{B}(u)=\frac{2}{c_{0}}P_{\Omega}(\{u=1\})+\frac{1}{2\mu\gamma}|\Omega|(\langle u\rangle-m)^{2}$ .

Note that the solutions in Theorem 2.1 (i) do not have a limit. In fact, from the
result of [11], for $(E- 1)_{\epsilon}$ , any stationary solutions which has a smooth surface as a limit
must be unstable. In Theorem 2.1, we obtained the two limiting problems, $(P)^{\mu}$ and
$(\tilde{P})^{\mu}$ , which are the geometric minimization problem with a parameter dependence,
and determine the location of interior boundary layers. The next theorem concerns the
asymptotic behavior of solutions of the two problems $(P)^{\mu}$ and $(\tilde{P})^{\mu}$ as $72arrow 0.$

Theorem 2.2. The following statements hold:
(i) Let $u^{\mathrm{j}}$ be a solution of $(P)^{\mu}$ . Then for any sequence $\mu_{k}arrow$p 0, $u^{\mu}$ generates the

same Young measure $\nu$ as in Theorem 2.1 (i).
(ii) Let $u$\overline P be a solution of $(\tilde{P})^{\mu}$ . Then for any sequ ence $\mu_{n}arrow 0,$ there exists $a$

subsequence $\mu_{k}=\mu_{n_{k}}$ such that $\overline{u}^{\mu k}$ converges strongly in $L^{1}(\Omega)$ to a solution $u$
’ of

$\min_{u\in\Lambda 4}7’ \mathrm{g}(\{u=1\})$,

and generates the Young measure $\nu=(\nu_{x})_{x\in\Omega}$ with $\nu_{x}=\delta_{u^{*}(x)}$ for almost all $x\in\Omega$ .

Note that for the problem $(P)^{\mu}$ , we obtained a similar result as Theorem 2.1 (i),
which corresponds to the case $\epsilon$ $=\mu\kappa$ . We see that we can construct a sequence of
solutions for $(E- 2)_{\epsilon}$ which converges to a pattern with an arbitrary large perimeter if
we choose sufficiently small $\mu$ .

In the next Theorem, we derive the geometric interface equation associated with the
solutions of $(P)^{\mu}$ and $(\tilde{P})^{\mu}$ . We use the following notations: We take the sign of mean
curvature such that principal curvature of the sphere is negative when the normal vector
points to the center, $\partial’$ denotes the relative boundary with respect to $\Omega$ .

Theorem 2.3. The follow$.ng$ statements hold:
(i) For fixed $\mu>0,$ let $u$ be a solution of $(P)^{\mu}$ and $\Gamma=\partial’\{u=1\}$ . Assume that $\Gamma$

is smooth in a neighborhood $U$ of a point $x_{o}\in\Gamma$ . Then there holds

$\mu H=c_{o}T(u-m)$ , on $\Gamma\cap U,$

where $H$ denotes the mean $cu$ vature of $\Gamma$ (when the normal vector points from $\{u=$

$-1\}$ to $\{u=1\})$ .
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(ii) For fixed $\mu>0,$ let $\overline{u}$ be a solution of $(P)^{\mu}$ and $\Gamma=\partial’\{\overline{u}=1\}$ . Assume that $\Gamma^{1}$

is smooth in a neighborhood $\overline{U}$ of a point $\overline{x}_{o}\in\overline{\Gamma}\sim$ Then there holds

$\mu H=\frac{c_{o}}{\gamma}$
$(\langle\overline{u}\rangle-772)$ , on $\tilde{\Gamma}\cap\overline{U}$ ,

where $H$ denotes the mean curvature of $\Gamma$ (when the normal vector points from $\{\overline{u}=$

$-1\}$ to $\{\overline{u}=1\})$ .

Theorem 2.3 (ii) implies that solutions of $(P)^{\mu}$ typically involve a partition of $\Omega_{-}$ into
regions separated by surfaces of a constant mean curvature. In [3], they obtained a
limiting free boundary problem from an Allen-Cahn equation with a nonlocal term,

which arises as a limit of a reaction-diffusion system. Then we see that any surface
which corresponds to stationary solutions of the motion law obtained in [3] has also a
constant mean curvature.

3 Remarks on Two Dimensional Problems
$u\in \mathcal{G}(\Omega)$ is called planar if $?\mathrm{j}$ $=$ $u(x_{1}$ , . . . ’

$x_{N})$ , $(x_{1}$ , . . . ’
$x_{N})\in\Omega$ depends only on $x_{1}$ .

Proposition 3.1. Let $N=2$ and $\Omega=(0,1)^{2}$ . Then there exists a constant $m\in$

(-1, 1), sufficiently close to -1, and a sequence $\mu_{k}" \mathrm{p}$
$0$ such that ever$ry$ solution $u^{\mu k}$

of $(P)^{\mu k}$ is not planar.

We think typical interfaces for solutions of $(P)^{\mu}$ should be lines or circles when $N=2.$

We believe that, for sufficiently close to 1, and $\mu$ small, an interface approximated by
a circle of a small radius, centered near the points on the boundary, which have the
maximum mean curvature, should arise as in Cahn-Hilliard theory.

Figure 1 Typical Patterns; the black part is the region $u\sim 1$ and the white
part is the region $u\sim-1$ . (i) the left picture is the case $m<0;(\mathrm{i}\mathrm{i})$ the central
picture is the case $m\sim 0;$ and the right picture is the case $m>0$
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We cannot expect that the minimizers of $I_{\xi \mathrm{j}}$ are precisely periodic in two dimensional
arbitrary domain unlike the one dimensional case. However the Young measure gen-
erated by the global minimizers is constant in $x\in$ D. (See, Theorem 2.1 (i).) This
suggests that the energy of global minimizers distribute somewhat uniformly. Then if
the minimizers are not planar, what do they look like? In fact, non-planar minimizers
which have hexagonal structures are observed (see Figure 1). We would like to give a
mathematical account of this hexagonal pattern selection drawn in Figure 2.

Figure 2 hexagon structure

Since the formal discussion suggests that we should study the pattern of the order
$\epsilon^{1/3}$ , we use the following scaling and transform$\mathrm{e}\mathrm{d}$ $\mathrm{f}$ nctions

$\hat{\epsilon}=\epsilon^{2/3}$ , $y= \frac{x}{\epsilon^{1/3}}$ ,

$u(x)=U(y)$ , $v(x)=$ \epsilon 273V(y),

$-D\Delta V+\gamma\hat{\epsilon}V=U-m.$

Now let $U$, $V$ be extended to the whole $\mathbb{R}^{N}$ i$\mathrm{n}$ a symmetric and periodic way with
a periodic unit domain Y. Then if $\{y;\hat{\epsilon}y\in\Omega\}$ is packed with a finite number of
translated $\mathrm{Y}$ , we have

$\epsilon^{-2/3}|\Omega|^{-1}I_{\text{\’{e}}}[u]=$

$\frac{1}{|\mathrm{Y}|}\int_{\mathrm{Y}}\frac{\hat{\epsilon}}{2}|\nabla U|^{2}+\frac{W(U)}{\hat{\epsilon}}+\frac{(\langle U\rangle_{\mathrm{Y}}-m)^{2}}{2\gamma\hat{\epsilon}}+\frac{D\kappa}{2}|\nabla V|^{2}+\frac{\kappa\gamma\hat{\epsilon}}{2}(V-\langle V\rangle_{\mathrm{Y}})^{2}dy$.

By using this rescaling argument and the Modica-Mortola theorem, we are led to the
following reduced energy density:

By using this rescaling argument and the Modica-Mortola theorem, we are led to the
following reduced energy density:

$\mathcal{E}[U]=|\mathrm{i}$ $\lfloor\frac{2}{c_{o}}P_{Y}(\{U=1\})+\frac{D\kappa}{2}\int_{Y}|\nabla V|^{2}dy$
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if $U$, $V$ are $\mathrm{Y}$-periodic functions such that $W(U)=0$ , $\langle U\rangle_{Y}=m$ and $-D\Delta V=U-m.$

Then we get
$I_{\epsilon}[u]\sim|\Omega|\mathcal{E}[U]\epsilon^{2/3}$ .

Note that the isoperimetric constant, the minimum of the perimeter with a volume
constraint, is achieved if and only if the interface is the sphere. Now consider the

dimension $N=2$ and define the periodic circular patterr4 as follows. Let $\alpha$ , $\beta$ be

two complex numbers with ${\rm Im}( \beta\oint\alpha)>0$ , and $\mathrm{C}$ $=\mathbb{Z}\alpha+\mathbb{Z}\beta$ be a lattice in the

complex plane. Then let $U_{\Sigma}$ : $\mathbb{R}^{2}arrow\{\pm 1\}$ be a function satisfying $U_{\Sigma}(x_{1}, x_{2})=1$

if dist $(x_{1}+ix_{2}, \Sigma)$ $\leq r$ and $U_{\Sigma}(x_{1}, x_{2})=-1$ if $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}$ ($x_{1}+$ ix2 $\Sigma$ ) $>r,$ with a con-
st ot $r>0$ being determined by (U)$\rangle_{Y}=m.$ We assume that $r< \min\{|\alpha|, |\beta|\}$ ,

which can be satisfied for a certain $\mathrm{E}$ if and only if $m\in$ $(-1, \sqrt{3}\pi/3-1)$ . Let
$\mathrm{Y}_{\Sigma}=$ { ( $x_{1}$ , $x_{2}$ ); there exist $s$ , $t\in(0,1)$ such that $x_{1}+ix2=s\alpha+t\beta$} be a unit of par-

allelogram. See Figure 3.

Figure 3 Periodic Circular Patterns $U_{\Sigma}$

One can show that the energy density for the triangle pattern (Figure 4) is larger

than the hexagonal pattern (Figure 2).

Figure 4 triangle structure
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We will show that the energy density defined above achieves the minimum when I i$\mathrm{s}$

a hexagonal structure. Then we will obtain the upper bound for the $\min I_{\epsilon}$ for arbitrary
domains by hexagonal structures, making a close study of the error by an.
Proposition 3.2 (X. Chen & Y. Oshita). The following statements hold:

(1) For I $=$ Za $+\mathbb{Z}\beta$ , $\zeta=\beta/\alpha$ , ${\rm Im}(\zeta)>0,$

$\mathcal{E}[U_{\Sigma}]=\frac{2}{c_{o}}\sqrt{\frac{2\pi(1+m)}{|\mathrm{Y}_{\Sigma}|}}+\frac{\kappa(1+m)^{2}[R(\zeta)+c_{1}(m)]|\mathrm{Y}_{\Sigma}|}{2D}$ ,

where

$R( \zeta)=-\frac{1}{2\pi}\log|$ $\mathrm{i}$ $q^{1/12} \prod_{n=1}^{\infty}(1-q^{n})^{2}|$ , $q=e^{2\mathrm{w}}i($

and

$c_{1}(m)=\mathit{7}$ $(1+$ $\mathrm{j}$ $-\log(2\pi(1+7\mathrm{r}\mathrm{z}))$)
(2) The minimum of $\mathcal{E}[U_{\Sigma}]$ among all possible per iodic circular patterns is

$\mathcal{E}^{*}=3(1+m)(c_{o})^{-2/3}D^{-1/3}[\pi\kappa(c_{1}(m)+R(\zeta^{*}))]^{1/3}$ , $\zeta^{*}=e^{i\pi/3}$ ,

which is attained when ) is equal to the lattice $\mathbb{Z}\alpha^{*}+\mathbb{Z}\beta’$ ,

$|\mathrm{c}\mathrm{z}$

’
$|=|$d’ $|=2\pi^{1/6}3^{-1/4}(1+m)^{-1/2}D^{1/3}[c_{o}\kappa(c_{1}(m)+R(\zeta^{*}))]^{-1/3}$ , $\frac{\beta^{*}}{\alpha}*=\zeta^{*}$ .

(3) Let $\Omega\subset \mathbb{R}^{2}$ be a bounded domain with the smooth boundary $\partial\Omega$ . Then

$\min$ $I_{\epsilon}[u]\leq|\Omega|\epsilon^{2/3}[\mathcal{E}^{*}+O(\epsilon^{1/3}|\log\epsilon|)]$ ,
$u\in H^{1}(\Omega)$

$\mathcal{E}^{*}=3(1+m)(c_{o})^{-2/3}D^{-1/3}[\pi\kappa(c_{1}(m)+R(\zeta’))]^{1/3}$ , $\zeta^{*}=e^{i\pi/3}$ ,

which is attained when $\Sigma$ is equal to the lattice $\mathbb{Z}\alpha^{*}+\mathbb{Z}\beta^{*}$ ,

$|\alpha’|=|\beta’|=2\pi^{1/6}3^{-1/4}(1+m)^{-1/2}D^{1/3}[c_{o}\kappa(c_{1}(m)+R(\zeta^{*}))]^{-1/3}$ , $\frac{\beta^{*}}{\alpha}*=\zeta^{*}$ .

(3) Let $\Omega\subset \mathbb{R}^{2}$ $6e$ a bounded domain with the smooth boundary $\partial\Omega$ . Then

$\min_{u\in H^{1}(\Omega)}I_{\epsilon}[u]\leq|\Omega|\epsilon^{2/3}[\mathcal{E}^{*}+O(\epsilon^{1/3}|\log\epsilon|)]$ ,

as $\epsilon$ $arrow 0.$
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