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1 Introduction

FitzHugh-Nagumo equation was introduced as a reduced equation of Hodgkin-
Huxley model, which describes propagation of signals along a nerve axon. It has turned
out to be related to the theory of the pattern formation in mathematical biology and
wave propagation in excitable media. Refer to [2, 3, 5, 6, 7, 8]. FitzHugh—Nagumo
equation is a system of reaction—diffusion equation consisting of two unknown func-
tions v and v representing concentrations of activator and inhibitor respectively, and
typically of the form

us = 2Au + f(u) — kv,

(E-1)e Ty = DAv +u —m — v,

ianR+

with the homogeneous Neumann boundary condition on 8, where @ C R¥ is a
bounded domain; f(u) = —W'(u) (W € C%(R) is a double-well potential which has
global minima exactly at 1, and W (%1) = 0) is a bistable nonlinearity; m € (-1, +1)
is a constant; k,7,D and v are positive constants and ¢ is a positive parameter.
Throughout this survey we always impose the homogeneous Neumann boundary con-
dition. We study the parameter scaling € — 0 in (E-1).. We also study the following
scaling.

u = e2Au+ f(u) — v,

(E-2)e Tvs = DAV 4+ u — m — v,

in Q x R+
where p,7,D and 7 are positive constants and e(— 0) is a positive parameter. In

addition, we study another scaling, that is,

up = e2Au + f(u) - v,

(E-3)e,0 T = DAv + u — m — v,

ianR+
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where i, 7 and + are positive constants and €(— 0) and D(— oo) are positive parame-
ters. Stationary solutions of (E-1), are functions u, v which satisfy the following system
of elliptic equations

e?Au+ f(u) — kv =0,

(1) DAV +u—m -y =0, in €.

Similarly the stationary solutions of (E-2), and (E-3). p solve

e2Au+ f(u) — £v =0,

(2) DAv+u—m—p =0, in Q.

Note that these equations are independent of the constant 7. It is easy to see that if
u, v solves (1), then u is a critical point of the functional I, defined by

L = [ S10u + W)+ 29— m)P + 47 - m)yds,
u € HY(Q),

where T' = (—DA + )~ is the Green operator of —DA + ~ with the homogeneous
Neumann boundary condition. We remark that if 7 = 0 were satisfied, the activator
of (E—l);., u(-,t) would be the gradient Alow of I.. However since 7 > 0, the activator
u(-,t) of (E-1) is different from a gradient flow of I.. In case of (E-2). and (E-3).,p,
we deal with the functionals J. and Je,p respectively defined as follows:

Torlul = | G190 4 W)+ oIV(T = m) + ST~ m))

(Note that the operator T depends on D.) It is easy to see that the family of the func-
tionals I; and J(,py admit a global minimizer for each parameter. We are concerned
with the asymptotic behavior of such minimizers for each parameter—scalings stated
above. (For the stability, refer to [13].)

The homogenization problems with two length scales have been studied recently (refer
to [1, 4, 9]). Also refer to [10, 12, 15] for the problem related to diblock copolymer.

We assume that f has polynomial growth at infinity and has three zeros: -1,a,1
(a € (-1,1)) with f/(£1) < 0, f'(a) > 0.
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2 Statement of Main Results

To state the first result, we use the notion of Young measure, a useful tool for studying
a sequence of functions which is oscillating and not convergent. We use the Young
measure which is a map from Q to the set of all probability measures on R. A usual
function u(x) corresponds to the family of Dirac measures d,(;). The fundamental
theorem for Young measure states the sufficient condition for relative compactness of
a sequence of Young measures in an appropriate topology. We can get the limit Young
measure instead of the limit function. (Refer to [14].)

In order to state the main result, define the constant

.= V2
C [ VW (s)ds

and the set of all admissible functions in the limiting problem which we will obtain

later,
G(Q) ={ue BV(Q); |u(z)]=1 for almost all z € O},

M) ={u€g; (u)g=m}.

Here () denotes the average on 2. We use the following notation: Po(G) denotes the
perimeter of G C Q with respect to 2. ‘

Theorem 2.1. The following statements hold:

(i) For any € > 0, there exists a stable stationary solution (u.,v.) of (E-1). such that
for any sequence €, — 0, U, is not convergent in L'(Q) and generates Young measure
v = (Vg)zen With vy = 1—2’"6_1 + 1%51 for almost all € Q.

(ii) For any sequence £, — 0, there exists a subsequence e = €,, and stable station-

ary solutions (ux,vk) of (E-2)c, such that uy converges strongly in L*(Q) to a solution

of
(P szlellgl B#(u), B*(u)= %Pg({u =1}) + —2% /Q(u —m)T(u — m)dz.

(iii) For any sequence €, — 0, D,, — oo, there exist subsequences €, = €n, , Dx = Dy,

such that for each k, (E-3)., p, has a stable stationary solution (uk,vi) which has the
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property that u, converges strongly in L'(Q) to a solution of

Py minB, Bw)= ZPa({u=13)+ 7 [0l(() - m)”.

Note that the solutions in Theorem 2.1 (i) do not have a limit. In fact, from the
result of [11], for (E-1)., any stationary solutions which has a smooth surface as a limit
must be unstable. In Theorem 2.1, we obtained the two limiting problems, (P)* and
(I~’)“, which are the geometric minimization problem with a parameter dependence,
and determine the location of interior boundary layers. The next theorem concerns the

asymptotic behavior of solutions of the two problems (P)* and (]3)" as u — 0.

Theorem 2.2. The following statements hold:

(i) Let u* be a solution of (P)*. Then for any sequence ux — 0, ut generates the
same Young measure v as in Theorem 2.1 (i).

(ii) Let u* be a solution of (P)*. Then for any sequence p, — 0, there exists a

subsequence [k = lin, such that W** converges strongly in L1(Q) to a solution u* of
in Po({u = 1}),
min Po({u = 1})

and generates the Young measure v = (Vy)zeq with v, = Ous(z) Jor almost all z € 9.

Note that for the problem (P)#, we obtained a similar result as Theorem 2.1 (1),
which corresponds to the case ¢ = ux. We see that we can construct a sequence of
solutions for (E-2). which converges to a pattern with an arbitrary large perimeter if
we choose sufficiently small y.

In the next Theorem, we derive the geometric interface equation associated with the
solutions of (P)4 and (P)#. We use the following notations: We take the sign of mean
curvature such that principal curvature of the sphere is negative when the normal vector
points to the center. &’ denotes the relative boundary with respect to Q.

Theorem 2.3. The following statements hold:
(i) For fized i > 0, let u be a solution of (P)* and I' = & {u = 1}. Assume that I
15 smooth in a neighborhood U of a point z, € I'. Then there holds

pH =c,T(u—m), onI'NU,

where H denotes the mean curvature of I' (when the normal vector points from {u =

-1} to {u = 1}).
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(ii) For fized > 0, let U be a solution of (P)* and F=d{u= 1}. Assume that I’
is smooth in a neighborhood U of a point T, € I'. Then there holds

uH-—-%— @ —-m), onINU,

where H denotes the mean curvature of I’ (when the normal vector points from {u =

~1} to {i = 1}).

Theorem 2.3 (ii) implies that solutions of (ﬁ)" typically involve a partition of (2 into
regions separated by surfaces of a constant mean curvature. In [3], they obtained a
limiting free boundary problem from an Allen—Cahn equation with a nonlocal term,
which arises as a limit of a reaction—diffusion system. Then we see that any surface

which correspondsvto stationary solutions of the motion law obtained in [3] has also a

constant mean curvature.

3 Remarks on Two Dimensional Problems
u € G(Q) is called planar if u = u(z1,...,zN), (Z1,--.,ZN§) € Q depends only on z;.

Proposition 3.1. Let N = 2 and Q = (0,1)2. Then there ezists a constant m €
(—1,1), sufficiently close to —1, and a sequence pux — 0O such that every solution utx

of (P)#* is not planar.

-~

We think typical interfaces for solutions of (P)* should be lines or circles when N = 2.
We believe that, for sufficiently close to 1, and p small, an interface approximated by
a circle of a small radius, centered near the points on the boundary, which have the

maximum mean curvature, should arise as in Cahn—Hilliard theory.

Figure 1 Typical Patterns; the black part is the region u ~ 1 and the white
part is the region u ~ —1. (i) the left picture is the case m < 0; (ii) the central
picture is the case m ~ 0; and the right picture is the case m > 0
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We cannot expect that the minimizers of I. are precisely periodic in two dimensional
arbitrary domain unlike the one dimensional case. However the Young measure gen-
erated by the global minimizers is constant in z € Q. (See, Theorem 2.1 (i).) This
suggests that the energy of global minimizers distribute somewhat uniformly. Then if
the minimizers are not planar, what do they look like? In fact, non—planar minimizers
which have hexagonal structures are observed (see Figure 1). We would like to give a

mathematical account of this hexagonal pattern selection drawn in Figure 2.

Figure 2 hexagon structure

Since the formal discussion suggests that we should study the pattern of the order

€1/3, we use the following scaling and transformed functions

A 2/3 T
E=¢ = —
?y 51/3’

u(z) =U(y),v(z) = V3V (y),
—~DAV +~4&V = U —m.

Now let U,V be extended to the whole R¥ in a symmetric and periodic way with
a periodic unit domain Y. Then if {y; &y ¢ 1} is packed with a finite number of
translated Y, we have

5_2/3IQ|_II€[u] =

By using this rescaling argument and the Modica~Mortola theorem, we are led to the

following reduced energy density:

£[U] = nl,,[ 2P =1+ 5 [ [vvia]



if U,V are Y—periodic functions such that W(U) = 0, (U)y = m and ~DAV = U —m.

Then we get
I[u] ~ |QE[U)?3.

Note that the isoperimetric constant, the minimum of the perimeter with a volume
constraint, is achieved if and only if the interface is the sphere. Now consider the
dimension N = 2 and define the periodic circular patterns as follows. Let «,f be
two complex numbers with Im(8/a) > 0, and ¥ = Za + Z3 be a lattice in the
complex plane. Then let Ug : R? — {+1} be a function satisfying Ug(z1,z2) = 1
if dist(z; + iz2, %) < r and Us(z1,z2) = -1 if dist(z; + iz2,X) > 7, with a con-
stant 7 > O being determined by (U)y = m. We assume that » < min{|el,|8|},
which can be satisfied for a certain ¥ if and only if m € (-1,v37/3 — 1). Let
Yy = {(z1,22) ; there exist s,t € (0,1) such that x; + iz = sa + 3} be a unit of par-
allelogram. See Figure 3.

P,
ﬁ" o o 0|0
(e 4 de (oo

Figure 3 Periodic Circular Patterns Us

One can show that the energy density for the triangle pattern (Figure 4) is larger
than the hexagonal pattern (Figure 2).

Figure 4 triangle structure
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We will show that the energy density defined above achieves the minimum when X is

a hexagonal structure. Then we will obtain the upper bound for the min I for arbitrary

domains by hexagonal structures, making a close study of the error by 9.

Proposition 3.2 (X. Chen & Y. Oshita). The following statements hold:

(1) For & =Za+ 28, ¢ = /e, Im(¢) > 0,

2 [2n(1+4m) n k(1 + m)?[R(C) + c1(m)]| Vx|

0= o Tl 2D
where
R(¢) = —%log vIm(¢) q1/12ﬁ(1 —-q")?, q=e
and
e (m) = ZI; (143~ og(2n(1 + m))).

(2) The minimum of E[Us] among all possible periodic circular patterns is

£ =3(1+m)(co)*°D7V3 [mk (cr(m) + R(CM®, ¢ =

which is attained when ¥ is equal to the lattice Za* + Z3*,

|| = |6*| = 2n/837Y/4(1 + m)~Y/2DY3 [com(ci (m) + R(¢))] Y3,

(3) Let @ C R? be a bounded domain with the smooth boundary 8. Then

: < 2/3[ 0% 1/3
uer;llllr(lmfe[u]_IQI6 [£* + O(e"/%|logel)],

as € — 0.
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