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Stability of Stationary Interfaces of Binary-Tree Type: Overview
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1 Intoroduction

A curvature-driven motion with a triple junction has been introduced by Mullns [10]
as a model of grain boundary motion in two dimensions. Later, the motion was derived
formally by Bronsard and Reitich [1] as the singular limit of a vector-valued Allen-Cahn
equation. Bronsard and Reitich [1] also showed short-time existence of the motion. Let
$\Gamma_{\dot{1}}(t)(i=1,2,3)$ represent curves at time $t>0$ contained in a twO-dimensional bounded
region $\Omega$ with smooth boundary an. Suppose $\Gamma_{i}(t)(i=1,2,3)$ meet at one point $m(t)$ .
The evolving interface that we consider is subject to the following laws:

(M1) The normal velocity of the interface is given by its curvature.

(M2) At the triple junction $m(t)$ , the contact angle $\theta_{k}$ between $\mathrm{p}_{:}(t)$ and $\Gamma_{j}(t)$ is given
by Young’s law, where $(\mathrm{i}\mathrm{j}, k)=(1,2,3)$ , (2, 3, 1), (3, 1, 2). That is, for positive
constants $\sigma_{1}$ , $\sigma_{2}$ , $\sigma_{3}$ ,

$\frac{\sin\theta_{1}}{\sigma_{1}}=\frac{\sin\theta_{2}}{\sigma_{2}}=\frac{\sin\theta_{3}}{\sigma_{3}}$ ,

where $0<\theta_{k}<\pi$ and $\theta_{1}+\theta_{2}+\theta_{3}=2\pi.$

(M3) At the other end of each curve, $\Gamma_{i}(t)$ touches an at the right angle.

The interfaces have Energy $E(t)$ , which decreases as time goes:

$E(t)=\sigma_{1}|\Gamma_{1}(t)|+\sigma_{2}|\Gamma_{2}(t)|+\sigma_{3}|\Gamma_{3}(t)|$,

where $|\mathrm{Y}\mathrm{i}(\mathrm{t})|(i=1,2,3)$ mean the lengths of curves Ti(t). Stationary interfaces of the
motion can be viewed as critical points of the energy. In this connection Sternberg and
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Ziemer [12] have proved the existence of local minimizers of the energy in clover-like
regions. Here we remark that stationary interfaces consist of straight line segments.

On the other hand, Ikota and Yanagida [8] have studied stabilities of stationary
interfaces of the motion $(\mathrm{M}1)-(\mathrm{M}3)$ by linearizing corresponding equations around the
stationary interfaces. They linearized the equations formally and analyzed the resulting
elliptic operator rigorously to obtain astability criterion which determines the unstable
dimension in terms of the parameters. They also checked by numerical experiments
that the linearized stability criterion suggests a nonlinear stability.

Recently Ikota and Yanagida have extended their results to stationary interfaces
of binary-tree type with more than one triple junctions. In this article we give an
overview of their results.

2 Formulation of the Problem
Consider a network of curves with triple junctions in $\Omega$ . We assume the network
$\Gamma=\Gamma(t)$ consists of $n$ curves denoted by ) $\mathrm{j}$

$=\gamma_{\dot{l}}(t)$ , $i=1,2$ , $\ldots$ , $n$ , and contacts with
an at endpoints (see Figure 1). We regard $\Gamma$ as the set of the curves $\{\gamma_{i}\}$ , and denote

$\Omega$

Figure 1: An interface $\Gamma$ with triple junctions.

by $B$ the subset of $\Gamma$ that consists of curves touching an. Let $\sigma$: be positive constants
representing surface energy of $\gamma_{1}$

. per unit length. We denote by $L(t)$ the lengths of $\gamma_{\dot{l}}$

and by $V=\{x_{l}\}$ the set of triple junctions.
Every curve $\gamma\dot{.}$ is driven to the center of curvature at the normal speed V.$\cdot$ that is

equal to the curvature of $\gamma_{i}$ at each point. At each triple junction $x\iota$ , three curves, say
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$\gamma_{i}$ , $\gamma_{j}$ , $Yk$ , meet with prescribed angles and satisfy Young’s law:

$\frac{\sin\theta_{l,i}}{\sigma_{i}}=\frac{\sin\theta_{l,j}}{\sigma_{j}}=\frac{\sin\theta_{l,k}}{\sigma_{k}}$ ,

where $\theta_{l,i}$ is the angle between $\gamma_{j}$ and $\gamma_{k}$ at $x_{t}$ and $\theta_{l,j}$ , $\theta_{l,k}$ are alike. Each $\gamma_{\dot{*}}\in B$

contacts with an at the right angle.
We consider perturbations that can be represented as graphs of functions on $\Gamma$ , and

describe the motion of nearby interfaces by using some nonlinear partial differential
equations with moving boundaries.

Suppose that $7\mathrm{i}$ , $\gamma_{j}$ , $\gamma_{k}$ meet at a triple junction $x_{l}\in V$ . We take $x_{l}$ as the
origin of $\xi-\eta$ coordinate system. For $\mathrm{Y}\mathrm{i}$ , the $\xi$-axis is taken along $\gamma_{i}$ , and the 77-axis
is taken by rotating the $\xi$-axis by $\pi/2$ radian counter-clockwise. In this coordinate
system we consider a perturbation which can be represented as a graph of $\eta=w:(\xi)$ .
Approximating the time evolution of $tJ_{i}$ , we obtain a linear operator $\mathcal{L}$ at $\gamma_{\dot{1}}$ . We take
coordinate systems for $Yj$ and $Ytt$ in the same way, and describe perturbations by using
some functions $w_{j}(t, \xi)$ and $w_{k}(t,\xi)$ . For details of this procedure, we refer to our
previous paper [8].

There are two ways of introducing a coordinate system on $\gamma_{1}$
. because both end

points can be the origin. We will choose one of these coordinate systems according to
situations in order to make the presentation simple.

Now let us describe the linear operator $\mathcal{L}$ more precisely. Put $\mathrm{u}=$ $(u_{1,12}, \ldots,u_{n})$ ,
where $u$: is defined on $\gamma.\cdot$ . Let $L_{:}$ be the length of $7\mathrm{i}$ . Then $\mathcal{L}$ is written as

(1) $\mathcal{L}[\mathrm{u}]$
$= \frac{\partial^{2}\mathrm{u}}{\partial\xi^{2}}$ .

The associated boundary conditions are given as follows.

1. For $\gamma_{1}$
. $\in B,$

(2) $\frac{\partial u_{i}}{\partial\xi}(L_{i})+h:u:(L.\cdot)=0.$

2. If $\gamma.\cdot$ , $\gamma_{j}$ , $Yk$ meet at $x_{l}\in V,$

$\sigma_{\dot{1}}u_{*}.(0)+$ $\mathrm{v}_{j}u_{j}(0)+\sigma_{k}u_{k}(0)=0,$

$!_{(\mathrm{O})}$
$= \frac{\partial u_{j}}{\partial\xi}(0)=\frac{\partial u_{k}}{\partial\xi}(0)$ .



103

We set

$H:=\oplus L^{2}(0, L_{i})\gamma_{\dot{*}}\in\Gamma$ ’

and treat $\mathcal{L}$ as an operator from $H$ to $H$ with a domain of definition

$\mathrm{D}(\mathcal{L})$

$=\{\mathrm{u}\in\gamma_{j}\in\Gamma\oplus H^{2}(0, L_{i})|\mathrm{u}$ satisfies conditions (3) and (4) $\}$ .

The inner product $(\cdot, \cdot)_{H}$ of $H$ is given by

and treat $\mathcal{L}$ as an operator from $H$ to $H$ with a domain of definition

$D(\mathcal{L})=\{\mathrm{u}\in\gamma_{j}\in\Gamma\oplus H^{2}(0, L_{i})|\mathrm{u}$ satisfies conditions (3) and (4) $\}$ .

The inner product $(\cdot$ , $\cdot)_{H}$ of $H$ is given by

$( \mathrm{u}, \mathrm{v})_{\mathrm{H}}:=.\sum_{\gamma.\in}\mathrm{r}$

$\{\sigma:\int_{0}^{L:}u_{1}$.v:dl $\}$ .

3 Results

Our results are stated as follows.

Theorem 3.1. Let $\Gamma=\{\gamma_{\dot{1}}\}$ be a stationary interface that is homeomorphic to a binary
tree. Define a characteristic index $D$ by

$D=. \sum_{\gamma_{*}\in\Gamma}\sigma:L:\mathrm{x}.\prod_{\gamma.\in B}h_{\dot{l}}+.\sum_{\gamma.\in B}\{\sigma_{\dot{l}}\prod_{\gamma_{\mathrm{j}}\in B\backslash \{\gamma:\mathrm{J}}h_{j}\}$,

where $h_{i}$ denotes the curvature of an at the point of contact with $\gamma.\cdot\in B$ . (Note that
$h\dot{.}$ is taken to be nonpositive if $\Omega$ is convex.)

(i) The unstable dimension $N_{\mathrm{U}}$ is given by

$N_{\mathrm{U}}=\{$

$m-$ $1$ for $(-1)^{m}D\leq 0,$

$m$ for $(-1)^{m}D>0,$

where $m=\#${A $<0$}.

(ii) The stationary interface is degenerate ($i.e.$ , there exists a zero eigenvalue) if and
only if $D=0.$

We remark that the index $D$ is independent of the topology of $\Gamma$ .
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4 Variational Methods

The operator $\mathcal{L}$ naturally leads to a bilinear form.

Definition 4.1. A bilinear for$m$ $J:V\mathrm{x}Varrow$ R is defined by

$J( \mathrm{u},\mathrm{v}):=.\sum_{\gamma_{*}\in B}h_{i}u_{t}(L_{i})v:(L_{i})+.\sum_{\gamma.\in\Gamma}\sigma:\int_{0}^{L}:\partial_{\xi}u_{i}(\xi)\partial_{\xi}v_{i}(\xi)d\xi$,

where

$V:=$ { $\mathrm{u}\in\gamma_{*}.\in\Gamma\oplus H^{1}$
(0, $L_{j}$ ) $|\mathrm{u}$ satisfies the condition (3)}.

The inner product $(\cdot, \cdot)_{V}$ is given by

$( \mathrm{u},\mathrm{v})_{\mathrm{V}}:=\sum_{\gamma.\in\Gamma}.\{\sigma:\int_{0}^{L}.\cdot(u:v_{\dot{1}} +\partial_{\xi}u_{i}\partial_{\xi}v:)d\xi\}$ .

In addition we introduce a functional $I$ : $V\backslash \{\mathrm{O}\}arrow$ R defined byIn addition we introduce a functional $I$ : $V\backslash \{\mathrm{O}\}arrow$ R defined by

$I( \mathrm{u}):=\frac{J(\mathrm{u},\mathrm{u})}{(\mathrm{u},\mathrm{u})_{\mathrm{R}}}$ .

We can characterize the eigenvalues of $\mathcal{L}$ in terms of $I$ . Discussions similar to [8] yield

the following result:

Proposition 4.1. There eist positive numbers $c$ and $d$ such that

$||\mathrm{u}||_{\mathrm{V}}^{2}\leq \mathrm{c}(\mathrm{u}, \mathrm{u})_{\mathrm{H}}+dJ(\mathrm{u}, \mathrm{u})$ for all $\mathrm{u}\in V.$

Prom this we deduce that the operator $\mathcal{L}$ is self-adjoint.
Let j) be the family of all finite dimensional subspaces of $H$ . Denote by $\lambda_{j}$ the $j$th

eigenvalue of C. Then we have $\mathrm{X}_{j}\geq \mathrm{X}_{j+1}$ . The eigenvalues $)_{\mathrm{j}}$ a $\mathrm{e}$ characterized by the
$\mathrm{s}\mathrm{u}\triangleright$-inf principle:

(5) $-\mathrm{A}_{j}=$ $\sup$ $\inf$ $I(\mathrm{v})$ ,
$\dim K\leq-1\kappa\epsilon \mathrm{r}_{\dot{J}}v\in K^{[perp]}\backslash \{0\}$

where

$K^{[perp]}:=$ { $\mathrm{u}\in V|(\mathrm{u},\mathrm{v})_{\mathrm{H}}=0$ for aU $\mathrm{v}\in K$ }.

For the proof, see Section 1, Chapter 13 of [11].
If we take $\{h_{9}\}$ as parameters, each eigenvalue is a continuous and monotone de-

creasing function of $h_{i}$ . See Theorems 6 and 9 in Chapter 6 of [2].
In view of the above observations we can prove the proposition below.

Proposition 4.2. Put $m=\#\{h_{*}|<0| 7* \in B\}$ . Then $N_{\mathrm{U}}\geq m-1$
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5 Characteristic Functions
As in [8] we make characteristic functions.

Proposition 5.1. For any stationary interface $\Gamma_{i}$ there exists a complex-valued char-
acteristic function $F=F(\mu)$ of a complex variable $\mu$ with parameters aif $L_{*}.$ , $(\gamma_{\dot{1}} \in\Gamma)$

and $h_{i}(\gamma_{i}\in B)$ satisfying the following properties:

(i) For $\mu\neq 0,$ $F(\mu)=0$ if and only if $\lambda=\mu^{2}$ is an eigenvalue of Z.

(ii) $F(\mu)$ is analytic in $\mu_{l}\sigma_{\dot{\iota}}$ , $L_{\dot{l}}$ , and $h_{\dot{l}}$ . FuMer, $\mathrm{F}(\mathrm{f}\mathrm{i})$ is real-valued if $\mu$ is restricted
to real numbers.

(iii) $F(\mu)$ is odd with respect to $\mu$ . In particular, $F(0)=0$ for any $\sigma_{\dot{1}}$ , $L_{:}$ , $h_{\dot{l}}$ .
(iv) Any zero of $F(\mu)$ lies on the real axis or imaginary axis, and it depends on $\sigma_{\dot{1}}$ , $L_{i}$ ,

$h_{i}$ continuously.

(v) $F(\mu)arrow+\mathrm{o}\mathrm{o}$ as $\muarrow+\mathrm{o}\mathrm{o}$ .

(vi) For each $\gamma_{i}\in B_{f}F$ is notice as $F=P(\mu)h:+Q(\mu)$ , where $P$ and $Q$ are inde-
pendent of $h_{i}$ .

We prove this by induction. First notice that the assertion was proved in [8] if $\Gamma$

has only one triple junction.
Next, let $\Gamma$ be a stationary interface with two or more triple junctions. Take an

edge $\gamma_{k}\in\Gamma\backslash B.$ We divide $\Gamma$ into two parts $\Gamma^{\alpha}$ and $\Gamma^{\beta}$ by introducing a virtual
boundary $C$ which intersects $Ytt$ orthogonally (See Fig. 2). Denote by $h$ the curvature
of $C$ at the intersection point with $\Gamma^{\alpha}$ . Then the curvature of $C$ is $-h$ for $\Gamma^{\beta}$ at the
same intersection point. Suppose that the assertion is true for $\Gamma^{\alpha}$ and $\Gamma^{\beta}$ , and denote
by $F^{\alpha}$ and $F^{\beta}$ the characteristic functions for $\Gamma^{\alpha}$ and $\Gamma^{\beta}$ , respectively, satisfying the
properties $(\mathrm{i})\sim(\mathrm{v}\mathrm{i})$ . By (vi), we can write them as

$F^{\alpha}(\mu)=P^{a}(\mu)h+Q^{\alpha}(\mu)_{1}$

(6)
$F^{\beta}(\mu)=-P^{\beta}(\mathrm{p})h$ $+Q^{\beta}(\mu)$ ,

where $P^{\alpha},Q^{\alpha}$ , $P^{\beta}$ , $Q^{\beta}$ are independent of $h$ . From $\mathrm{F}(0)=0$ and $F^{\beta}(\mu)$ $=0,$ we can
eliminate $h$ to define a function $F^{\alpha+\beta}(\mu)$ by

(7) $F^{\alpha+\beta}( \mu):=\frac{P^{\alpha}(\mu)Q^{\beta}(\mu)+Q^{\alpha}(\mu)P^{\beta}(\mu)}{\sigma_{\dot{*}}\mu}$ for $\mu\neq 0$
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Figure 2: The interface divided into two parts. The dotted line stands for the virtual
boundary.

and $F^{\alpha+\beta}(0)=0.$ We can prove this function satisfies the desired properties.
Moreover, from (7), we obtain an explicit expression of $(dF/d\mu)|_{\mu=0}$ .

Proposition 5.2. Let $F$ be the characteristic function constructed as above. Then the
derivative of $F(\mu)$ at $\mu=0$ is given by

$D:=–|_{\mu=0}dF. \cdot.:\overline{d}\overline{\mu}=\sum_{\gamma.\in\Gamma}\sigma.L:\mathrm{x}\prod_{\gamma.\in B}h+.\sum_{\gamma.\in B}\{\sigma_{i}\prod_{:\gamma_{j}\in B\backslash \{\gamma\}}h_{j}\}$.

6 Outline of the Proof

We have the following lemma on the nondegeneracy of zero eigenvalues.

Lemma 6.1. If at most one of $h_{i}(\gamma:\in B)$ is zero, then any zero eigenvalue is simple.

First notice that we can deform 0 without changing the shape of a given stationary

interface. Hence we may regard $h_{i}$ $(\gamma_{i}\in B)$ as variable parameters. Without loss of
generality, we put $B=\{\gamma_{1}, \ldots,\gamma_{k}\}$ .

We count the number of positive eigenvalues as follows. Assume first that $\mathrm{h}\mathrm{i}$ , $h_{2}$ ,

..., $h_{k}>0.$ Then (5) implies $N_{\mathrm{U}}=0.$ Next, we decrease the values of $h_{1}$ , $h_{2}$ , . . . , $h_{m}$

one by one to negative values. By this procedure, the index $D$ can change its sign

at most $m$ times and hence $N_{\mathrm{U}}\leq m.$ On the other hand, Proposition 4.2 shows
$N_{\mathrm{U}}\geq m-1.$ Hence $N_{\mathrm{U}}=m-1$ or $m$ . Since $D>0$ if $h_{1},h_{2}$ , $\ldots$ , $h_{k}>0$ , $N_{\mathrm{U}}$ is even if
$D>0$ and is odd if $D<0.$ Thus (i) is proved.
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