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1 Introduction

This talk is concerned with the following reaction-diffusion problem :

$\{\begin{array}{l}u_{t}=\epsilon^{2}u_{xx}+f(x,u),0<x<1,\mathrm{t}>0u_{x}(0,t)=u_{x}(\mathrm{l},t)=0,\mathrm{t}>0u(x,0)=u_{0}(x),0<x<1\end{array}$ (1.1)

Here $\epsilon$ is a positive parameter and $f(x, u)$ is given by

$f(x, u)=u(1-u)(u-a(x))$ ,

where $a$ is a function of $C^{2}$-class which possesses the following properties :

(A1) $0<a(x)<1$ in $[0, 1]$ .

(A2) If I is defined by $\Sigma$ $=\{x\in(0,1);a(x)=1/2\}$ , then $\Sigma$ is a finite set and
$a’(x)\neq 0$ at any $x\in$ $\mathrm{i}2\mathrm{t}$ .

(A3) $a’(x)^{2}+a’(x)^{2}>0$ in $[0, 1]$ .
(A4) $a’(0)=a’(1)=0.$

This problem is well known as an equation which describes a phase transition
phenomenon.

We will mainly discuss the steady state problem associated with (1.1), which is
written as follows :

$\{$

$\epsilon^{2}u’+f(x, u)=0,$ $0<x<1,$
$u’(0)=u’(1)=0,$

(1.1)

lThis is a joint work with KIMIE NAKASHIMA (Tokyo University of Marine Science and
Technology) and YoshiO YAMADA ( Waseda University).
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where ‘” denotes the derivative with respect to $x$ . Angenent, Mallet-Paret and
Peletier[l] proved the existence of stable solutions to (1.2) which possess transition
layers. Here transition layer means a part of a solution where the value changes
drastically from 0 to 1 or 1 to 0 in a very small interval. If $u$ is a solution of (1.2)
with transition layers, then it is called a layered solution. They discussed in
detail profiles of layered solutions and their linearized stability. See also Hale and
Sakamoto [2], where unstable layered solutions are studied. In the special case
$7_{0}^{1}f(x, s)ds=0$ for $x\in[0,1]$ , Nakashima$[3, 4]$ has shown the existence of layered
solutions.

We will briefly explain the reason why layered solutions appear. Multiplying
(1.1) by $u_{t}$ and integrating it with respect to $x$ over $(0, 1)$ we get

$\frac{d}{dt}I(u)\leq 0.$ (1.3)

Here
$I(u)= \int_{0}^{1}[\frac{1}{2}\epsilon^{2}u_{x}^{2}+W(x, u)]dx$ ,

and
$W(x, u)=- \int_{\phi 0}^{u}f(x, s)$ ds, (1.4)

with

$\phi_{0}=\{$
0if $a(x)\leq 1/2$ ,
1if $a(x)>1/2$ .

We call $I(u)$ an energy function and $W$ (x, $u$) a bistable potential. By (1.3)
we see that $I(u(t))$ is monotone decreasing with respect to $t$ . This implies that
every solution of (1.1) behaves as the energy becomes small. Roughly speaking, if
$\epsilon$ is sufficiently small, then II $(x, u)$ controls the energy. Hence the energy crucially
depends on the potential $W(x, u)$ . Here we should note the spatial inhomogeneity
of $W(x, u)$ . For each $x\in[0,1]$ , if $a(x)<1/2$ , then the minimum of $W(x, u)$ is
attained at $u=1,$ while, if $a(x)>1/2$ , then the minimum of $W(x, u)$ is attained
at $u=0.$ Therefore, when $a(x)$ is very close to 1/2 and $a’(x)\neq 0,$ transition layers
appear in order to make $W(x, u(x))$ small when $\epsilon$ is sufficiently small.

As mentioned above, the interaction of bistability and spatial inhomogeneity of
$f(x,u)$ brings about many solutions of (1.2); so that the structure of the set of
all solutions of (1.2) is very complicate. Among the existence results, Angenent.
Mallet-Paret and Peletier [1] have proved the existence of layered solutions by the
method of comparison principle. However, their method is not efficient to show
the existence of unstable solutions of (1.2). See [2] for unstable layered solutions.
Moreover, there exist some solutions with spikes.
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To study such solutions $u$, with transition layers or spikes, we take account of
the number of intersection points of $u$, and $a$ . We introduce the notion of n-mode
solutions $u_{\epsilon}$ is called an $n$-mode solution if $u_{\epsilon}$ has $n$ intersecting points with $a$

in $(0, 1)$ . Our main purpose is to study basic properties and profiles of n-mode
solutions of (1.2). According to profiles of $u_{\epsilon}$ , we can show that $u$,(x) is classified
into the following three groups :

(N1) $u_{\epsilon}(x)$ lies near 0 or 1,

(N2) $u_{\epsilon}(x)$ forms transition layers,

(N3) $u_{e}(x)$ forms spikes.

One of the most interesting and important problems for $u,$ $\in S_{n,\epsilon}$ is to know
where its transition layers or spikes appear. At one of end-points of any transition
layer, $u$,(x) is very close to 0 or 1 when $\epsilon$ is sufficiently small. The situation is
similar when we discuss a spike; if $u_{\epsilon}$ has a spike based on 1, then $u_{\epsilon}(x)$ is very
close to 1 at both end-points of the spike. Therefore, it will be important to study
the asymptotic rate of $u$, (x) and $1-u_{\epsilon}(x)$ as $\epsilon$ $arrow 0$ in a certain interval containing
one local maximum point or local minimum point of $u_{\epsilon}$ . The analysis to get the
asymptotic rate will be carried out by a kind of barrier method in Section 2.

In section 3, we will discuss the location of transition layers and spikes by using
the information on the rate of asymptotic order obtained in Section 2. We will
show that any transition layer appears only in a neighborhood of a point of $\mathrm{f}2\mathrm{t}$ .
Moreover, we will also prove that any spike appears in a neighborhood of a point
of local maximum or minimum point of $a$ .

Finally, it is interesting to investigate where multi-layers or multi-spikes appear.
We will derive some satisfactory results on multi-layers and multi-spikes. These
results help us to know their location.

Recently, Ai, Chen and Hastings[5] has obtained similar results concerning the
location and multiplicity of layers and spikes. Moreover, they have discussed the
Morse indices of such solutions of (1.2). However, their arguments are not so easy
to follow and they do not give any results about the asymptotic rate. Our method
is based on the asymptotic rate in Section 2; so that it is quite different from
theirs.

2 Transition layers and spikes for $n$-mode solutions

Throughout this paper, we denote by $S_{\mathrm{n},\epsilon}$ the set of all -mode solutions of (1.2)
and we fix $n\in$ N. Moreover, for $u_{e}\in S_{n,\epsilon}$ , we define a set

$—=\{x\in[0,1];u_{e}(x)=a(x)\}$ .
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For $u_{\epsilon}E$ $S_{\mathrm{n},\epsilon}$ , it should be noted that by (A4) $u_{\epsilon}(-x)$ is also a solution of (1.2) in
[-1, 0] by extending $a$ over [-1, 1] as an even function. In this manner, $u_{\epsilon}$ can be
extended for all $x$ $\in \mathbb{R}$ by the reflection.

In this section we will give some basic properties of solutions of (1.2).

Lemma 2.1 (Ai-Chen-Hastings [5]). For u $\in S_{n,\epsilon}$ , it holds that

$\zetaarrow 0_{\mathrm{u}.\in S_{n,\epsilon}}\mathrm{l}\mathrm{i}\mathrm{m}\sup\max_{x\in[0,1]}|u_{\epsilon}(x)(1-u_{\epsilon}(x))[\frac{1}{2}\epsilon^{2}(u_{\mathrm{g}}’(x))^{2}-W(x, u_{\epsilon}(x))]|=0,$

where $W(x, u)$ is defined by (1.4).

If $\epsilon$ is small enough, Lemma 2.1 implies that $u_{\epsilon}(x)$ , $1-u_{\epsilon}(x)$ or $\epsilon^{2}(u_{\epsilon}’(x))^{2}/2-$

$W(x, u_{\epsilon}(x))$ is very close to 0. If one of the first two assertions is valid in a certain
interval, then $u_{\epsilon}(x)$ approaches 0 or 1 in such an interval as $\epsilonarrow 0.$ The last one
gives information for the gradient of $u$, when $u$, (x) is not very close to 0 or 1. For
example, let 4 be any point $\mathrm{i}\mathrm{n}---\mathrm{a}\mathrm{n}\mathrm{d}$ consider $u_{\epsilon}’(\xi)$ . Noje that there is a positive
constant $M_{1}$ satisfying $u_{\epsilon}(\xi)(1-u_{\epsilon}(\xi))=a(\xi)(1-a(\xi))>M_{1}$ . For any y7 $>0,$

Lemma 2.1 assures
$| \frac{1}{2}\epsilon^{2}(u_{\mathrm{g}}’(\xi))-W(\xi, a(\xi))|<\eta$

if $\epsilon$ is sufficiently small. Since $W(\xi, a(\xi))>M_{2}$ with some $M_{2}>0,$ we get
$\epsilon^{2}(u_{\epsilon}’(\xi))^{2}>M_{2}$ from the above inequality. Hence we see

$|u \mathrm{s}(\xi)|>\frac{\sqrt{M_{2}}}{\epsilon}$

when $\mathrm{e}$ is sufficiently small.
Moreover, since $a’(x)$ is bounded in $[0, 1]$ , we can get the following lemma.

Lemma 2.2. For $u_{\epsilon}\in S_{n\rho}$ , $set—=\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\}$ with $0<\xi_{1}<$ $\xi_{2}$ $<$ .. . $<$

$\xi_{n}<1.$ If $\epsilon$ is sufficiently small, then $u_{\epsilon}’$ has exactly $(n-1)$ zero points $\{\zeta_{k}\}_{k=1}^{n-1}$

satisfying
$0<51$ $<\zeta_{1}<$ C2 $<\zeta_{2}<\cdot\cdot,$ $<\xi_{n-1}<\zeta_{n-1}$ $<\xi_{n}<1.$

Roughly speaking, Lemmas 2.1 and 2.2 imply that $u_{\epsilon}(x)$ is classified into the
three parts: $(\mathrm{N}1),(\mathrm{N}2)$ and (N3).

Lemma 2.3. For $u_{\epsilon}\in S_{n,\epsilon}$ , let $\xi^{\epsilon}$ be any point $in—and$ define $U_{\epsilon}$ by $U_{\epsilon}(t)=$

$u_{\epsilon}(\xi^{\epsilon}+\epsilon t)$ . Then there exists a subsequence $\{\epsilon_{k}\}\downarrow 0$ such that $\xi_{k}=\xi^{e_{\mathrm{k}}}$ and
$U_{k}=U_{\epsilon_{k}}$ satisfy

$\lim_{karrow\infty}\xi_{k}=\xi^{*}$ and $\lim_{karrow\infty}U_{k}=\phi$ in $C_{loc}^{2}(\mathrm{R})$ .

Here 6 satisfies one of the following properties :
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(i) If $a(\xi^{*})=1/2$ , then 6 is a unique solution to the following problem: :

$\{$

$\phi’+f(\xi^{*}, \phi)=0$

$\phi(-\infty)=0$ , $\phi(+$”$)$ $=1,$

$\phi(0)=1/2$ ,

in $\mathbb{R}$ ,
(resp. $\phi(-\infty)=1$ , $\phi(+")=0$)

(2.1)

if $\phi’(0)>0$ (resp. $\phi’(0)<0$). Moreover, $\phi’(t)>0$ for $t\in$ R if $6’(0)$ $>0,$

while $6’(t)$ $<0$ for $t\in$ R if $6’(0)$ $<0.$

(ii) If $a(\xi^{*})<1/2_{f}$ then $\phi$ is a unique solution to the following problem :

$\{$

$\phi’+f(\xi^{*}$ , $ $)$ $=0$ in $\mathrm{R}$,
$\phi(0)=a(\xi^{*})$ , $\phi(\pm\infty)=0.$

(2.2)

Here $\phi$ satisfies $\sup_{x\in \mathrm{R}}\phi(x)>a(\xi^{*})$ .

(iii) If $a(\xi^{*})>1/2$ , then 6 is a unique solution to the follo wing problem:

$\{$

$\phi^{\prime/}+f(\xi^{*}, \phi)=0$ in $\mathbb{R}$,
$\phi(0)=a(\xi^{*})$ , $\phi(\pm\infty)=1.$

(2.3)

Here $\phi$ satisfies $\inf_{\mathrm{x}\in}$
$\phi(x)<a(\xi^{*})$ .

By Lemma 2.3, the profile of a transition layer is similar to the heter0-clinic
solution of (2.1) and that of a spike is similar to the hom0-clinic solution of (2.2)

or (2.3).

Remark. Lemma 2.3 also tells us that if ( $\in---$ is away from a point of $\Sigma$ , then

there is another point of — in a neighborhood of $\xi$ .

By the above arguments, we see that every transition layer (spike) appears in a
neighborhood of a point in $\Xi$ . Therefore, we will study the location of points of —
instead of those points where transition layer or spike appears. Let $\xi_{1}$ , $\xi_{2}$ be any
adjacent points in — and let $(\xi_{1}, \xi_{2})$ be any interval such that

$u_{\epsilon}(x)-a(x)>0$ in $(\xi_{1}, \xi_{2})$ . (2.4)

Let ( $\in[0,1]$ be a unique point satisfying $\xi_{1}<\zeta$ , $u_{\epsilon}’(\zeta)=0$ and $u_{\epsilon}’(x)>0$ in
$(\xi_{1}, \zeta)$ . The existence of such $\zeta$ is assured by Lemma 2.2.

We will establish asymptotic behavior of $u_{\epsilon}$ in $(\xi_{1}, \xi_{2})$ as $\epsilon$ $arrow 0.$ For this purpose,
we will prepare
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Lemma 2.4. Let $\mathrm{v}(0)$ $=v(1-v)(v-a_{0})$ with $a_{0}\in(0,$ 1). Then for $\sigma\in(a_{0},1)$

and M $>0,$ there exists a unique solution of

$\{$

$v_{zz}+$ g(v) $=0$ in $(-M, 0)$ ,

$v$ (-A#) $=\sigma$ , $v_{z}(0)=0,$

$v>\sigma$ in $(-M, 0)$ .

(2.5)

Moreover, there exists a positive constant $y’\in(a_{0},1)$ such that, if $\sigma>\sigma^{*}$ , then

$c_{1}\exp(-RM)<1-v(0)<$ $\mathrm{c}_{2}$ $\exp(-rM)$ ,

where $r=\sqrt{-g’(\sigma)}$ , $R=\sqrt{-g’(1)}$ and $c_{1}$ , $c_{2}(0<c_{1}<c_{2})$ are positive constants
depending only on $\sigma$ .

Theorem 2.5. For $u_{\epsilon}\in S_{n,\epsilon}$ , assume (2.4) and let $\zeta\in(\xi_{1},\xi_{2})$ satisfy $u_{\epsilon}’(\zeta)=0.$

If $(\zeta-\xi_{1})/\epsilonarrow+\mathrm{o}\mathrm{o}$ as $\epsilon$ $arrow|$ $0_{f}$ then for sufficiently small $\epsilon>0_{f}$ there eist positive
constants $C_{1}$ , $C_{2}$ , $r$ , $R$ $(0<C_{1}<C_{2},0<r<R)$ such that

$C_{1}\exp$ $(- \frac{R(\zeta-\xi_{1})}{\epsilon})<$ $1-\mathrm{v}$ $\epsilon(X)<C_{2}\exp(-\frac{r(x-\xi_{1})}{\epsilon})$ for $x\in[\xi_{1}, \zeta]$ .
(2.6)

$Pro\mathrm{o}/$ We begin with the proof of the right-hand-side inequality of (2.6). Let
$\delta$’ $\in(0,1)$ be a constant which is close to 1 and take $a^{*}\in(0, \delta^{*})$ such that
$a^{*}> \max\{a(x);x\in[0,1]\}$ . By the assumption and Lemma 2.3 we can find a
point $\tilde{\xi}_{1}\in(\xi_{1}, \zeta)$ such that $u_{\epsilon}(\tilde{\xi}_{1})=\delta^{*}$ and $u_{\epsilon}(x)>\delta^{*}$ in $(\tilde{\xi}_{1}, ()$ provided that 6 is
sufficiently small. Clearly, $\tilde{\xi}_{1}-\xi_{1}=O(\epsilon)$ as $\epsilonarrow 0$ ; so $\zeta-\tilde{\xi}_{1}>\mathit{6}.$

Now take any $x^{*}\in(\tilde{\xi}_{1}+\epsilon, \zeta)$ and apply Lemma 2.4 with $a_{0}=a^{*}$ , $y$ $=\delta^{*}$ and
$M=(x^{*}-\tilde{\xi}_{1}-\epsilon)/\epsilon$ in order to construct $v(z)$ as the unique solution of (2.5). We
use the change of variable $z=$ $(x-x’)/\epsilon$ and define $V$ by $V(x)=v((x-x^{*})/\epsilon)$ ;
then

$\{$

$\epsilon^{2}V’+V$ (1-V) $(V-a^{*})=0$ in $(\tilde{\xi}_{1}+\epsilon,x^{*})$ ,
$V(\tilde{\xi}_{1}+\epsilon)=\delta^{*}$ , $V’(x^{*})=0,$

$V>\delta^{*}$ in $(\tilde{\xi}_{1}+\epsilon,x^{*})$ .
(2.7)

By virtue of Lemma 2.4, $V$ satisfies

$c_{1}e^{R} \exp(-\frac{R(x^{*}-\tilde{\xi}_{1})}{\epsilon})<1-V(x^{*})<c_{2}e^{f}\exp(-\frac{r(x^{*}-\tilde{\xi}_{1})}{\epsilon})$ , (2.8)

where ci, $c_{2}$ , $r$ and $R$ are positive constants depending only on $a^{*}$ and 5*.

We will show
$V(x)\leq u_{\epsilon}(x)$ in $(\tilde{\xi}_{1}+\epsilon, \zeta)$ . (2.9)
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For this purpose, we introduce the following auxiliary function

$h(x)= \frac{V(x)-a^{*}}{u_{\epsilon}(x)-a^{*}}$ in $[\tilde{\xi}_{1}+\epsilon, x^{*}]$ ,

and show $h(x)\leq 1$ in $[\tilde{\xi}_{1}+\epsilon, x^{*}]$ by contradiction. Suppose that there exists an
$x_{1}\in[\tilde{\xi}_{1}+\epsilon,x^{*}]$ such that

$h(x_{1})= \max\{h(x);x \in[\tilde{\xi}_{1}+ \epsilon, x^{*}]\}$ $= \frac{1}{\eta}>1.$

Then

$\{$

$V_{\eta}(x)\leq$ $\mathrm{u},(x)$ in $[\tilde{\xi}_{1}+\epsilon,x^{*}]$ ,
$V_{\eta}(x_{1})=u_{\epsilon}(x_{1})$ ,

where
$V_{\eta}(x)=\eta(V(x)-a^{*})+a^{*}$ .

We will prove
$V_{\eta}’(x_{1})\leq u_{\epsilon}’(x_{1})$ . (2.10)

Clearly, $h(\tilde{\xi}_{1}+ \epsilon)$ $<1.$ Moreover, since $u_{\epsilon}’(x^{*})>0$ and $V’(x^{*})=0$ (by (2.7)), it is
easy to see $h’(x^{*})<0.$ Therefore, $x_{1}$ must be an interior point in $(\tilde{\xi}_{1}+\epsilon, x^{*})$ . So

$h’(x_{1})=0$ and $h^{\prime/}(x_{1})\leq 0.$ (2.11)

From the definition of $h$ ,

$h(x)(u_{\epsilon}(x)-a^{*})=V(x)-a^{*}$ .

Differentiating the above identity two times with respect to $x$ we get

$u_{\epsilon}’(x_{1})+2\eta u_{\epsilon}’(x_{1})h’(x_{1})+\eta(u_{g}(x_{1})-a^{*})h’(x_{1})=\eta V’’(x_{1})=$ $V”(x_{1})$ . (2.12)

Then (2.11) and (2.12) imply (2.10).
We next use $f(x, V_{\eta})>\eta V(1-V)(V-a^{*})$ . Indeed, since $V>a^{*}>1/2$ , $\mathrm{a}$

simple calculation yields this assertion. Hence it follows from (2.7) that

$\epsilon^{2}V_{\eta}’+f(x, V_{\eta})=\eta\epsilon^{2}V’+f(x, V_{\eta})>\eta\{\epsilon^{2}V’+V(1-V)(V-a^{*})\}=0.$

Therefore, using (2.10) we have

$0=\epsilon^{2}u_{\epsilon}’(x_{1})+f(x_{1}, u_{\epsilon}(x_{1}))\geq\epsilon^{2}V_{\eta}’(x_{1})+f(x_{1}, V_{\eta}(x_{1}))>0,$

which is a contradiction. Thus we have shown (2.9).
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Now (2.8) and (2.9) imply

$1-u_{\epsilon}(x^{*}) \leq 1-V(x^{*})<c_{2}e^{r}\exp(-\frac{r(x^{*}-\tilde{\xi}_{1})}{\epsilon})$

Here we should note that $c_{2}$ and $r$ are independent of $x^{*}$ . Recalling that $x^{*}\in$

$(\tilde{\xi}_{1}+\epsilon, \zeta)$ is arbitrary, one can conclude that

$1-u_{\epsilon}(x)<c2er$ $(- \frac{r(x-\tilde{\xi}_{1})}{\epsilon})$ (2.13)

is valid for $x\in(\tilde{\xi}_{1}+\epsilon, \zeta)$ . Moreover, since $\tilde{\xi}_{1}-\xi_{1}=O(\epsilon)$ , we can extend (2.13)
for all $x\in[\xi_{1}, \zeta]$ with $\tilde{\xi}$

1 replaced by $\xi_{1}$ (for $x=\zeta$ , it is sufficient to use the
$x$-continuity of $u_{\epsilon}$).

The le t-hand-side inequality of (2.6) is shown in a similar manner. For details,
see [6]. $\square$

Using the same method as the proof of Theorem 2.5 we can also prove the
following result.

Theorem 2.6. For $u_{\epsilon}\in S_{n,\epsilon}$ , assume (2.4) and let $\langle$ $\in(\xi_{1}, \xi_{2})$ satisfy $u’(\zeta)=0.$

If $(\xi_{2}-\zeta)/\epsilonarrow+\mathrm{o}\mathrm{o}$ , then for sufficiently small $\epsilon$ $>0,$ there exist positive constants
$C_{1}’$ , $C_{2}’$ , $r’$ , $R’$ $(0<C_{1}’<C_{2}’, 0<r’<R’)$ such that

$C_{1}’ \exp(-\frac{R’(\xi_{2}-\zeta)}{\epsilon})<1-u_{\epsilon}(x)<C_{2}’\exp(-\frac{r’(\xi_{2}-x)}{\epsilon})$ for $x\in[\zeta, \xi_{2}]$ .
(2.14)

Remark. Theorems 2.5 and 2.6 treat the case when $\zeta\in(\xi_{1}, \xi_{2})$ is a local maximum
point of $u_{\epsilon}$ ; i.e., the case when $u_{\epsilon}(\zeta)$ is very close to 1. One can also derive
analogous inequalities as (2.6) and (2.14) in case that ( is a local minimum point
of $u_{\epsilon}$ and $(\zeta-\xi_{1})/\epsilonarrow$ oo as $\epsilonarrow 0;$ so that $u,(x)$ is bounded by exponential
functions ffom above and below.

3 Location of transition layers and spikes

In this section we introduce the following set

A $=\{x\in[0,1];a’(x)=0\}$

in addition to $\mathrm{i}2$ $=\{x\in[0,1];\mathrm{a}(\mathrm{x})=1/2\}$ . We will show that any transition
layer appears only in a neighborhood of a point of $\Sigma$ and any spike appears only
in a neighborhood of a point of A.



42

Theorem 3.1. Let 4 be any point $in—\cdot$ Then $\xi$ lies in a neighborhood of a point
in I $\mathrm{U}$ A when $\epsilon$ is sufficiently small. Moreover, if $u_{\epsilon}$ has a transition layer near
a point $x_{0}\in$

$\mathrm{C}$ $\cup\Lambda$ , then $x_{0}\in$
$\mathrm{C}$ , and if $u_{\epsilon}$ has a spike near a point $x_{0}\in\Sigma\cup\Lambda$,

then $x_{0}\in\Lambda$ .

Proof. If $u$, has a transition layer near $x=\xi$ , it is easy to see from (i) of Lemma 2.3
that $\xi$ lies in a neighborhood of a point in I. So it is sufficient to show that, if $u_{\epsilon}$

has a spike near $x=\xi$ , then 4 does not lie in an interval $I\subset\{x\in[0,1]$ ; $a(x)>$

$1/2$ and $a’(x)>0\}$ .
We employ the contradiction method. Let $\xi_{k}\in---$ satisfy $u_{\epsilon}’(\xi_{k})<0$ and assume

that $\xi_{k}\in---$ belongs to $I$ . Then, by Lemma 2.3, we see that there exists $\xi_{k+1}\in---$

which satisfies $\xi_{k}<\xi_{k+1}$ and $\xi_{k+1}-\xi_{k}=O(\epsilon)$ . We can choose local maximum
and minimum points of $u$, denoted by $\zeta_{k-1}$ , $\zeta_{k}$ , $\zeta_{k+1}$ as in Lemma 2.2.

For the sake of simplicity, we only consider the case when both $\zeta_{k-1}$ and $\zeta_{k+1}$

lie in $I$ . We rewrite (1.2) as

$\epsilon^{2}u_{\epsilon}’+f(\zeta_{k}, u_{\epsilon})=u_{\epsilon}(1-u_{\epsilon})(a(x)-a(\zeta_{k}))$ . (3.1)

Multiplying (3.1) by $u_{\epsilon}’$ and integrating it over $(\zeta_{k-1}, \zeta_{k+1})$ with respect to $x$ we
get

$W(u_{\epsilon}( \zeta_{k-1}))-W(u_{\epsilon}(\zeta_{k+1}))=\int_{\zeta_{k-1}}^{\zeta_{k+1}}u_{\epsilon}(1-u_{\epsilon})(a(x)-a(\zeta_{k}))u_{\epsilon}’dx$ (3.2)

where $W(u)=W(\zeta_{k}, u)$ . Since $a$ is monotone increasing in $(\zeta_{k-1}, \zeta_{k+1})$ , the right-
hand side of (3.2) is bounded from below by

$\int_{\zeta_{k}+\epsilon}^{\zeta_{k+1}}u_{\epsilon}(1-u_{\epsilon})(a(x) -a(\zeta_{k}))u_{\epsilon}’dx>$ $(a(\zeta_{k}+\epsilon) -a(\zeta_{k}))$ $\int_{\zeta_{\mathrm{k}}+\epsilon}^{\zeta_{k+1}}u_{\epsilon}(1-u_{\epsilon})u_{\epsilon}’dx>L\epsilon$

with some constant $L>0.$ Hence

$,(u_{\epsilon}(\zeta_{k-1}))-W(u_{\epsilon}(\zeta_{k+1}))>L\epsilon$ . (3.3)

Here we have used the fact that $u_{\epsilon}(\zeta_{k+1})$ is very close to 1.
We next investigate the left-hand-side of (3.2). By virtue of Chauchy’s mean

value theorem, there exists a constant $\theta_{1}\in(u_{\epsilon}(\zeta_{k-1}), u_{\epsilon}(\zeta_{k+1}))$ such that

$\frac{W(u_{\epsilon}(\zeta_{k-1}))-W(u_{\epsilon}(\zeta_{k+1}))}{(1-u_{\epsilon}(\zeta_{k-1}))^{2}-(1-u_{\epsilon}(\zeta_{k+1}))^{2}}=\frac{f(\zeta_{k},\theta_{1})}{2(1-\theta_{1})}$ . (3.4)

Since $f(\zeta_{k}, 1)=0,$ we use Chauchy’s mean value theorem again to choose a con-
stant $\theta_{2}\in(\theta_{1},1)$ which satisfies

$\frac{f(\zeta_{k},\theta_{1})}{2(1-\theta_{1})}=-\frac{f(\zeta_{k},1)-f(\zeta_{k},\theta_{1})}{2(1-\theta_{1})}=-\frac{1}{2}f_{u}(\zeta_{k},\theta_{2})$ . (3.5)
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By (3.4) and (3.5), we obtain

$W(u_{\epsilon}( \zeta_{k-1}))-W(u_{\epsilon}(\zeta_{k+1}))=-\frac{1}{2}7_{u}((_{k},\theta_{2})\{(1-u_{\epsilon}(\zeta_{k-1}))^{2}-(1-u_{\epsilon}(\zeta_{k+1}))^{2}\}$.

Since $\theta_{2}$ is very close to 1, there exists a positive constant $M$ , which is independent
of $\epsilon$ , such that

$W(u_{\epsilon}(\zeta_{k-1}))$ $-W(u_{\epsilon}(\zeta_{k+1}))<M(1-u_{\epsilon}(\zeta_{k-1}))^{2}$ . (3.6)

Hence (3.3) and (3.6) imply that there is a positive constant $\kappa$ such that

$1-u_{\epsilon}(\zeta_{k-1})>\kappa J.$ (3.7)

Using (3.7) and Theorem 2.6 with $x=\zeta_{k-1}$ and replacing $\xi_{k+1}$ by $\xi_{k}$ , we obtain

$\kappa\sqrt{\epsilon}<C_{2}’\exp(-\frac{r’(\xi_{k}-\zeta_{k-1})}{\epsilon})$ (3.8)

with some $C_{2}’>0$ and $r’>0.$ Here we should note that there exists $\xi_{k-1}\in---$ such
that $u,(x)>a(x)$ for $x\in(\xi_{k-1}, \xi_{k})$ . Therefore, Theorem 2.5 together with (3.7)
implies

$\kappa\sqrt{\epsilon}<C_{2}\exp(-\frac{r(\zeta_{k-1}-\xi_{k-1})}{\epsilon})$ (3.9)

Hence (3.8) and (3.9) implies

$\xi_{k}-\xi_{k-1}<Ke\mathrm{l}$ $\log\epsilon|$ (3.10)

with some positive constant $K$ . This fact implies that : belongs to I if $\epsilon$ is
small.

When $\xi_{k-1}$ lies in $\mathrm{J}$ , Lemma 2.3 tells us that there must be another $\xi_{k-2}\in--\mathrm{f}-\cap I$ .
If we repeat this procedure, we see that the number of points in $—\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}$ in
each process. This contradicts the definition of $n$-mode solutions. $\square$

4 Multiplicity of transition layers and spikes

In this section we will discuss a cluster of multiple transition layers and spikes.
By Theorem 3.1, such a cluster of multiple transition layers appears in a neighbor-
hood of a point in $\Sigma$ if it exists, while a cluster of spikes appears in a neighborhood
a point in A if it exists.

Definition 4.1 (multi-layer). Let $u_{\epsilon}$ be a solution of (1.2). If $u_{\epsilon}$ has a cluster
of multiple transition layers, then such a cluster is called a multi-layer.



44

Definition 4.2 (multi-spike). Let $u_{\epsilon}$ be a solution of (1.2). If $u$, has a cluster
of multiple spikes, then such a cluster is called a multi-spike.

We introduce some notations to study multi-layers and multi-spikes.

$\Sigma^{+}=$ $\{x^{*}\in \Sigma ; a’(x^{*})>0\}$ , $\Sigma^{-}=$ $\{x^{*}\in \Sigma ; a’(x^{*})<0\}$ ,
$\Lambda^{+}=$ { $x^{*}\in$ A ; $a(x^{*})<1/2$ and $a$ attains its local maximum at $x=x^{*}$ },
$\Lambda^{-}=$ {$x^{*}\in\Lambda;a(x’)>1/2$ and $a$ attains its local minimum at $x=x^{*}$ }.

We begin with the study of multi-layer. We only discuss the case where $u_{\epsilon}$ has a
multi-layer in a neighborhood of $z_{0}\in\Sigma^{+}$ because the analysis for the case $z_{0}\in$

$\mathrm{f}2\mathrm{t}^{-}$

is almost the same.
By virtue of Lemma 2.3, there exists one-t0-0ne correspondence between a tran-

sition layer and a zer0-point of $u_{\epsilon}-a.$ We can show the following lemma in the
same way as the proof of (3.10).

Lemma 4.1. For $z_{0}\in$
$\Sigma+$ , let $\xi_{1},\xi_{2}\in(z_{0}-\delta, z_{0}+\delta)$ be adjacent points in—

satisfying $u_{\epsilon}’(\xi_{1})<0$ and $u_{\epsilon}’(\xi_{2})>0$ (resp. $u_{\epsilon}’(\xi_{1})>0$ and $u_{\epsilon}’(\xi_{2})<0$) with some
$\delta>0.$ Then there exitst another $\xi$ $\in---$ such that $z_{0}-\delta<\xi<\xi_{1}$ and $u_{\epsilon}’(\xi)>0$

(resp. $\xi_{2}<\xi<z_{0}+\delta$ and $u_{\epsilon}’(\xi)<0$) provided that $\epsilon$ is sufficiently small.

Lemma 4.1 enables us to derive information on the profile of a multi-layer.

Lemma 4.2. Let $z_{0}\in fZt^{+}$ and assume that $u_{\epsilon}$ has a multi-layer in $(z_{0}- \mathit{6}, z0+\delta)$

with some $\delta>0.$ If $\epsilon$ is sufficiently small. $then—\cap(z_{0}-\delta, z_{0}+\delta)$ consists of odd
number of points. Moreover, if

Lemma 4.2. Let $z_{0}\in\Sigma^{+}$ and assume that $u_{\epsilon}$ has a multi-layer in $(z_{0}-\delta, z0+\delta)$

with some $\delta>0.$ If $\epsilon$ is swfficiently small, $then—\cap(z_{0}-\delta,z_{0}+\delta)$ consists of odd
number of points. Moreover, if

$—\cap(z_{0}-\delta, z_{0}+\delta)=\{\xi_{l}, \ldots,\xi_{m}\}$

with some l, m $\in \mathbb{N}$ such that m- I is even, then $u_{\epsilon}’(\xi_{l})>0$ and $u_{\epsilon}’(\xi_{m})>0.$

Let $u$, have a multi-layer in a neighborhood $V(z_{0})$ of $z_{0}\in$
$\Sigma+$ . Set $—\cap V(z_{0})$ $=$

$\{\xi_{l},\xi_{l+1}, \ldots, \xi_{m}\}$ . By Lemma 2.2 $u_{\epsilon}$ has critical points $\zeta$6-1, $\zeta_{l}$ , $\ldots$ , $\zeta_{m}$ such that

科-1 $<\xi_{l}$ く科く. . . $<\xi_{m}<\zeta_{m}$ . Here we should note that $u_{\epsilon}(\zeta_{l-1})$ is close to 0and
that $u_{\epsilon}(\zeta_{m})$ is close to 1. Such a multi-layer is called a multi-layer from 0 to 1.

In the same way, we can show that if there exists a multi-layer in a neighborhood
of a point in $\mathrm{f}2\mathrm{t}$

$-$ , it must be a multi-layer from 1 to 0.
So we get the following theorem.

Theorem 4.3. Any multi-layer from 0 to 1 (resp. from 1 to 0) appears in $a$

neighborhood of a point in $\Sigma^{+}$ (resp. $\Sigma^{-}$ ).

One can also give some results on multi-spikes.

Theorem 4.4. Any multi-spike based on 1 (resp. 0) appears in a neighborhood of
a point in $\mathrm{A}^{-}(re\mathit{8}p. \Lambda^{+})$ .

For the proofs of Theorems 4.3 and 4.4, see [6].

Theorem 4.4. Any multi-spike based on 1(resp. 0) appears in a neighborhood of
a point in $\Lambda^{-}$ (resp. $\Lambda^{+}$ ).

For the proofs of Theorems 4.3 and 4.4, see [6].
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