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Strong Unique Continuation Property of
Two—dimensional Dirac Equations and Schrodinger
Equations with Aharonov—Bohm Fields
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1 Introduction

It is well known that, if any harmonic function u(z) in a domain ) C R" satisfies
a: U(IL'()) =0

for all multi-indices « at a point ¢ € §), then u(z) vanishes identically in ). Recently, it

is shown by Grammatico [3] that, if £ contains the origin and u € Wi27(£2) (Sobolev space)

satisfies

M o
Au| < — |u(z)| + — |Vu 1
18] < 25 fua)] + 194 )
(a.e. on Q) with M > 0 and 0 < C < 1/+/2, and
-’ 2. _
sgrfoe /Iz|<c |u|*dz =0, (2)

then u(z) vanishes identically in {2 (one can see some related works in the References of
Grammatico [3]). Then we say that the inequality (1) has the strong unique continuation
property. If u(z) satisfies (2), u(z) is said to vanish of infinite order at the origin, or to
be flat at the origin. We can not expect the strong unique continuation property for every
C > 0. For Alinhac-Baouendi [1] shows that, if C > 1, there is a non-trivial complex-
valued function v € C®(R?), which is flat at the origin satisfying suppv = R? and (1)
with M = 0 (see also Pan-Wolff [7]).

For corresponding problems to the Dirac operator
i 10
where o; are N x N Hermitian matrices satisfying ajax + ara; = 26,y (N = 2ltn+1)/ 2),

De Carli-Okaji [2] shows that, if a positive constant C < 1/2, then the inequality

Lou| < Z [u] ace.on @ (u € WEHQ)Y) 3)
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has the strong unique continuation property, where |u| = y/|ui|? + |uz|? (see also Kalf-
Yamada [5] and Okaji [6]). The restriction on C' < 1/2 is needed to treat the angular

momentum term (spin-orbit term) but the radial part of Lo. As is also pointed out by
De Carli-Okaji [2], the counter example by Alinhac-Baouendi [1] implies that a certain
restriction on the constant C in (3) is also necessary. In fact, if we set

up = 0u = (01 —1y)v, uy:=0u= (81 +1id)v,

then we can see that u; and u; #Z 0 are flat at the origin satisfying (1) with the same
constant C > 1 (cf. Corollary below). It is an open problem what happens for1/2 < C' < 1.
In this note we investigate the strong unique continuation property for 2-dimensional Dirac
operators with Aharonov—Bohm effect, which is one of singular magnetic fields at the origin,
and give a perturbation to the spin-orbit term. Our proof is given along the same line as

in De Carli-Okaji [2] and Kalf-Yamada [5].

2 The Result

Let us consider 2-dimensional Dirac operators with Aharonov-Bohm fields

Lﬁ =0-D= 0'1D1 + 0'2.D2,

(01 (0
10/ \i 0 )

.0
D; :=p; - bj(z) = —‘Z% - bj(m),
J

where

) O3]

bi(z) :== -8 |—m—|5 y bo(z) == ﬁW’

and [ is a real number. Such a magnetic field has a delicate singularity at the origin in
spectral theory (see, e.g., Tamura [8]).
Put 3 := 8 — [0], where [-] is Gauss’s symbol.

Theorem 1. Let 0 be a connected open set in R? containing the origin. If u € W;22()?
1s flat at the origin and

Loul < 2 Ju (@



a.e. on () for a positive constant Cyp < v(8) with

(

2 (oss <),
g (—i—s{k%),
Y(B) = 1
)
B (§e0<y),

then u vanishes identically on (.

Corollary. Let Sz := D? + DZ be the Schrodinger operator. Let {2 be an open set
containing the origin. If v € W2?(Q) is flat at the origin satisfying

Co

Sgv| <
lﬂ|—|$‘

|Dv| ' (5)

a.e. on () for a positive constant Cy < v(8), then v vanishes identically on Q, where

|Dv| = \/|D1v|2 + | Dyvl2.

For the proof of Corollary, let us put u; := (D; — iD;)v and u, := (D; + iD;)v. Since
v is flat at the origin, we can show that D;v and D,v are flat at the origin by using (5).
Therefore, u; and u, are flat at the origin and satisfy

U1 + U Uy — Uz

D1U= 2 y Dz’l)"—"— ; ,

D1D2’U = Dngv.

Moreover, we have

V2GC,

[Leul = V2I(D}+ Dol < YTl
_ Co 2 2
- \/il:rl'\/lul u2| +|u1+u2|

= Loy

le| T

0 : . .
which gives from Theorem 1 that u; = u; = 0 and 5:% = 0 in 0. Since v is flat at the

origin, we have v = 0.

Moreover, applying the proof of Grammatico [3], we can prove the above property even
if Cy < v2+(B). In fact, we can see the following result:



Theorem 2. If v € W2?(Q) is flat at the origin satisfying

> + Ia of* + 2 |4 l(ﬁo —if)of’ (6)

1Sgul” < H4'” oF

a.e. on (), with positive constants M, A, B such that A% + B? < 4v(8)?, then v vanishes
identically on €, where (r, 6) is the polar coordinate and 9, = 9/0r, 39 0/06.

Therefore, if v € W2?(Q) is flat at the origin satisfying

C
|Sgv| < |m_T | Dy

a.e. on ) for a positive constant Cy < v/2(8), then v vanishes identically on 2, by setting
A= B and M = 0in (6).

3 Proof of Theorem 1

Here we introduce some notations. Let

2
J — L .
— o, = —=0;j,
r r

j=1

— 1:0’10'2(.’1)1D2 - $2D1)

N ==

+ o3(z1p2 — z2p1 — B),

Oa = ia- Co =
3 = 109 = .

The spin—orbit operator S is written by polar coordinates z; = r cos@ and z; = rsinf as

~-B- 0

S = g z6'9 1 5 | (")
0 = +B+igs
2 a6

which can be regarded as a self-adjoint operator on L?(S*)?. Then we have

a-D=a,(D,+%S>, ol=1, (8)
o.D, = D,o,, 0,S=-So,, D.S=SD,, 9)
D> — (10)
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on C§°(R?\ {0})?. The last inequality can be shown by a commutator relation

D~ =%

r r?

Lemma 2. For a real number m we put

A:=0-D—iﬂa,.
r
Then we have
>t (S—m—— _1_>2 | (11)
~ r? 2
on Cg°(R?\ {0})?, and the spectrum o(S) consists of discrete eigenvalues
{n+-;—:t,BinEZ}. (12)

Proof. The properties (8), (9) and (10) give
a4 = lo (D +25)+ 0,
| r) or
F(oei9)-]
T r
= | -5~ m)] [D,. + (5~ m)]
L1 1 1\?
_ n2
g b(som
1 1\?2
> —(§—m——
= r2 (S m 2) ’
which shows (11). Since S has a complete orthonormal eigenfunctions in L?(S')?,

£(7) (L) wen

we obtain (12).

Lemma 3. There exists a sequence of positive numbers m; ( =1,2,---) with m; - oo
as j — oo such that
lr=™ (o - DYull > y(B)|lr=™ " ul|

for any u € W?(R?)? whose support does not include a neighborhood of the origin, where
v(B) is what is defined in Theorem 1.

Proof. Let ¢ € Cg°(R?\ {0})%. In view of lemma 2 we have
-2m 2
/m r*™|o - Do|*dz
= /R? A (r z,o)l dz

S mi _ 2/ ~2m-2,,12
> migh £ - mf [ rmeltde




for any ¢ € C(R? \ {0})? and m € R. Seeing the definition of () in Theorem 1, we
can find a sequence m; — oo such that

mig |n £ § — m;[* = 7(8).

For a given u € W1%(R?)? whose support does not include a neighborhood of the origin,
there exists a sequence {p; };=12,- C C&(R*\{0})? such that ¢; — u in WH2(R?) (5 — o0),
which completes the proof.

Lemma 3 yields the following

Lemma 4. Suppose that u € Wio2(Q)? is flat at the origin with (4). Let Bg, := {z €
R? | |z| < Ro} C Q. For any R; < Ry there exists a positive constant C; = Cy(Ryo, R;)
independent of m; such that :

(8 = 3] [l da (13)

Ry

< 207 / r=2m=2 |y (2 dg
Ri1<|z|<Ro

+C ro¥mi|ul? dz,
Ry <|z|<Ro

where m; is the one given in Lemma 3.

Proof. Fix 0 < R; < Ry and take § > 0 and a smooth function x5 € C5°(0, Ry) such
that
_J1 (0<r<Ry)
() = { 0 (r<6/2)
and
Cyé™' (6/2<r<9)
/ < P _
el <{ 90 s =D,

for a positive constant C. Then Lemma 3 and the condition (4) yield

2 -2m;—2|, 12
¥(8) /Mm r=2mi=2yf? do
<(@)? [ 17 xsuf de

< [ 1m0 D)(xsu)? de

<9 —-2m; 25—2 2,,—2 Zd 14
<2 [ 0BT 4 Gl uft do (14)
+C? r2mi=2y|? dx
8<r<R;
+2 r=2mi [C’% + Cgr'z] |u|? dz.

Ri<r<R;



Since u is flat at the origin, the last three integrals tend to zero if § — 0. Therefore we
have (13) with C; = 2C%.

Proof of Theorem 1. Let Bg, C § and take 0 < R; < R; < Ro. In view of (13) we have

ey - () " ) ol gy
< [(B)* - CAR™ /B r=2m3 2|y [2 g

Ry

< ZC’ngm’/ r=2mi=2|yl? dx
Ri<|z|<Ro

+C,RM™ r=2mi|u|? dz
Ri<|z|<Ro-
|ul®

2C2 [ ! da
Ri<|z|<Re T

01/ lul® dz.
Ri<|z|< Ry

Making m; — oo, we have v =0 in Bg,. Since R; and R, are arbitrary, we have v =0 in
Bg,-
Assume that there is o € Q with |z9| = Ro. The condition (3) yields
Co + |8
|ul

x

IA

Set z. = (1 —¢)zp for 0 < e < Ry. If

Ry —¢
142(Co +18l)’

then we can find a positive constant C’ < 1/2 such that

0<p<

| Lou| < I_I%J lu| in QN B,(z.),
where B,(z.) is the open ball with radius p and center z.. This fact implies, by De
Carli-Okaji [2],
u=0 in QN Bg,,
where Ry := Ry [1 + {2(Co + |B]|) + 1}7!]. By repeating this procedure we have u = 0 in
Q. :

4 Proof of Theorem 2

We shall apply the method developed in Grammatico[3] to (6). The spectrum ~y(Ajp)
coincides of eigenvalues {(k — 8)? | k € Z} with the coresponding eigenfunction ¢x(f) =

(1/\/2_7r)e‘k6.



We introduce the coordnates (7,6) € R x S* wiht T' = log .

For V € CP(R x S1) we write
VT,0 = X H(T)eel0)

k€Z

We note that
f / |V(T,6)dTdf = 3 / \fu(T)dT,

keZ

since
VT, 0)|22esry = 2 1fu(D)IF,

kezZ

where || - || denotes the L?(S*)-norm. Set
Q = 7‘2 Sﬁ

and

Q= eTH(QeTV),

where 7 is a real parameter.
We can see directly

Q.V = —(8% 4 2707 + 72 + ALV,
Hence we have
/ 1Q-V(T,)||*dT = f 107V (T, )II” + 2 f (07V, AV )dT + 277 / 18rV (T, -)||*dT
74 [IV(T, )T + 27 [(V,05V)dT + [ |18V(T, )T
Since we obtain
/ (B2V, A\ V)dT = / dT f 8r925V[2d8 > 0
by using Ay = 0505, we have
JlQv@tar 2 27 [18rV(T, )|PdT + 7 [ V(T )|PaT
+2r* [(V, AV T + [ |\AGV(T, )| PaT
and consequently

Jlev@ it > % [In@Pdr - (kB [yt

kez kez

+ ) (k- pB)* f |fe(T)|%dT + 27 / |6rV (T, -)||dT.

keZ



The later inequality can be written as

JIQV(T, )T > S (72 = (k= B))? [ 1(T)PdT +27* [ |0re(T, )T, (15)

kEZ
Seeing the definition of y(8) in Theorem 1, we can find a sequence 7; — oo such that
L (r2 = (k=B
RE T k- Py
where Cs = 4v(8)?. Then we obtain from (15)

JIQV(T,)IPdT 2 Co T (k - 8 [ If(TIPAT = Cp [106V(T, |7, (17)

keZ

= Cﬁa (16)

Setting U = €"7V, the above inequality can be written as
[ ¥ TIQUINT > Cp [ e T dT. (18)
For any C; < Cp we can find a sufficiently large 7o such that
(72— (k= B 2 O >
for any 7 > o satisfying (16). Then, in view of (15) we have

JUIQVTIIPAT 2 Cur* T [1fT)PdT + 27 [ |07V, )|PdT

kez

> 0y (7 [V + [Jorv(a,iPaT). (19)
From now on, we consider 7 > 7, satisfying (16). We recall U = e"TV so that
/ e T||QU|2dT > C / e~27T||3pU || 2dT. (20)
For any o € [0,1] we have from (18) and (20)
[e*TIQUIPAT > oGy [ TorU)Par
+(1-a)Cp [ T|QpU L. (21)
On the other hand, we obtain from (19)
/ e > T||QUI|%dT > Clyr? f e T||U|[2dT. (22)
Therefore, (21) and (22) give
1+ %) / e T|QU|%dT > ' [ e T|U|*dT + « Cp / e 7|87 U|dT
+(1—a)Cy [ e T|RpUIPdT, (23)
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where 7/ = C’é% T.

Now let us set W2?(R?) = {v | v € W>*(R?) has a compact support}. The Inequality
(23) still holds for v € W22(R?), since the fact follows from the denseness of C°(R?) in
W2A(R?).

We set Bg = {z € R? | |z|] < R} C © and choose x(T) € C°(R) such that 0 < x <1

and

1, T<Tp
T) =
x(T) {0, T > logR,

where e < R. Let ¢ € C*(R?) such that

1
2] < 5
¢(T) =
|z| > 1.
and ¢;(z) = (J'w) (J EN).
Let u € W22(R?) be flat at the origin for which (6) holds. Then the functions ¢;xu €
W22(R?) satisfy (23). If we take thr limit as j — oo, we see that xu also satisfies (23).
By (7, 0) coordinates (6) becomes

Qul” = |e*" Spul® < M*[ul® + A%|9rul* + B?|Qpul® (24)

for T < log R.
By applying (23) to xu we have for T b1g enough

0+ 2 ([2 el e + [ < TiQGae rar
> o /_ 7;0 e T |lu(T,-)||%dT + o C} /_ i =T |8pu(T, -)*dT
+ (=) Ca [ eI ApuT, )P )
If we set
$(T) = MPu(T, )| + A2 60T, )| + BT, )P,

then we obtain from (24) and (25)
@+ 5y ([2 ermunar+ [ e miaua, irer

, [To 27T 2 2T 2
> T/ (T, )| dT+aq,/ \Bru(T, -)[2dT

F(1=a)Cy [ e 0gu(T, |4,
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that is,
1+ 5 [ e TIQu) (T, T
> (7', _ M (1 + %)) / 1 7 ||u(T, )| %dT

+ (a Cl — A? (1 + Ti)) / i =T |8pu(T, ) 2dT

To
+({(1-a)Cs—- B? 1+l e~ T\ Qpu(T, -)||dT.
5 " o 4

Now, if A? 4 B? < Cp and 7 is big enough, we can choose any Cj < Cp and a € [0,1] such

that 1 |
aCl — A? (1+ (;-D >0, (1-a)Cs— B (1+ (T—)) > 0.

Thus, we have

(14 ) [ Q)T T

7-/

1, f+eo
> 1 27T A2
> (14 5) [ e TIQUa(T )T
, 1 T _ar
> (- (14 5)) [ eI Par
To
> rh (r'_w (”%))/ lu(T, )|[*dT.

Making 7 = 7; — oo, we have u = 0 in {z € R? | |z] < €T}, and therefore u = 0 in Bg.
With the similar argument in Theorem 1, we have v = 0 in .
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