
er

WKB Method applied to Spectral Asymptotics

東北大学大学院理学研究科数学専攻 藤家雪朗 (Setsuro Fuj\"ue)
Mathematical Institute, Tohoku University

0 Introduction
We consider Schr\"o&$\cdot$ nger operators $P=-h^{2}\mathrm{A}4$ $V(x)$ on $\mathrm{R}^{n}$ , where $V$ is a real
(bounded) potential and $h$ is a small parameter, and study the semiclassical
distribution (i.e. asymptotic distribution as $h$ tends to 0) of resonances in a
small complex neighborhood of a fixed real energy $E_{0}$ .

The semiclassical distribution of resonances (and also eignevalues) near $E_{0}$

is closely related with the geometry of the corresponding classical mechanics
with Hamiltonian $p(x, \xi)=\xi^{2}+V(x)$ , more precisely, with the set of trapped
orbits $K(E_{0})$ of the Hamilton flow $\exp tH_{p}$ on $p^{-1}(E_{0})$ where $H_{p}=\mathit{7}_{\xi}p\cdot C\mathit{7}_{x}-$

$\nabla_{x}p\cdot$ $\nabla_{\xi}$ is the Hamilton vector field.
In certain cases where $K(E_{0})$ has a simple geometrical structure, such as

a non-degenerate stationary point or a periodic orbit, it is possible to specify
the semiclassical distribution of resonances near $E_{0}$ . For example in the
periodic case, we can construct the resonant state as an exact WKB solution
associated with the outgoing Lagrangian submanifold near the periodic orbit
microlocally in the phase space. It can be continued along the orbit and the
quantization condition of resonances is then obtained as the condition that
this WKB solution is single- alued on this periodic orbit. This idea is based
on the fact that the resonant state is, after a complex scaling, supported
microlocally on the periodic orbit as $h$ tends to 0.

In the case where $K(E_{0})$ is a homoclinic orbit, which consists of a non-
degenerate stationary point and an orbit which tends to this point as $t$ tends
to $\pm\infty$ , this strategy can also be applied. However, because of the singularity
at the stationary point of the classical orbits, we cannot continue the microl0-
cal WKB solution through this point by solving the transport equation. In
the one-dimensional case, this corresponds to the connection problem at a
double turning point.

In this report, after reviewing some known results about the semiclassical
distribution of resonances in simpler cases, we discuss the above connection
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problem in the multidimensional case, which is a collaboration in progress
with J.-F.Bony, T.Ramond and M.Zerzeri [3] and partially with E.Amar [1],
[2].

1 Fundamental Elements
In this section, we recall some fundamental elements of the semiclassical
microlocal analysis.

1.1 Trapped orbits
Recall that the value of $p(x,\xi)$ is invariant under the Hamilton flow $\exp tH_{p}$ .
Let $E$ be a real energy and $\Gamma_{\pm}(E)$ the outgoing and incoming tails:

$\Gamma_{\pm}(E)=$ { $(x,\xi)\in p^{-1}(E_{0});\exp tH_{p}(x,\xi)4$ oo as $tarrow\mp\infty$}.

The set
$K(E)=\Gamma_{+}(E)\cap\Gamma_{-}(E)$ .

is compact and is the union of completely trapped set.

1.2 Bargman transform
For $u\in L^{2}(\mathbb{R}^{n})$ , the Bargman transform (or global FBI transform) is defined
by

Tu$(x, \xi;h)$ $=c_{n}7\mathrm{i}_{n}e^{\mathrm{i}(\mathrm{z}-\mathrm{y})}.\epsilon/h-(\mathrm{z}-\mathrm{y})^{2}/2hu(y; h)dy$.

Tu{x, $\xi;h$) belongs to $L^{2}(\mathbb{R}_{x,\xi}^{2n})$ and $c_{n}$ is taken so that $T$ be an isometry
from $L^{2}(\mathbb{R}^{n})$ to $L^{2}(\mathbb{R}^{2n})$ . It is seen that by this transform, the function $u$ is
localized in $x$ by a Gaussian up to $O(\sqrt{h})$ . Moreover, it is localized also in 4
up to $O(\sqrt{h})$ . Indeed we have an identity

Tu{x, $($ ; $h)=e^{*x\cdot\xi/h}.T\hat{u}(\xi, -x;h)$ ,

where \^u is the semiclassical Fourier transform

\^u($()$ $=(2 \pi h)^{-n/2}\int_{\mathrm{R}^{n}}e^{-x\cdot\xi/h}$u(x)dx.
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1.3 Microsupport
A ( $h$-dependent) function $u\in L^{2}$ is said to be microlocally exponentially
small at a point $(x_{0},\xi_{0})$ in the phase space iff there exists a neighborhood $U$

of $(x_{0},\xi_{0})$ and a positive number $\epsilon$ such that

$b(x, \xi;h)$ $=O(e^{-\epsilon/h})$

as $harrow 0$ uniformly in $U$ . The complement of such points is called microsup-
port of tt and denoted by $MS(u)$ .

Microsupport has the following properties: Let $u$ be a solution of $Pu=$

Eu in a domain $\Omega\subset \mathbb{R}^{n}$ , and assume that $||u||L^{2}(\mathrm{q})$ $\leq 1.$

$\circ$ The microsupport of $u$ is included in the energy surface $p^{-1}(E)$ .
$\mathrm{o}$ The microsupport of $u$ propagates along a simple Hamilton flow.

$\circ$ The microsupport of a WKB solution $u=e^{\dot{\iota}\psi(x)/h}b(x, h)$ , $b(x, h)=O(1)$

as $h$ tends to 0, is included in the Lagrangian submanifold $\{(x, \xi);\xi=$

$9_{x}\mathrm{e}(x)\}$ .

1.4 Resonance
Assume the non-trapping condition near the infinity: There exist a real func-
tion $G(x,\xi)$ , a compact set $K\subset \mathbb{R}^{2n}$ and a constant $C>0$ such that on
$p^{-1}(E_{0})\backslash K$ one has

$H_{p}G\geq C\xi^{2}$ .

Such a function $G$ is called an escape function.
On the $I$-Lagrangian manifold

$\Lambda_{tG}=$ { $(z$ , $\zeta)=(x+iy,\xi+i\eta)\in \mathbb{C}^{2n};j$ $=t\partial G/\partial\xi,\eta=-t\partial$G/$\partial x$ },

the Hamiltonian $p(x,\xi)$ is developed in Taylor series with respect to the small
parameter $t$ on $\Lambda_{tG}$ :

$p(z, ()$ $=p(x,\xi)-itH_{p}G(x,\xi)+O(t^{2})$ .

Hence the non-trapping condition implies the ellpticity of $p$ near the
infinity on $\Lambda_{tG}$ for small enough $t$ . For $E$ in a small but $/\mathrm{i}$-independent
complex neighborhood of Eq, $P-E$ considered as operator on a Sobolev
space on $\Lambda_{tG}$ with an appropriate weight is bijective except for a discrete set.
The elements of this discrete set are called resonances ([8]).
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$\mathrm{o}$ If $u$ is a resonant state, the microsupport of $u$ is included in the outgoing
tail $\mathrm{r}_{+}$ .

2 Known Results
We suppose in what follows $E-E_{0}=O(h)$ .

2.1 The case where $K(E_{0})=\emptyset$

In this case, there is no resonance in an $h$-independent neighborhood of $E_{0}$ .
In fact we can construct a global escape function $G(x,\xi)$ , and $P-E$ becomes
globally elliptic on $\Lambda_{tG}$ , that is, invertible.

2.2 The case where $K(E_{0})$ is a non-degenerate station-
ary point

Let the stationary point be the origin $(0, 0)$ of the phase space. After a
canonical change of coordinates, $p(x,\xi)$ is written in the form

$p(x, \xi)-E_{0}=\xi^{2}+\sum_{j=1}^{d}\frac{\lambda_{j}^{2}}{4}x_{j}^{2}-\sum_{j=d+1}^{n}\frac{\lambda_{j}^{2}}{4}x_{j}^{2}+O(|(x,\xi)|^{3})$

as $(x, \xi)arrow(0,0)$ . The eigenvalues of the fundamental matrix of $p$ at $(0, 0)$

(-$\frac{\partial^{2}p}{\partial x\frac{\partial^{2}p\partial\xi}{\partial x^{2}}}$

$- \alpha L\frac{\partial^{2}p}{\frac{\partial\xi^{2}\theta^{2}}{\partial x}}$ ) $|(0,0)$ $=(-V”(0)0$ $20$ $)$

are $\pm i\lambda_{1}$ , . . . $,$

$\pm i\lambda_{d}$ and $\pm\lambda_{d+1}$ , . . . $,$

$\pm\lambda_{n}$ $(\lambda_{1}, \ldots, \lambda_{n}>0)$ . $\mathrm{S}\mathrm{J}\dot{0}\cdot \mathrm{e}$trand [15],
Biret, Combes, Duclos [4] independently and Kaidi, Kerdelhu\’e [12] in a com-
plex neighborhood of $E_{0}$ of size $O(h^{\delta})$ , $\delta>0$ arbitrary, showed that the
resonances (or eventually eigenvalues if $d=n$) are found near the lattice
points $\{E_{\alpha}\}$ , $\alpha=$ $(\alpha_{1}$ , . .. , $\alpha_{n})\in \mathrm{N}^{n}$ where

$E_{\alpha}=E_{0}+ \sum_{\mathrm{j}=1}^{d}(\alpha_{j}+1/2)\lambda_{j}h-i\sum_{j=d+1}^{n}(\alpha_{j}+1/2)\lambda \mathrm{j}$h,

$\mathrm{w}_{\mathrm{J}}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$

( $=$

are
$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{o}\mathrm{f}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{f}d$

) $\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{f}n$

$-d\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}- \mathrm{h}\mathrm{a}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\overline{\mathrm{u}}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}-\partial^{2}/\partial x_{j}-d\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\partial^{2}/\partial x_{j}^{2}+\lambda_{j}^{2}x_{\dot{4}}^{2}/4$

$\lambda_{j}^{2}x_{j}^{2}$ 14 $(j=d+1, \ldots,n)$ .
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2.4 The case where $K(E_{0})$ is a periodic orbit
If $n=1,$ this is a simple-well eigenvalue problem and it is well known that the
eigenvalues satisfy the s0-called Bohr-Sommerfeld quantization condition:

$\int_{\gamma(E)}\xi dx=(2k+1)\pi h+$ $\mathrm{o}(h^{2})$ , $k$ $=0,1$ , 2, $\ldots$ ,

where $\gamma(E)$ is the unique periodic orbit on $p^{-1}(E)$ . The integral on the left
hand side is called action integral and its derivative with respect to $E$ is the
period $T(E)$ of the orbit. Therefore the eigenvalues near $E_{0}$ is a real sequence
whose interval is asymptotically equal to $2\pi h/T(E_{0})$ .

In case $n>1,$ we can define the Poincar\’e map associated with the periodic
orbit. Let us assume that it is of hyperbolic type, i.e. the eigenvalues of the
linearized Poincar\’e map are $\theta_{2}$ , $\ldots$ , $\theta_{n}$ , $\theta_{2}^{-1}$ , $\ldots$ , $\theta_{n}^{-1}$ and $|\mathrm{e}_{2}|$ , . . $.$ , $|$’$n|>1.$
Then G\’erard and Sjostrand showed in [6] that the resonances are found
near the lattice points whose real interval is equal to $2\pi h/7$ $(E_{0})$ and whose
imaginary part is given by

$- \frac{ih}{T(E_{0})}\sum_{j=2}^{n}(\alpha_{\mathrm{j}}+ 1\oint 2)$ $\log|fl_{j}|$ , $\alpha=(\alpha_{2}$ , . . . , $\alpha_{n})\in \mathrm{N}^{n-1}$ .

2.4 The case where $K(E_{0})$ is a homoclinic orbit (n$=1)$

A homoclinic orbit consists of a stationary point, which we assume to be the
origin $(0, 0)$ , and an orbit tending to this point as $t$ tends to $+\mathrm{o}\mathrm{o}$ and $-\infty$ .
For $E<E_{0}$ , $|E-E_{0}|$ small, $K(E)$ consists of a periodic orbit. The period
$T(E)$ should diverge as $Earrow E_{0}-$ . In fact

$T(E)= \frac{1}{\lambda}\log\frac{1}{E_{0}-E}+O(1)$ as $Earrow E_{0}-$ ,

where $\pm$A (A $>0$) are the eigenvalues of the fund amental matrix of $p$ at the
stationary point.

In this case, the resonances near $E_{0}$ make a sequence paralel to the real
axis with imaginary part of $O$ (h$\oint$ $\log(1/h)$ ) and the interval is asymptoticaly
equal to $2\pi h/\{\lambda^{-1}\log(1/h)\}([5])$ .
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3 General homoclinic case
Here we study the case where $K(E_{0})=\{(0,0)\}\cup)$ , where $(0, 0)$ is a non-
degenerate saddle point of the symbol $p(x, \xi)$ and $\mathrm{y}$ is an orbit which tends
to $(0, 0)$ as $tarrow\pm\infty$ . Let 1 $\lambda_{1}$ , . . . $’\pm\lambda_{n}$ , ($0<\lambda=1\leq$ A$2\leq$ . . $\leq\lambda_{n}$ ) be the
eigenvalues of $dH_{p}$ at $(0, 0)$ . After a canonical change of coordinate, we can
assume that

$p(x, \xi|)-E_{0}=\xi^{2}-\sum_{j=1}^{n}\frac{\lambda_{j}^{2}}{4}x\mathrm{y}+$ O$(|(x, \xi)|^{3})$ .

First we assume

(An) $\lambda_{1}<\lambda_{2}$ .
Then the asymptotic behavior of the orbit $\gamma(t)$ as $tarrow$ oo is

$\gamma(t)=c{}^{t}(1,0, \ldots, 0, -\lambda_{1}/2,0, \ldots, 0)e^{-\lambda_{1}t}+O(e^{-\min(\lambda_{2},2\lambda_{1})}t)$ .

We make a generic assumption:

(A2) $c\neq 0.$

This means that the natural projection of $\gamma(t)$ to the $x$-space tends to the
saddle point tangentially to the $x_{1}$-axis as $tarrow t$ $+\mathrm{o}\mathrm{o}$ .

Finally we make a global assumption. Let $\Lambda_{-}$ and $\Lambda_{+}$ be the stable and
unstable manifold associated with the saddle point $(0,0)$ on which all the
Hamilton flows tend to $(0, 0)$ as $t$ tends to $+\mathrm{o}\mathrm{o}$ and $-\mathrm{o}\mathrm{o}$ respectively.

(A3) The extension of $\mathrm{A}\pm$ by the flow of $H_{p}$ intersects transversally on $\mathrm{y}$ .
Under these assumptions, very roughly speaking, the Schr\"odinger oper-

ator $P$ has as model the sum of the one-dimentional operator with respect
to $x_{1}$ variable associated with a unique homoclinic orbit and the $n-$ $1-$

dimensional operator with respect to $(x_{2}$ , . . . , $x_{n})$ associated with a unique
non-degenerate saddle point. Hence we expect from the previous results in
\S 2.4 and \S 2.2 that the resonances are found near the lattice points whose real
interval is equal to $2\pi h[\{\lambda^{-1}\log(1/h)\}$ and the imaginary part is given by

$-i$ $\sum_{j=2}^{n}(\alpha_{j}+1/2)\lambda_{j}h$ , a $=(\alpha_{1}, \ldots, \alpha_{n-1})\in \mathrm{N}^{n-1}$ (1)
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4 WKB Method and Monodromy Operator
The method consists in constructing a WKB solution microlocally near the
trapped set $K(E_{0})$ .

The resonant state is, after a normalization, concentrated on the outgoing
tail $\Gamma_{+}(E)$ (see \S 1.4). If $\Gamma_{+}$ is a Lagrangian manifold of the form $\{(x,\xi);\xi=$

$\partial_{l}\psi(x)\}$ , there corresponds locally a WKB solution

$u(x, h)=b(x, h)e$”’/h,

where the symbol

$b(x, h) \sim\sum_{l=0}^{\infty}b_{l}(x)h_{:}^{l}$

satisfies the transport equation

$2\partial_{x}\psi\cdot$ $\partial_{x}b_{l}+(\Delta\phi-iE_{l})b_{l}=i\Delta b_{l-1}$ $(l=0,1, \ldots)$ ,

with $E\sim \mathit{7}$ $E_{l}h^{l}$ . This is a first order differential equation along the Hamil-
ton vector field $H_{p}$ .

In the periodic case, where $K(E_{0})=\{\gamma(E_{0})\}$ , it is seen that for $E$ suf-
ficiently colse to $E_{0}$ , $K(E)=\{\gamma(E)\}$ , $\gamma(E)$ is a periodic orbit. $\Gamma_{+}(E)$ and
$\Gamma_{-}(E)$ are Lagrangian submanifold intersecting transversally along $\gamma(E)$ .
Then the quantization condition of resonances is equivalent to the condi-
tion that the WKB solution is single-valued on $\Gamma_{+}(E)$ , i.e. a WKB solution
microlocally defined in a neighborhood of a point on $\gamma(E)$ coincides with the
one obtained after one tour near $\gamma(E)$ .

In the homoclinic case, the outgoing (incoming) tail $\Gamma_{+}(E)(\Gamma_{-}(E))$ is
the extension by the Hamilton flow of the unstable (stable) manifold at the
stationary point $(0, 0)$ .

By (A3), the structure of $\Gamma_{+}$ and $\Gamma$-is the same as the periodic case
except near $(0, 0)$ . The problem is thus reduced to the continuation of the
WKB solution on $\Gamma_{+}$ through $(0, 0)$ .

Let $\Omega$ be a small neighborhood of $(0, 0)$ and $\gamma_{+}$ , 7- the outgoing and
incoming part of $\gamma\cap\Omega$ . The problem is to continue a microlocal solution
near $\gamma$-to a microlocal solution on ) $+$ under the condition that the solution
is a resonant state.
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4.1 Uniqueness

If $u$ is a resonant state, it is supported microlocally on the outgoing tail,
i.e. $\Lambda_{+}$ and its extension. On $\Lambda_{-}\cap\Omega$ , therefore, it is supported only on

$\mathrm{X}-$ by (A3). If $u$ is given on 7-, then it is uniquely determined on $Y+\cdot$ In
fact we have the foUowing result, which can be proved by the propagation of
microsupport (see \S 1.3):

Proposition 4.1 There exist a discrete set $\Gamma(h)$ and a neighborhood $\Omega’$

of $(0, 0)$ such that if $E\not\in\Gamma(h)$ is a resonance with resonant state $u$ , and if

$MS(u)\cap$ A$-\cap\Omega\backslash (0,0)=\emptyset$

then $MS(u)\cap\Omega’=\emptyset$ .

The exceptional set $\Gamma(h)$ is the set of resonances associated to the sta
tionary point $(0, 0)$ , therefore close to

$E_{a}=E_{0}-i \sum_{j=1}^{n}(\alpha_{j}+1/2)\lambda_{j}h$

(see \S 2.2). Remark that the imaginary part of these points cannot coincide
with (1) if we impose a non-resonant condition on $\lambda_{1}$ , $\ldots\lambda_{n}$ , i.e. $\lambda_{1}$ , $\ldots\lambda_{n}$

are linearly independent over N.

4.2 Integral representation of the resonant state

The connection problem can be achieved by composing the folloing two
ideas: One is to express the map associating a microlocal solution on $\mathrm{y}_{-}$ to
one on $\gamma_{+}$ as a semiclassical Fourier integral operator, which was introduced
by Sj\"ostrand and Zworski in [18] and was called rnonodromy operator. The
other is to represent the solution as superposition of time-dependent WKB
solutions, which was used by Helffer and Sj\"ostrand in [9].

We write the resonant state in the form

$u(x, h)=(2 \pi h)^{-(n-1)/2}\int_{\mathrm{B}^{n-1}}\int_{0}^{\infty}e$ i$(t,z,q)/ha(t, $x,\eta$ , $h$) $u\wedge \mathrm{o}(\eta)dtd\eta$

Let $H_{0}$ be a small hypersurface in $x$-space close to 0 and transversal to the
projection of $\mathrm{y}$ , say $\{x_{1}=\epsilon\}$ . We construct $\phi$ and $a$ so that the restriction
of $u$ on $H_{0}$ but microlocally near $\mathrm{y}_{-}$ be $u_{0}$ .
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In particular, the phase 6 can be constructed by evolving a suitably chosen
Lagrangian manifold transversal to 7-. For $x$ near $\mathrm{y}_{-}$ , there exists one and
only one critical point $t(x,\eta)$ of 6. The stationary phase method at this point
gives the microlocal solution on 7-. In order that it be equal to $\mathrm{q}$ on $H_{0}$

near $)_{-}$ , it suffices to impose the initial conditions

$\{$

$\phi(t(x,\eta)$ , $x$ , $\eta)|_{H_{0}}=x’\cdot\eta$ ,
$a(t(x,\eta),x,\eta$ , $h)|_{H_{0}}=1.$

(2)

On the other hand, it turns out from the geometry near $(0, 0)$ that the
Lagrangian manifold converges to $\Lambda_{+}$ as $tarrow+\mathrm{Q}\mathrm{Q}$ , more precisely, there exist
$\tilde{\psi}(\eta)$ independent of $t$ , $x$ and $\phi_{1}(x, \eta))$ independent of $t$ , which are determined
up to constant by (2), such that

$\phi(t,x,\eta)\sim\phi_{+}(x)+\tilde{\psi}(\mathrm{y}\mathrm{y})$ $+e^{-\lambda_{1}}{}^{t}\phi_{1}(x,\eta)$ , (3)

where $\phi_{+}(x)$ is a generating function of $\Lambda_{+}$ and

$\phi_{+}(x)$ $=$ $\mathrm{p}$ $\frac{\lambda_{\mathrm{j}}}{4}x\mathrm{r}+$ O$(|x|’)$ as $xarrow 0.$

The contribution ffom $t=+\mathrm{o}\mathrm{o}$ in the integration with respect to $t$ , calculated
with the asymptotic formula (3) and that of the symbol $a$ , gives a microlocal
solution on $\gamma_{+}$ .

Thus we obtain the map of microlocal solutions from $\mathrm{X}-$ to $\gamma_{+}$ as a semi-
classical microlocal Fourier integral operator.

Remark 4.2 In the case where $n=1,$ we do not need the integration with
respect to $\eta$ and if $p=\xi^{2}-x^{2}/4$ near $(0, 0)$ , the above procedure reduces to
the well known asymptotic expansion of the Weber function $D_{\mu}(x)$ , which is
a solution of

$\frac{d^{2}w}{dx^{2}}+(\mu+\frac{1}{2}-\frac{x^{2}}{4})w=0,$

and which has an integral representation

$D_{\mu}(x)= \frac{e^{-x^{2}/4}}{\Gamma(-\mu)}\int_{0}^{\infty}e^{-xt-t^{2}/2}t^{-\mu-1}$dt.
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