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Some Results on Optimality Conditions for
Nonsmooth Vector Optimization Problems*

Gue Myung Lee !

Abstract

In this paper, we summarize our recent results ([14]-[17]) about optimality conditions
for nonsmooth vector optimization problems. Firstly, we give optimality conditions
for a (properly, weakly) efficient solution of a nonsmooth convex vector optimization,
which are expressed in terms of vector variational inequalities with subdifferentials.
Secondly, we present sequential optimality conditions for an efficient solutions of a
nonsmooth convex vector optimization, which hold without any constraint qualifica-
tions. Thirdly, we give a necessary optimality condition for a weakly efficient solution
of a non-Lipschitzian vector optimization problem. Finally, we present necessary opti-
mality condition for a properly efficient solution of a Lipschitzian vector optimization
problem.

1 Introduction

In this paper, we consider the following vector optimization problem:

Minimize  f(z) := (fi(z), -, fpo())
(VP) subject to = € D, 1

where f; :R®* - R, i=1,.--,p, are functions and D is a subset of R,

Solving (VP) means to find the (properly, weakly) efficient solutions which are
defined as follows;

Definition 1.1 (1) Z € D is said to be an efficient solution of (VP) if for any z € D,

(fi(z) = £1(Z),- -, fo(2) — f(2)) ¢ —RE\{0},
where R is the nonnegative orthant of RP.
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(2) £ € D is called a properly efficient solution of (VP) if Z € D is an efficient
solution of (VP) and there exists a constant M > 0 such that for each ¢ =1,---,p, we
have

fi(Z) — fi(z)
H@ = f@ ="

for some j such that f;(z) > f;(Z) whenever z € D and fi(z) < fi(Z).
(3) # € D is said to be a weakly efficient solution of (VP) if for any z € D,

(fi(x) — f1(Z),- -, fo(@) — fp(Z)) & —intRE,
where intR%, is the interior of RE.

We denote the set of all the efficient solution of (VP), the set of all the weakly effi-
cient solution of (VP), the set of all the properly efficient solution of (VP) by E f f(VP),
WESf(VP) and PrEf f(VP), respectively.

It is clear that PrEff(VP) C Eff(VP) C WEff(VP). For basic meanings and
properties of such solution sets, see [25].

Recently many authors have tried to obtain optimality conditions to nonsmooth
(nondifferentiable) vector optimization problems involving nonsmooth objective or con-
straint functions ([1], [2], [4], [6], [7], [10], [13], [18]-[20], [23], [24], [26]-[31]). In partic-
ular, Giannessi [3] gave elegant optimality conditions for differentiable vector convex
optimization problem, which are expressed by vector variational inequalities with gra-
dients. Many authors ([8]-[13], [27], [28]) have tried to extend the Giannessi’s results
to (nonsmooth) vector optimization problems. Very recently, Jeyakumar, Lee and
Dinh ([5]) gave sequential optimality conditions characterizing the solution without
any constraint qualification for a scalar convex optimization problem.

In this paper, we summarize our recent results ([14]-[17]) about optimality condi-
tions for nonsmooth vector optimization problems. Firstly, we give optimality con-
ditions for a (properly, weakly) efficient solution of a nonsmooth convex vector op-
timization, which are expressed in terms of vector variational inequalities with sub-
differentials. Secondly, we present sequential optimality conditions for an efficient
solution of a nonsmooth convex vector optimization, which hold without any con-
straint qualifications, and which are given in sequential forms using subdifferentials
and e-subdifferentials. Thirdly, we give a necessary optimality condition for a weakly
efficient solution of a non-Lipschitzian vector optimization problem involving lower
semicontinuous or continuous functions (not necessarily, locally Lipschitz functions).
Finally, we present a necessary optimality condition for a properly efficient solution of
a Lipschitzian vector optimization problem involving locally Lipschitz functions.
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2 Vector Variational Inequalities for Nonsmooth
Convex Vector Optimization Problems

Throughout this section, we will assume that the objective functions of (VP), f;,i =
1,---,p, are convex and the constraint set of (VP), D, is a closed convex subset of R™.

Let ¢ : R® — R be a convex function. The subdifferential of ¢ at a € R" is defined
as the non-empty compact convex set

Op(a) = {veR" | p(z) — p(a) 2 (v,z — a), Vz € R"},

where (-, ) denotes the scalar product on R".

Recently, Giannessi [3] considered the following vector variational inequalities for
a differentiable convex vector optimization (VP) (when f;, i = 1,.--,p, are differen-
tiable):

(VVI)y Find % € D such that
((vfl(ﬁ)’w - i) P (pr(fi:)’m - E)) ¢ —Rﬂ.\{O}, Vz € Ds

where V f;(z) is the gradient of f; at z and (-, -) is the
scalar product on R".

(MVVI)y  Find Z € D such that
(Vfilz),z —F), -, (Vp(z),z — 7)) & -RE\{0}, Vz € D.

(WVVI)y Find T € D such that
(Vi@),z—z), -, (Vfp(E),z — T)) & —intRE, Vz € D,

where intRY, is the interior of RE.

He proved that if f;, ¢ =1,.--,p, are differentiable, then

s0l(VVI)y C s0l(MVVI)y, = Eff(VP) C WEff(VP) = sol(WVVI),.

In this section, we will consider scalar or vector variational inequalities for the
nonsmooth convex vector optimization problem (VP), which are formulated as below,
to give theorems which extends the above Giannessi’s results to (VP).

(VI)x Find Z € D such that 3; € 8f;(z), i =1, -, p, such that
(P M,z —3) 20Vz € D,

where A = (Ay,--+, A;) € RE\{0}.
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(MVI), Find Z € D such that Vz € D, 3¢ € 0fi(z), i=1,---,p,
(O Mz — %) 20.

(VVI);  Find Z € D such that Vz € D, V¢ € 0fi(Z), i=1,--+,p,
(b1,z —7), -+, oz — 7)) € —RE\{0}.

(VVI);  Find Z € D such that 3¢; € 8fi(Z), i=1,---,p, such that
(,z—7),-, &,z — T)) g —-RE\{0} VzeD.

(VVI);  Find Z € D such that Vz € D, 3¢; € 0fi(%), i=1,---,p, such that
((Elam - E) y ' <£P7m - :E)) ¢ —Rﬁ_\{O}

(MVVI) Find Z € D such that Vz € D, V¢§; € 8f;(z), i=1,---,p, such that
((ﬁl,.'L‘ - 57) » T (Epam - 5’)) g _R{’i—\{o}
(WVVI);  Find Z € D such that Vz € D, V§; € 0fi(Z), i=1,---,p,
(1,2 —Z), -+, (&, T — T)) & —intRE.

(WVVI), Find Z € D such that 3¢; € 9fi(Z), i =1,---,p, such that
(1,2 — %), -+, (&, — F)) & —intRE, Vz € D.

(WVVI);  Find z € D such that Vz € D, 3§ € 0fi(Z), i =1,---,p, such that
(1,2 —F), -+, (£, T — T)) & —intRE.

(WMVVI) Find # € D such that Vz € D, V§; € 8fi(z), i=1,---,p, such that
({1, z—T), -, (&, — T)) & —intRY..

We denote the solution sets of the above inequality problems by
sol(VI),, sol(MVI),, sol(VVI), ---,s0l(WMVVI), respectively.

Now we give three theorems which show relations among solution sets of (VP)
and the vector variational inequality problems, and present optimality conditions for
(properly, weakly) efficient solutions of (VP). The following Theorem 2.1, 2.2 and 2.3
are found in [15].

Theorem 2.1 The following are true:

(1) sol(VVI), C sol(VVI),.
(2) PrEf £ (VP) = Usingas, 50UV I € s0l(VVI), C s0l(VVI),
C sol(MVVI)=Eff(VP).

Theorem 2.2 The following relations hold:
sol(WVVD), c WEff(VP)= | sol(VD) = | sol(MVI),

AcRE\{0} AeR% \{0}
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= sol (WVVI), = sol (WVVI), = sol (WMVVI).

Theorem 2.3 If D is a polyhedral convez set in R", then
sol(VVI), = PrEff(VP).

3 Sequential Optimality Conditions for Convex
Vector Optimization Problems

Let ¢ : R® — R be a convex function. For € = 0, the e-subdifferential of ¢ at a € R®
is defined as the non-empty closed convex set

Ocp(a) = {v €R" | p(z) — p(a) = (v,z —a) — € Vz € R"}.
In this section, we assume that D = {r € R" | g;(z) £ 0, j = 1,---,m}, where

gi :R* =R, j=1,---,m are convex functions, and the objective functions of (VP),
fi, t=1,-.-,p, are convex functions.

Now we give two theorems about sequential optimality conditions for an efficient
solution of (VP). The following Theorems 3.1 and 3.2 can be obtained from results in
[17].

Theorem 3.1 Let (61, -,0,) € intR%. and & € D. Then the following are equivalent:
(i) T € Eff(VP).

(i) there exist u € (37, 0:£)(Z), A := (A},---,A%) € R™, 6" 2 0, v" €

65"(23 =1 JgJ)("_E-)’ pt o= (/1'11‘1"',“;) € RI-{’— € =2 0 w" € af"(z:z_l H f,)(f) such
that

u+ li)m (" +w™) =0,
lim 0" = lim " =0 and
n—o0 n—o00

MKZ X}g;)(z) = 0.

Theorem 3.2 Let (6y,---,6,) € intR: and T € D. Then z € Eff(VP) if and only
if there exist u € 6(2,_10 f)(@), A € RY, p := (47, ,u,,) €ER}, " e X, s"€
B(S, N3; + 300 12 £)(&") such that

“ﬂ&‘&s =0,

Jlim (O g+ Zu:'f.xw") ~(CHA@I =0 and
Jj=1 i=1

lim |l" ~ 2| = 0.

n—oo
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4 Necessary Optimality Conditions for
non-Lipschitzian Vector Optimization Problems

We introduce the normal cone and the (singular) approximate subdifferential studied
by Mordukhovich ([21], [22]).

Let C be a nonempty subset of R* and z € R". Define

P(C,z) = {w € dC | ||z — w| = inf.ccllz — 2|},

where clC is the closure of the set C. Let Z € clC. The normal cone to C at Z is
defined by

N(C,zZ) ={yeR"| Jy —y, zx— T, € (0,00),
¢, € R® with ¢ € P(C, .’Bk) and yx = tk(.’L‘k — Ck)} .

Let f : R® — R be a function and z € R®. The approximate subdifferential of f at
z is defined by

84 f(z) == {z* e R™ | (z*, —1) € N(epif,(z, f(x)))},

and the singular approximate subdifferential of f at z is defined by

0> f(z) = {z* € R" | (z",0) € N(epif, (2, f(2)))} -

In this section, we assume that D = {z € C | gj(z) £ 0, j = 1,---,m}, where
g; : R® — R is a function and C is a closed subset of R".

Now we give a theorem about a necessary optimality condition for a weakly efficient
solution of a non-Lipschitzian vector optimization problem (VP) involvolving lower
semicontinuous or continuous functions. The following Theorems 4.1 and 4.2 are found
in [16].

Theorem 4.1 LetZ € D. Assumethat f;,i=1,---,pandg;, j € I(Z) .= {j | g;(Z) =
0}, are lower semicontinuous at T and g;, j € {1,---,m} \ I(Z) are continuous at Z.
Suppose that

4
Z (r,-a,-+z~,—)+§:z,-+n=0, r; 20, a,-ea“‘g,-(f:),

jel(z) i=1

Zj € 6°°g,-(5:), jEe I(.’z‘) and z; € 6°°f.-(§:), i=1,---,p,
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n € N(C,z) e
implyTJ:O, %:O,jel(j), Z,L:O’ i:l’.--’p’
and n=0.

If £ € D is a weakly efficient solution of (VP), then there exist \; 20, i =1,---,p,
not all zero, a; € R*, i =0,1,--+,p, such that

(dia '—Xi) € N(epifi’ (i"f‘l(j)))’ 1= 1': Y /) and

0e ia,- + Z [U rjaAgj(i:)] U 8%gi(z) + N(C, 7).

jeI(z) r;>0

Theorem 4.2 LetZ € D. Suppose that f; : R® - R, i =1,---,p, are locally Lipschitz
at T. Assume that

Z (ajaj + EJ) +n=0, Q; 20, a; € BAg,-(a‘:),
jeIl(z) .

7 € 0%g(@), ] € I(@), n € N(C,3)

imply o; =0, 2; =0,j € I(T), n=0.

If T € D is a weakly efficient solution of (VP), then there exist \; 20, i = 1,---,p,
not all zero, such that

06 Y Xdf(@) + U r;049;(z)| U8g,(2) + N(C,2).

jel(z) r;i>0

5 Necessary Optimality Conditions for
Lipschitzian Vector Optimization Problems

We first recall some notions of Nonsmooth Analysis ([1]). Let ¢ : R* — R be a locally
Lipschitz function. The Clarke subdifferential of 1 at o € R" is the set

Op(mo) = {£ €R™ | (z,€) < Y(mo;2) Vz € R}
where

1%(zo; ) = limsup %[z/;(m' +tz) — P(a’ )] .

' szq t10
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The Clarke tangent cone and the Clarke normal cone of a subset C C R™ at g € C
are denoted by T¢o(zo) and N¢(zo), respectively. Recall that

To(zo) = {n € R* | p&(z0;m) = 0},
NC("EO) = {6 € Rn l <€777> _S_ 01 VTI € TC’(mO)}

where po(z) = p(z, C) ie. pc(z) is the distance from z € R to C.

In this section, we assume that
D={zeC|giz)<0,j=12,...,m, i(z)=0,1=12,...,q}

where C C R" is a closed subset, and g; and h; are given functions. Let zo € D and
let

I(zo) = {3 : gi(z0) = 0}.
We say that condition (CQ) holds at zo € D if there do not exist p; = 0, j € I(zo),
andr €R, 1 =1,2,...,q,such that >, .\ p; + 3 || # 0 and

0e Z ©i0g;(xo) + Z’rlahz(.’ﬂo) + No(zo)

jEI(Zo) =1

where 8g;(zo) and dhy(z,) are the Clarke subdifferentials of g; and h; at 2o, and Ne(zo)
stands for the Clarke normal cone to C at xg.

Now we give a necessary optimality condition for a properly efficient solution of
(VP). The following Theorem 5.1 is found in [14].

Theorem 5.1 Assume that all functions f;,g; and h; of (VP) are locally Lipschitz. If
I € D is a properly efficient solution of (VP) and if condition (CQ) holds at Z, then
there exist \; >0, i=1,...,p, u; >0, j € I(Z), n€R, 1 =1,2,...,q, such that

q

0€ Zp: Xi0fi(Z) + Z ©;0g;(Z) + Z r&h(Z) + No(Z).

jel(z) i=1
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