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Abstract
A property $P$ is called persistent if for any many-sorted term rewriting system

72, 72 has the property $P$ if and only if term rewriting system $\Theta(\mathcal{R})$ , which results
from 72 by omitting its sort information, has the property $P$ . In this paper, we show
that termination is persistent for non-0verlapping term rewriting systems and we
give example as application of this result. Furthermore we obtain that completeness
is persistent for non-0verlapping term rewriting systems.
keywords: term rewriting system, termination, persistence, non-0verlapping, weak
innermost normalization, completeness

1 Introduction
Term rewriting systems (TRSs) can offer both flexible computing and effective reasoning
with equations. TRSs have been widely used as a model of functional and logic pr0-

gramming languages and as a basis of theorem provers, symbolic computation, algebraic
specification and software verification [3, 4, 7, 10].

A rewrite system is called terminating (strongly normalizing) if there exists no infinite
reduction sequence. In a confluent rewrite system, the normal form of a given term is
unique, that is, the final result does not depend on the strategy in which the rewrite rules
were applied. Termination and confluence are the fundamental properties of TRSs. It is
well-known that termination and confluence are undecidable for TRSs in general $[3, 5]$ .

Zantema [13] introduced the notion of persistence as follows: A property $P$ is called
persistent if for any many-sorted TRS 71, 72 has the property $P$ if and only if TRS $\Theta(\mathcal{R})$ ,
which results from 72 by omitting its sort information, has the property $P$ . Zantema [13]
showed that termination is persistent for TRSs without collapsing or duplicating rules.
However termination is not persistent in general [13]. The basic counterexample ffom
Toyama [12] leads to the following sorted TRS $\mathcal{R}$ :

$\mathcal{R}=\{$

$f(0,1, x)arrow f(x, x, x)$
$g(y, z)arrow y$

$g($!/, $z)arrow z$
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where the set of sorts $S=\{\alpha, \beta\}$ and the function symbols and variables are defined as
follows :

$f$ : $\alpha\cross$ $\alpha \mathrm{x}\alphaarrow\alpha$ , 0 : $\alpha$ , 1 : $\alpha,g$ : $\beta\cross\betaarrow/\mathit{3}$ , $rs$ at, $y:\beta$ , $z$ : $\beta$

The sorted TRS 72 is terminating. Let $\ominus$ be a sort elimination function. Then underly-
ing TRS $\ominus(\mathcal{R})$ , which results from $\mathcal{R}$ by omitting its sort information, is not terminating.

$f(g(0,1),$ $/(0,1)$ , $g(0,1))arrow_{\Theta(\mathcal{R})}f(0, g(0,1), /(0,1))$

$arrow_{\Theta(\mathcal{R})}f(0,\overline{1,g(0,}1))$

$arrow\Theta(\mathcal{R})arrow_{\Theta(\mathcal{R})}.f.(g(0,1),g(0,1)$
: $g(0,1))$

is an infinite reduction in $\Theta(\mathcal{R})$ . In each step the contracted redex is underlined.
Aoto and Toyama showed the persistence of confluence [1] and usual many-sorted TRS
was extended with ordered sorts [2]. It was shown that the persistence of confluence is
preserved for this extension in [2]. Ohsaki and Middeldorp [11] studied the persistence of
termination, acyclicity and non-loopingness on equational many-sorted TRSs.

In this paper, we show the persistence of termination for non-0verlapping TRSs and
we give the example as application of this result. Zantema’s result can not be applied
to our example. Our result provides a new and powerful tool for proving termination of
TRSs. As a result we obtain the persistence of completeness for non-0verlapping TRSs.

In section 2, many-sorted TRS is formulated and well-sortedness is characterized in
section 3. First, we show the persistence of weak innermost normalization. Next, we
show the persistence of termination for non-0verlapping TRSs and we give the example
as an application of this result in section 4. Furthermore, we obtain the persistence of
completeness for non-0verlapping TRSs.

2 Preliminaries
We mainly follow basic definitions in the literature $[1, 7]$ .

2.1 Sorted term rewriting systems

In this subsection, we introduce the basic notions of sorted term rewriting systems.
Usual term rewriting systems [3] are considered as special cases of sorted term rewriting
systems.

Let $S$ be a set of sorts and $\mathcal{V}$ be a set of countably infinite sorted variables. We assume
that there are countably infinite variables of sort $\alpha$ for each sort $\alpha\in 5.$ Let $F$ be a set
of sorted function symbols. We assume that each sorted function symbol $f\in T$ is given
with the sorts of its arguments and the sort of its value, all of which are included in $S$ .
We write $f:\alpha_{1}\cross$ .. . $\cross\alpha_{n}arrow\beta$ if and only if $f$ takes $n$ arguments of sorts $\alpha_{1}$ ,. . . , $\alpha_{n}$

respectively to a value of sort $\beta$ . Function symbol of with no arguments is constant
The set 7 (F, $\mathcal{V}$ ) $= \bigcup_{\alpha\in \mathrm{S}}\mathrm{i}(2, \mathcal{V})$

’ of all sorted terms built from $T$ and } is defined
as follows: (1) $\mathcal{V}^{\alpha}\subseteq \mathcal{T}(F, \mathcal{V})^{\alpha}$ , (2) $\mathrm{f}:\mathrm{a}\mathrm{x}\cross$ .. . $\cross x_{n}arrow\alpha$, $t_{:}\in \mathcal{T}(F, \mathcal{V})^{a}$:($i=$ 1, $\ldots$ ,n)
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then $f(t_{1},. . . ,tn)$ $\in \mathcal{T}(F, \mathcal{V})^{\alpha}$ . Here $\mathcal{T}(F, \mathcal{V})$
’ denotes the set of all sorted terms of sort

$\alpha$ .
We write $t:\alpha$ if $t$ is of sort $\alpha$ . $\mathcal{V}(t)$ denotes the set of all variables in $t$ . $\mathcal{T}(F, \mathcal{V})^{\alpha}$ and

$\mathcal{T}(\mathcal{F}, \mathcal{V})$ are abbreviated as 7” and $\mathrm{y}$ , respectively. Let $\square ^{\alpha}$ be a special constant (hole)
of sort $\alpha$ . Elements of $\mathcal{T}$ ($F$ $\cup\{\square ^{\alpha}|$ a $\in S\}$ ,V) are called contexts over $\mathcal{T}(F, \mathcal{V})$ . We
write $C:\alpha_{1}\cross$ . . . $\cross\alpha_{n}arrow\alpha$ if and only if the sort of context $C$ is $\alpha$ and it has $n$ holes
$\coprod^{\alpha_{1}},\ldots,\square ^{\alpha_{n}}$ . If $C:\alpha_{1}\cross$ . $\cross\alpha_{n}arrow\alpha$ and $t_{i}:\alpha_{i}(i=1,\ldots,n)$ then $C[t_{1},\ldots,t_{n}]$ denotes
the term obtained from $C$ by replacing holes with $t_{1},\ldots$ ,t$n$ from left to right. A context
that contains precisely one hole is denoted by $C[]$ . A term $t$ is said to be a subterm of $s$ if
and only if $s=C[t]$ for some context $C$ . A substitution 0 is a mapping from $\mathcal{V}$ to $\mathcal{T}$ such
that $x\in$ )$7$’ implies $\theta(x)\in \mathcal{T}^{a}$ . A substitutions over terms is defined as a homomorphic
extension. $\theta(t)$ is usually written as $t\theta$ . A sorted rewrite rule on $\mathrm{r}$ is a pair $larrow r$ such
that $\mathit{1}\not\in \mathcal{V}$ , $\mathcal{V}(r)\subseteq \mathcal{V}(l)$ , sorted terms $l$ and $r$ have the same sort. A sorted term rewriting
system (STRS, for short) is a pair $(F, \mathrm{q})$ where $\mathcal{F}$ is a set of sorted function symbols and

$\mathcal{R}$ is a set of sorted rewrite rules on $\mathrm{i}(\mathrm{r}, \mathrm{q})$ . $(\mathcal{F}, \mathcal{R})$ is often abbreviated as 72 and in
that case $F$ is defined to be the set of function symbols that appear in $\mathcal{R}$ .

Given a STRS $\mathcal{R}$ , a sorted term $s$ is reduced to a sorted term $t$ ( $s\prec_{\mathcal{R}}t$ , in symbol)
when $s=C[l\theta]$ and $t=C[r\theta]$ for some rewrite rule $larrow r\in fl,$ context $C$ and substitution
$\theta$ . We call $sarrow_{\mathcal{R}}t$ a rewrite step or reduction from $s$ to $t$ of $\mathcal{R}\cdot l\theta$ is called redex of this
rewrite step. One can easily check that sorted terms $s$ and $t$ have the same sort whenever
$s”?n^{t}$ .

The transitive reflexive closure of $arrow \mathcal{R}$ is denoted by $arrow_{\mathcal{R}}^{*}$ . Terms $t_{1}$ and $t_{2}$ are joinable
if there exists some term $t’$ such that $t_{1}arrow_{\mathcal{R}}^{*}t’arrow_{\mathcal{R}}^{*}t_{2}$ . A term $t$ is confittent if for any
terms $t_{1}$ and $t_{2}$ , $t_{1}$ and $t_{2}$ are joinable whenever $t_{1}arrow_{\mathcal{R}}^{*}tarrow_{\mathcal{R}}^{*}t_{2}$ . A STRS $\mathcal{R}$ is confluent if
every term is confluent to $arrow \mathcal{R}$ . A term $t$ is a normal form if there is no term $t’$ such that
$t\prec_{\mathcal{R}}t’$ . A term $t$ is terminating (strongly normalizing) if there is no infinite reduction
sequence starting from term $t$ . A STRS 72 is terminating if every term is terminating
to $arrow \mathcal{R}$ . A STRS $p$ is weakly innermost normalizing if every term has a normal form
which can be reached by an innermost reduction. In an innermost reduction a redex may
only be contracted if it contains no proper subredexes. In that case we write $sarrow_{:\mathcal{R}}t$ . A
STRS 7% is complete if 72 is confluent and terminating. Every terminating STRS is weakly
innermost normalizing.

A rewrite rule $larrow r$ is a collapsing rule if $r$ is a variable. A rewrite rule $larrow r$ is
a duplicating rule if some variable has more occurrences in $r$ than in 1. Let $l_{1}arrow r_{1}$ and
$l_{2}arrow r_{2}$ be renamed versions of rewrite rules in a STRS $\mathcal{R}$ such that they have no variables
in common. Suppose $l_{1}=C[t]$ with $t\not\in \mathcal{V}$ such that $t$ and $1_{2}$ are unifiable, i.e. $t\theta=l_{2}\theta$ for
a most general unifier $\theta$ . The term $l_{1}\theta=C[l_{2}]\theta$ is subject to the rewrite steps $l_{1}\theta’ \mathcal{R}$ $r_{1}\theta$

and $l_{1}\thetaarrow_{\mathcal{R}}C[r_{2}]\theta$ . Then the pair of reducts $\langle C[\mathrm{r}_{2}]\theta,r_{1}\theta\rangle$ is called a critical pair of 79. A
STRS 7% is said to be non-Overlapping if there is no critical pair between rules of $\mathcal{R}$ .

When $S$ $=\{*\}$ , an STRS is called a term rewriting system (TRS, for short). Given
an arbitrary STRS 71, by identifying each sort with $*$ , we obviously obtain a TRS $\Theta(\mathcal{R})$

- called the underlying TRS of $\mathcal{R}$ .

2.2 Sorting of term rewriting systems
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Aoto and Toyama [1] defined the notion of sort attachment and formulated the notion
of persistence using sort attachment. We mainly follow basic definitions in [1] in this
subsection.

Let $F$ and ) be sets of function symbols and variables, respectively, on a trivial set
$\{*\}$ of sorts. Terms built from this language are called unsorted terms. Let $S$ be another
set of sorts. A sort attachment $\mathrm{r}$ on $S$ is a mapping from FU $\mathcal{V}$ to the set $S^{*}$ of finite
sequences of elements from $S$ such that $\tau(x)\in S$ for any $x\in$ ) and $\tau(f)\in S^{n+1}$ for
any $n$-ary function symbol $f\in 7.$ We write $\mathrm{r}(\mathrm{f})$ $=\alpha_{1}\cross$ . $\mathrm{x}$ $\alpha_{n}arrow$ $\beta$ . Without loss of
generality we assume that there are count infinite variables $x$ with $\tau(x)=\alpha$ for each
a $\in 5.$ The set of $\tau$-sorted function symbols from $\mathcal{F}$ is denoted by $\mathrm{r}$ .

A term $t$ is said to be well-sorted under $\tau$ with sort $\alpha$ if $t$ : $\alpha$ is derivable in the
following rules: (1) $\tau(x)=\alpha$ implies $x:\alpha$ , (2) $\tau(f)=\alpha_{1}\mathrm{x}$

1
$\cdot\cdot\cross$ $\alpha_{n}arrow\beta$ , $t_{1}$ :a1,. . . ’ $tn:an$

imply $f(t_{1}, \ldots, t_{n})$ :7$\beta$ .
The set of well-sorted terms under $\mathrm{r}$ is denoted by $\mathrm{r}$ , i.e. $\Gamma$ $=\{t\in \mathcal{T}|t$ : $\alpha$ for

some $\alpha\in 5$}. Clearly, $7”\subseteq \mathcal{T}-$ For a context $C$ , we write $C:\alpha_{1}\cross$ . .. $\cross\alpha_{n}arrow$p $\beta$ if
$C[\square ^{\alpha_{1}}, . . , , \coprod^{\alpha_{n}}]$ :( is derivable by rules (1), (2) with an additional rule: $(3)\alpha\in S$ implies
$\square ^{\alpha}$ : $\alpha$ .

Let 72 be a TRS. A sort attachment $\tau$ is said to be consistent with $\mathcal{R}$ if for any rewrite
rule $larrow r\in \mathcal{R}$ , $l$ and $r$ are well-sort$\mathrm{e}\mathrm{d}$ under $\mathrm{y}$ with the same sort. Note that 72” acts on
$\Gamma$ , i.e. well-sorted terms $s$ , $t\in\Gamma$ whenever $sarrow zA;$ and that for any $s$ , $t\in \mathcal{T}^{\tau}$ , $s\prec_{\mathcal{R}}t$

if and only if $sarrow zr$ $t$ .
From a given TRS 7? and a sort attachment $\tau$ consistent with 71, by regarding each

function symbol $f$ to be of sort $\tau(f)$ and each variable $x$ to be of sort $\tau(\mathrm{t})$ , we get a STRS
$\mathcal{R}^{\tau}\cdot$ . called a STRS induced from $\mathcal{R}$ and $\tau$ .

Using the sort attachment, persistence can be alternatively formulated as follows. It
is clear that definition of Zantema [13] and the following definition are equivalent.

Definition 2.1 A property $P$ is called persistent if for any TRS 72 and any sort attach-
ment $\tau$ that is consistent with $\mathcal{R}$ the following property holds:

72” has the property $P\Leftrightarrow R$ has the property $P$ .

We consider the persistent property for TRSs using definition 2.1 in this paper instead
of Zantema’s definition. From now on, we assume that a set $S$ of sorts, a TRS $\mathcal{R}$ are
given. Then an attachment $\tau$ on $S$ that is consistent with 72 is fixed.

3 Characterizations of well-sortedness
In this section we give a characterization of well-sortedness.

Definition 3.1 The top sort (under $\tau$) of an unsorted term t is defined as follows:

top(t)$)=\{$
$\tau(t)$ if $t\in \mathcal{V}$

$\beta$ if $t=7$ $(t_{1}, \ldots, t_{n})$ with $\tau(f)=\alpha_{1}\mathrm{x}$ . . $\mathrm{t}$

$\mathrm{x}\alpha_{n}arrow\beta$
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Definition 3.2 Let $t=C[t_{1}$ , . . . , $t_{n}](n\geq 0)$ be an unsorted terms with $C$ [, $\ldots$ , ] 7 $\square$ .
We write $t=C[t_{1}$ , . . , $t_{n}\mathrm{J}$ if and only if

(1) $C:\alpha_{1}\cross$ $\cross\alpha_{n}arrow\beta$ is a context that is well-sorted under $\mathrm{r}$ .

(2) $top(t_{i})$ $\neq\alpha_{i}$ for $i=1$ , . . , $n$ .

The $t_{1},\ldots$ ,f $n$ are said to be the principal subterms of $t$ .

We denote $t=C\langle\langle$ $t_{1}$ , . .. , $t_{n}\rangle\rangle$ if either $t=C[t_{1,..(}$ , $t_{n}\mathrm{J}$ or $C=\square$ and $t_{i}\in\{t_{1},\ldots,t_{n}\}$ .

Definition 3.3 Let $t$ be an unsorted term. The rank of $t$ is defined by

rank(t) $=\{$
1 if $t$ is well-sorted term
$1+ \max${$rank(t_{1})$ , $\ldots$ , rank $(t_{n})$ } if $t=C[t_{1}$ , . . $\tau$ , $t_{n}\mathrm{I}$

We consider the example of top sort, principal subterm and rank of an unsorted term.

Example 3.4 Let $F$ $=\{f, g, h, A, B\}$ , $5=\{0,1\}$ and $\tau=\{f$ : 0 $\mathrm{x}0arrow 1$ , $g$ : $1arrow 0$ , $h$ :
$0\cross$ $1\mathrm{x}1arrow 1$ , $A$ : 0, $B$ : 0}.

We consider the unsorted term $f(g(A), h(x, B, B))$ .

$\circ t\varphi(f(g(A), h(x, B, B)))=1$ because of $\tau(f)=0\cross 0arrow 1.$

$\mathrm{o}$ $f(g(A), h(x, B, B))=C[A,$ $h(x, B, B)\mathrm{I}$ where $C[, . .\tau:]$ $=f(g(\square ), \square )$ . The principal
subterms of $f(g(A), h(x, B, B))$ are $A$ and $h(x, B, B)$ .

$\mathrm{o}$ rank $(g(A), h(x, B, B)))$ $=1+ \max${rank(A), rank(h(x, $B$ , $B))$ } $=3.$

Definition 3.5 A rewrite step $sarrow_{\mathcal{R}}t$ is said to be inner (written as $sarrow\%$ $t$) if and only
if $s=C[s_{1},\ldots$ ,C’ [le],. . . ’

$sn1$ $\prec_{\mathcal{R}}C[s_{1},\ldots,C’[r\theta],\ldots,s_{n}\mathrm{I}=t$ for so me $s_{\mathrm{b}}$ . .. , $s_{n}$ , $larrow$ .r
$\in \mathcal{R}$ , $\theta$ and $C’$ , otherwise outer (written as $s\prec_{\mathcal{R}}^{o}t$ ).

Next, we give the example of inner and outer rewrite step.

Example 3.6 Let $F$ $=\{f, g, h, G, A, B\}$ , $5=\{0,1\}$ and $\tau=\{f$ : $0\cross 0arrow 1$ , $G$ : $0arrow 1$ , $g$ :
$1arrow 0$ , $h:0\cross 1\cross 1arrow 1$ , $A:0$ , $B:0\}$ . We consider the following TRS:

$\mathcal{R}=\{$

$f(x, y)arrow G(y)$

$h(x, z, z)arrow z$

The following reduction sequence starting from unsorted term $f(g(A),h(x, B, B))$ :

$f(g(A), \underline{h(x,B,B)})\underline{f(g(A),B)}ioG(B)\vec{\mathcal{R}}\vec{\mathcal{R}}$
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4 Persistence of termination for non-0verlapping
TRSs

In this section we show the persistence of termination for non-0verlapping TRSs. It is main
theorem in this paper. First, we show the persistence of weak innermost normalization.
Next, we show the persistence of termination for non-0verlapping TRSs. Furthermore we
give the simple example as application of our main result.

Let $s_{1}$ ,. . . ’ $sn$ and $t_{1}$ , $\ldots$ , $t_{n}$ be terms. We write $\langle\langle s_{1}, \ldots, s_{n}\rangle\propto\langle t_{1}$ , . . . ’
$t_{n}\rangle$ if and

only if for any $1\leq i,j\leq n$ , $s_{i}=s_{j}$ implies $t_{i}=t_{j}$ . Moreover, we write $\langle$

$s_{1}$ , $\ldots$ , $s\mathrm{J}$ $\infty$

$\langle t_{1,..\mathrm{I}}, t_{n}\rangle$ if and only if $\langle s_{1,..\{}, s_{n}\rangle\propto\langle t_{1}, \ldots, t_{n}\rangle$ and $\langle t_{1}, .. , t_{n}\rangle$ cx $\langle s_{1}, \ldots, s_{n}\rangle$ .
The following theorem was proved by Gramlich in [6].

Theorem 4.1 ([6]) Let 7? be a non-Overlapping $TRS$. Then, $\mathcal{R}$ is weakly inner most nor-
malizing if and only if $\mathcal{R}$ is terminating.

We give the proof of persistence of weak innermost normalization.

Theorem 4.2 Weak innermost normalization is a persistent property of TRSs.

proof Let 72 be a $TRS$. We show that $\mathcal{R}^{\tau}$ is weakly innermost normalizing if and only
if 72 is weakly innermost normalizing.

$\circ$ (if)-part: For well-sorted term $s$ , $t\in \mathcal{T}^{7}$ , $sarrow \mathcal{R}^{\tau}t$ if and only if $s\prec_{\mathcal{R}}t$ . Hence,
every well-sorted term has a normal form which can be reached by an innermost
reduction.

$\circ$ (only if)-part: We will show by induction on rank(t) that every unsorted term $t$

has a normal form which can be reached by an innermost reduction with respect
to $\mathcal{R}$ . If rank(t) $=1$ then the result follows from the assumption that $\mathcal{R}$ is weakly
innermost normalizing. Let $t=C[t_{1}$ , $\ldots$ , $t_{n}\mathrm{I}$ . Applying the induction hypothesis
to $t_{1},\ldots$ ,tn yields normal forms $t_{1}’$ ,. . ., $t_{n}$

’ such that $t_{j}\prec_{i_{\mathcal{R}}^{*}}\theta_{j}$ for $j=1$ , $\ldots$ , $n$ . We
clearly have $C[t_{1}’, \ldots, t_{n}’]=C’\mathbb{I}s_{1}$ , . . , $s_{m}\mathrm{J}$ for some context $C’[, \ldots, ]:\alpha_{1}\mathrm{x}\ldots$ $\mathrm{x}\alpha_{m}$

$arrow 0$ and normal forms $s_{1},\ldots$ ,s$m$ . Choose fresh variables $x_{i}\in$ )$/$” for $i=1$ , $\ldots$ , $m$

such that $\langle x_{1}, \ldots, x_{m}\rangle$ oo $\langle s_{1}$ , .. . , $s_{m}\rangle$ . Because rank $(C’[x_{1}, .. , x_{m}])=1,$ the
well-sorted term $C’[x_{1,..1}, x_{m}]$ has a normal form which can be reached by an
innermost reduction, say $C’[x_{1,..1},x_{m}]arrow i_{\mathcal{R}}^{*}C^{*}[x_{i1}, \ldots, x_{\dot{l}}]\mathrm{p}$. Hence, we have the
following innermost reduction sequence:
$tarrow_{\dot{|}\mathcal{R}}^{\dot{|}^{*}}C’\mathrm{I}s_{1}$ , $\ldots$ , $s_{m}\mathrm{I}\prec_{i\mathcal{R}}^{o*}C^{*}\langle\langle s_{i1}, \ldots, s_{i\mathrm{p}}\rangle\rangle=t’$. Clearly $t’$ is normal form which
can be reached by an innermost reduction with respect to $\mathcal{R}$ . We conclude that every
unsorted term has a normal form which can be reached by an innermost reduction
with respect to $\mathcal{R}$ . $\square$

We obtain the main theorem in this paper form theorem 4.1 and theorem 4.2.

Theorem 4.3 $Tem\dot{i}nation$ is a persistent property of non-Overlapping TRSs.
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Proof. Let 72 be a non-0verlapping $TRS$ . We have to show that 72” is terminating if and
only if 72 is terminating. By theorem 4.1, 7% is weakly innermost normalizing if and only
if 72 is terminating. By theorem 4.2, 79” is weakly innermost normalizing if and only if
72 is weakly innermost normalizing. Hence, 72” is weakly innermost normalizing if and
only if 72 is terminating. Since TRS 7% is non-0verlapping, so is STRS $\mathcal{R}^{\tau}$ . By theorem
4.1, 77” is weakly innermost normalizing if and only if 72” is terminating. Therefore, 72”
is terminating if and only if $\mathcal{R}$ is terminating. $\square$

Example 4.4 We show that the following non-0verlapping TRS $\mathcal{R}$ is terminating using
theorem 4.3. To show the termination of the following TRS directly seems difficult from
known results (E.g. recursive path ordering [5]). Also, we can not use the modularity
results for composable TRSs [9] and hierarchical combinations of TRSs [8]. Zantema’s
result that termination is persistent for TRSs without collapsing or duplicating rules can
not be applied, because next TRS contains both collapsing rule (r2) and duplicating rule
(r4). However, we can show the termination of next TRS using our results in this paper.

$\mathcal{R}=\{$

$g(x, B)arrow$ ($j($$, $A)$ (r1)
$g(x, d(z, B))arrow x$ (r2)
$I(A, g(x, d(y, C)))arrow I(B,g(x, d(y, C)))$ (r3)
$d(z, 4)$ $arrow e(z, z)$ (r4)

Let $5=\{0,1,2\}$ . We give the following sort attachment $\tau$ .

$\mathrm{r}=\{$

$g$ : 1 $\mathrm{x}0arrow 1$

$I$ : $0\cross 1arrow 2$

ci : $0\cross 0arrow 0$

$e$ : $0\cross 0arrow 0$

$A$ : 0, $B$ : 0, $C$ : 0

Any well-sorted term in $F$ , $\mathcal{T}^{1}$ and $\mathcal{T}^{2}$ is terminating, i.e. any well-sorted term in $\mathrm{y}$

is terminating. We consider the following cases:

$\circ t\in \mathcal{T}^{0}$ . Then (r4) is the only applicable rule. A TRS $\{(\mathrm{r}4)\}$ is terminating using
recursive path ordering. Hence, $t$ is terminating.

$\circ t\in \mathcal{T}^{1}$ . Then (r1), (r2) and (r4) are the only applicable rules. A TRS { $(r1)$ , (r2),
(r4) $\}$ is terminating using recursive path ordering. Hence, $t$ is terminating.

$\circ t\in \mathcal{T}^{2}$ . Then (r1), (r2), (r3) and (r4) are the applicable rules. If top(t) $\neq 2,$ then
$t$ is terminating. If top(t)$)=2,$ then we show that $t$ is terminating, since the above
two cases. For any proper subterm $s$ of $t$ , $t\varphi(s)=0$ or top(s) $=1.$ Since the above
two cases, $s$ is terminating. Since top(t) $=2$ , (r3) is the only applicable rule to root
position of term $t$ . Hence, $t$ is terminating.

Then, STRS 72” is terminating. Since 72” is non-0verlapping TRS and theorem 4.3,
TRS 72 is terminating.
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Furthermore we obtain the persistence of completeness for non-0verlapping TRSs.
The following theorem was given by Aoto and Toyama [1],

Theorem 4.5 ([1]) Confluence is a persistent property of TRSs.

Since a complete TRS is confluent and terminating, we obtain the following corollary
from theorem 4.3 and theorem 4.5.

Corollary 4.6 Completeness is a persistent property of non-Overlapping TRSs.

5 Conclusion
In this paper, we have discussed the persistence of termination for non-0verlapping TRSs.
We have given our main results in the following.

First, we have shown the persistence of weak innermost normalization. Next, we have
shown the persistence of termination for non-0verlapping TRSs and we have given the
example as application of our main result. This result has provided a new and powerful
tool for proving termination of TRSs. Furthermore we have obtained the persistence of
completeness for non-0verlapping TRSs.
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