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Abstract
We show that the monoid of all $n\cross n$ upper triangular boolean

matrices has no finite identity basis whenever $n>3$ . The identities of
its submonoid consisting of matrices in which all diagonal entries are 1
possess a finite basis if and only if $n\leq 4$ .

1 The finite basis problem for matrix monoids
An algebra $A$ is said to be finitely based if all identities holding in $A$ follow
from a finite set of such identities (an identity basis of $A$ ); otherwise $A$ is
called nonfinitely based. While every finite group is finitely based (Oates
and Powell [5] $)$ , among finite monoids there exist nonfinitely based ones.
The first example of a nonfinitely based finite monoid (due to Perkins [6])
was the Brandt monoid $B_{2}^{1}$ formed by the six matrices

$(\begin{array}{ll}0 00 0\end{array})$ , $(\begin{array}{ll}1 00 \mathrm{l}\end{array})$ , $(\begin{array}{ll}\mathrm{l} 00 0\end{array})$ , $(\begin{array}{ll}0 \mathrm{l}0 0\end{array})$ , $(\begin{array}{ll}0 0\mathrm{l} 0\end{array})$ , $(\begin{array}{ll}0 00 \mathrm{l}\end{array})$ (1)

under the usual multiplication of $n\cross$ n-matrices:

$(\alpha_{ij})$ $( \beta_{ij})=(\sum_{k=1}^{n}\alpha$,$\cdot$ k#kj) (2)
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We have not yet specified where 0 and 1, the entries of the matrices in (1),
come from and how they add and multiply. In fact, there is a certain degree

of freedom here: since the above matrices have at most one non-zero entry
in each row, the multiplication (2) works just the same provided that the

symbols 0 and 1 obey the following rules:

0 . $0=01=10=0+0=0,$ 1 $1=1+0=0+1=1,$ (3)

where $\mathrm{s}$ the value of the sum 111 does not matter at all. Therefore, one
may conveniently think of $B_{2}^{1}$ as of a submonoid of the monoid $.\ovalbox{\tt\small REJECT}_{2},(F)$ of
all $2\cross 2$ -matrices over an arbitrary field $F$ and, in the same time, as of a
submonoid of the monoid $\mathrm{y}_{2}$ of all binary relations over the 2-element set
because the latter monoid can be identified with the monoid of all $2\cross 2-$

matrices over the boolean semiring $7=\langle\{0,1\};+, \cdot\rangle$ in which the operations
satisfy the rules (3) and in addition $1+1=1$

The twofold nature of !32 is important in view of Sapir’s powerful re-
sult [8] revealing that this monoid is inherently nonfinitely based. We recall
that a finite monoid is said to be inherently nonfinitely based if it is con-
tained in no locally finite finitely based variety. Since the variety generated
by a finite monoid is locally finite, every inherently nonfinitely based finite
monoid automatically is nonfinitely based; moreover, if the variety $\mathrm{v}\mathrm{a}\mathrm{r}M$

generated by a finite monoid $M$ contains an inherently nonfinitely based
monoid, then $M$ itself is inherently nonfinitely based and so $M$ is non-
finitely based. Therefore the fact that $B_{2}^{1}$ is inherently nonfinitely based
immediately solves the finite basis problem for both the monoid $\ovalbox{\tt\small REJECT}_{n}(F)$ of
all $n\cross n$ -matrices over a finite field $F$ and the monoid $7_{n}$ of all binary rela-
tions over the $n$ -element set: for $n\geq 2$ these monoids are nonfinitely based.
(Indeed, one only has to take into account that if $n\geq 2$ then $li_{n}(F)$ and

$\ovalbox{\tt\small REJECT}_{r\iota}$ contain submonoids isoinorphic to $\ovalbox{\tt\small REJECT}_{2}(F)$ and respectively $\ovalbox{\tt\small REJECT}_{2}$ , whence
they both possess submonoids isomorphic to $B_{2}^{1}$ –then Sapir’s theorem ap-
plies.) An alternative proof of this result which does not depend on the
notion of an inherently nonfinitely based monoid has been published in [12];
again, this proof is a byproduct of a more general approach.

Since a complete solution of the finite basis problem for full matrix
monoids has been found, the next logical step in the general programme
of classifying finite monoids with respect to the finite basis property may
consist in investigating certain distinguished submonoids in $\ovalbox{\tt\small REJECT}_{n},(F)$ and
$7_{n}$ . Here the monoids of triangular matrices naturally come into the play.
Let 7(F) denote the submonoid of all upper triangular matrices in $\ovalbox{\tt\small REJECT}_{n},(F)$

and let $F\ovalbox{\tt\small REJECT}_{n}$ be the monoid of all upper triangular boolean $n\cross$ n-matrices.
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In [14] we have studied and partially solved the finite basis problem for the
monoids % (F) where $F$ is a finite field. We note that these monoids gen-
erate varieties which do not contain the monoid $B_{2}^{1}$ so Sapir’s result does
not apply here; neither does the approach fro$\ln[12]$ . Nevertheless, we have
proved that $\mathrm{L}?_{n}(F)$ is nonfinitely based (and even inherently nonfinitely
based) provided that $|F|>2$ and $n\geq 4$ . The cases when the field $F$ has
precisely 2 elements or when $|77|>2$ but $n=2,3$ still remain open; we can
only prove that under these conditions the monoid 7(F) is not inherently
nonfinitely based but we do not know whether or not it is finitely based.

The first main result of the present note is to some extent similar to the
cited result of [14]: we show that the monoid $F\ovalbox{\tt\small REJECT}_{n}$ is nonfinitely based (and
even inherently nonfinitely based) provided that $n\geq 4.$ The reason behind
this fact is that in the boolean situation the monoid $B_{2}^{1}$ does belong to the
varieties generated by the monoids of triangular matrices of sufficiently big
size. Again, in the cases when $n=2,3$ we only know that $\mathit{5}\ovalbox{\tt\small REJECT}_{n}$ is not
inherently nonfinitely based but we do not know whether it is finitely based.

Our second main result solves the finite basis problem for a closely related
family of submonoids in $\ovalbox{\tt\small REJECT}_{n}$ , namely, for the monoids $\ovalbox{\tt\small REJECT} ff\ovalbox{\tt\small REJECT}_{n}$ of all upper
unitriangular boolean $n\cross n$ -matrices, that is, upper triangular boolean
matrices in which all diagonal entries are 1. We show that the monoids
$\ovalbox{\tt\small REJECT} F\ovalbox{\tt\small REJECT}_{n}$ are nonfinitely based whenever $n\geq 5$ and provide an explicit finite
identity basis for each monoid % $F\ovalbox{\tt\small REJECT}_{n}$ with $n=2,3,4$ .

For the sake of completeness we mention that the monoids of all upper
unitriangular $n\cross n$ -matrices over a finite field $F$ are finitely based. Indeed,
these monoids are groups, and Oates-Powell’s theorem [5] applies.

We summarize this mini-survey of the current state of art in studying
the finite basis problem for finite monoids of matrices in the following table.

Table 1: The finite basis property of some finite monoids of $n\cross$ n-matrices

The to derlying Type of matrices:
$\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{l}\mathrm{e}:-$ arbitrary triangular

— ul- triangular
nonfinitely basednon nitelyanite if $|F|>2$ $\mathrm{a}1$

$\mathrm{d}$ $\geq 4;$ nitely based
based

$\mathrm{e}\mathrm{l}\mathrm{d}F$ $\mathrm{u}\mathrm{n}\mathrm{k}_{1}$ own for all $\geq 2$

for all $\geq 2$

if $|\underline{F}|=2$ or $=\underline{2},3$

1 ol finitely 1 on 1 itely $\mathrm{b}$ ed
the booleal nonfinitely based

based if $\geq 4;$

semiring $\mathrm{g}\mathrm{n}$ if and only if $n\geq 5$

for all $\geq$ $2$ to know if $=2,3$
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The reader who wants to place the results listed in Table 1 into a broader
context can find a comprehensive report on the finite basis problem for finite
monoids in [13].

2 The identities of the monoid $F\ovalbox{\tt\small REJECT}_{n}$

Theorem 2.1. The monoid $ff\ovalbox{\tt\small REJECT}_{n}$ is inherently nonfinitely based if and only

if n $\geq 4.$

Proof. First observe that for each $n\geq 4$ the monoid $F\ovalbox{\tt\small REJECT}_{n}$ contains a
submonoid isomorphic to $ff\ovalbox{\tt\small REJECT}_{4}$ . Therefore, as explained in Section 1, it
suffices to verify that the Brandt monoid $B_{2}^{1}$ belongs to the variety var $ff?_{4}$ .
Consider the submonoid $B$ in $F\ovalbox{\tt\small REJECT}_{4}$ generated by the following two matrices:

a $=$ $(\begin{array}{llll}\mathrm{l} \mathrm{l} 0 00 0 0 \mathrm{l}0 0 0 00 0 0 \mathrm{l}\end{array})$ and b $=(\begin{array}{llll}1 0 1 00 0 0 00 0 0 \mathrm{l}0 0 0 \mathrm{l}\end{array})1$

Since for each matrix $(\gamma_{ij})\in B$ one has ) $1\mathrm{h}$ $=\gamma 44=1$ , the set I of all
matrices $(\delta_{i_{J}})\in B$ such that $\delta_{14}=1$ forms an ideal in $B$ . A straightforward
calculation shows that, besides $a$ , $b$ , and the identity matrix $e$ , only the
two matrices

$ab=\{$

101 $0^{\backslash }$

$0$ 0 0 1
0000
0001,

and ba $=(\begin{array}{llll}\mathrm{l} \mathrm{l} 0 00 0 0 00 0 0 \mathrm{l}0 0 0 1\end{array})$

belong to $B\backslash I$ This allows one to organize the following bijection between
$B\backslash I$ and the set of non-zero matrices in $B_{2}^{1}$ :

e $-\{\begin{array}{ll}\mathrm{l} 00 \mathrm{l}\end{array}\}$ , ab $\mapsto(\begin{array}{ll}\mathrm{l} 00 0\end{array})$ , a – (e 01), b $\mapsto(\begin{array}{ll}0 0\mathrm{l} 0\end{array})$ , ba $\mapsto(\begin{array}{ll}0 00 \mathrm{l}\end{array})$ ,

and one easily checks that this bijection extends to an isomorphism between
the Rees quotient $B/I$ and the monoid $B_{2}^{1}$ . We see that $B_{2}^{1}$ turns out to be
a morphic image of a submonoid in $ff\ovalbox{\tt\small REJECT}_{4}$ whence $B_{2}^{1}$ belongs to the variety
generated by $ff\ovalbox{\tt\small REJECT}_{4}$ .

It remains to verify that the monoids $F\ovalbox{\tt\small REJECT}_{2}$ and $yi_{3}$ are not inherently
nonfinitely based. Since $ff\ovalbox{\tt\small REJECT}_{2}$ embeds into $ff\ovalbox{\tt\small REJECT}_{3}$ , it suffices to consider the
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latter monoid. With a little help of a computer program ne, we have checked
that $F\ovalbox{\tt\small REJECT}_{3}$ satisfies the identities

$x^{5}=x^{6}$ and (xy) 5 $(yx)^{5}(xy)^{5}=(xy)^{5}$

Clearly, the first of these identities fails in any non-trivial group, and the

second one can be shown to fail in the monoid $B_{2}^{1}$ : just substitute $(\begin{array}{ll}0 10 0\end{array})$

for $x$ and $(\begin{array}{ll}0 01 0\end{array})$ for $y$ . Hence the variety $\mathrm{v}\mathrm{a}\mathrm{r}fff\ovalbox{\tt\small REJECT}_{3}$ contains neither $B_{2}^{1}$

nor non-trivial groups. Prom [9, Theorem 2] we conclude that the monoid
$ff^{\mathit{6}}d\mathrm{s}$ is not inherently nonfinitely based. $\blacksquare$

Remark 2.1. The monoids $F\ovalbox{\tt\small REJECT}_{n}$ have been extensively studied by Pin and
Straubing [7]. Using the techniques of formal language theory, they have
proved that the pseudovariety generated by these monoids coincides with
the well known pseudovariety PJ generated by power monoids of $\ovalbox{\tt\small REJECT}$ -trivial
finite monoids. Since the Brandt monoid $B_{2}^{1}$ is known to belong to PJ (see,
for instance, [1, Section 11.6] $)$ , this result implies that $B_{2}^{1}$ belongs to the
variety var $F\ovalbox{\tt\small REJECT}_{m}$ for some $m$ , and thus, the monoids $F\ovalbox{\tt\small REJECT}_{n}$ with $n\geq m$ are
inherently nonfinitely based. Our direct and rather simple approach gives
the exact value of this $m$ , namely, $m=4.$

3 The identities of the monoid $\ovalbox{\tt\small REJECT} F\ovalbox{\tt\small REJECT}_{n}$

We obtain the main result of this section by identifying the collection of all
identities of the monoid $yyi_{n}$ with a set of identities previously studied by
Blanchet-Sadri [2-4]. Let us first define the latter set. We fix a countably in-
finite alphabet $\Sigma$ $=\{x, y, z, t, x_{1}, x_{2}, . , y_{1}, y_{2}, . \}$ ; as usual, $\Sigma^{*}$ stands for
the free monoid over X. If $u$ , $v\in C’$ are two words, we say that $u$ is a scat-
tered subword of $v$ whenever there exist words $u_{1}$ , . , $u_{n}$ , $\{)0$ , $?)1$ , , $v_{n-1}$ , $l\mathit{1}_{n}\in$

$\Sigma^{*}$ such that

u $=/)$ . $u_{n}$ and v $=v_{0}u_{1}v_{1}$ $\cdot v_{n-1}u_{n}v_{n}$ ;

in other terms, this means that one can extract $u$ treated as a sequence of
letters from the sequence $v$ . We denote by $J_{k}$ the set of all identities $?\#=v$

such that the words $u$ and $v$ have the same set of scattered subwords of
length $\leq k.$ Clearly, we have

$J_{1}\supseteq J_{2}\supseteq$ $\supseteq J_{k}\supseteq$
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Blanchet-Sadri [2-4] has established the following facts about tlle identity
sets $J_{k}$ :

Proposition 3.1. a) The identities

$x^{2}=x,$ xy $=$ yx (4)

fom a basis of the set $J_{1}$

b) The identities

xyxzx $=xyzx$ , $(xy)^{2}=(yx)^{2}$ (5)

form a basis of the set $J_{2}$ .
c) The identities

$xyx^{2}zx=$ xyxzx, $xyzx^{2}tz=xyxzx^{2}tz$ , $zyx^{2}ztx=zyx^{2}zxtx$ ,

$(xy)^{3}=(yx)^{3}$ (6)

form a basis of the set $J_{3}$ ,

d) The sets $J_{k}$ with $k$ $\geq 4$ are not finitely based.

It should be stressed that speaking about identity bases we always mean
bases in the sense of monoid identities. For instance, we have not included
in the above base for $J_{2}$ the identity $x^{3}=x^{2}$ (which certainly belongs
to $J_{2}$ ) because in the monoid setting it can be deduced from the identity

xyxzx $=xyzx$ by substituting 1 for $y$ and $z$ . However, as observed in [13,
173], the property of a monoid to be finitely based or nonfinitely based

does not depend on using the semigroup or the monoid deduction rules.
The following proposition relates the identity sets $J_{k}$ and the monoid

$o\ovalbox{\tt\small REJECT} fff\ovalbox{\tt\small REJECT}_{\eta}$ :

Proposition 3.2. For each positive integer $k_{f}$ the set $J_{k}$ coincides with the

set $I_{k}$ of all identities holding in the monoid $\ovalbox{\tt\small REJECT} Fod_{k+1}$

Proof. In order to prove the inclusion $I_{k}\subseteq J_{k}$ we use an argument due
to Straubing [10]. Given a word $LI$ $=x_{1}$ $\cdot$

$x_{m}$ with $x_{1}$ , . ’
$x_{m}\in\Sigma$ alld

$m\leq k,$ we define the morphism $\varphi_{w}$ : $\Sigma^{*}arrow$ $\mathit{2}lf!_{k}+1$ by the rule

$(x\varphi_{w})_{ij}=\{\begin{array}{l}\mathrm{l}\mathrm{i}\mathrm{f}\acute{\iota}=j\mathrm{l}\mathrm{i}\mathrm{f}x=x_{i}\mathrm{a}\mathrm{n}\mathrm{d} j=if 10\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}\end{array}$ (7)
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For instance, if w $=xyx$ and A $=3$ , then

$x(f)w$ $=\{$

$01$ $11$ $00$ $00^{\backslash }$

, !1 $\mathrm{i}2\mathrm{w}$ $=\{$
0011
000 $1_{\gamma}$

10
01
00
00

$0011$
$000^{\backslash }1$

,’
and $z\varphi_{w}=(\begin{array}{llll}\mathrm{l} 0 0 00 1 0 00 0 \mathrm{l} 00 0 0 \mathrm{l}\end{array})$

for all letters $z\neq^{\underline{|}}$ x, y.

Lemma 3.3. For each word v $\in\Sigma_{f}^{*}$ the word u) is a scattered subword of $v$

if and only if $(v\varphi_{w})_{1m+1}=1$

Proof. Let $/7=y_{1}$ $\cdot y_{n}$ for some $y_{1}$ , . , $\mathrm{J}n\in\Sigma$ , and let $lls\mathit{9}$)$w=(\alpha_{ij}^{(s)}.)$ .
Then, using the multiplication rule (2) $n-1$ times, we arrive at the following
expansion of the element $(v\varphi_{w})_{1m+1}$ :

$(v\varphi_{u},)_{1m+1}$
$= \sum_{1\leq j_{1}\leq\cdots\leq j_{n-1}\leq m+1}\alpha_{1j_{1}}^{(1)}\alpha_{j_{1}j_{2}}^{(2)}$

. $\alpha_{j_{n-1}m+1}^{(n)}$.. (8)

If $?\mathrm{j}7$ $=x_{1}$ $\cdot$

$x_{m}$ is a scattered subword of $v$ , then there exists a sequence
$1\leq s_{1}<$ $<s_{m}\leq n$ such that $x_{i}=y_{s_{i}}$ for every $i=1,$ . ’ $m$ . Then all
factors in the product

$\alpha_{11}^{(1)}$ . $\alpha_{11}^{(s_{1}-1)}\alpha_{12}^{(s_{1})}\alpha_{22}^{(s_{1}+}1$
) . $\alpha_{22}^{(s_{2}-1)}\alpha_{23}^{(s_{2})}$

. $\alpha_{mm}^{(s_{m-1}+1)}$ . $\alpha s\prime m^{-1)}mmm+1m+1m+1\alpha^{(s_{m})}\alpha^{(s_{m}+1)}$ . $\alpha \mathrm{m}_{+1m+1}$
) (9)

are equal to 1, whence the product itself equals 1 and so does the sum in the
right hand side of (8) of which this product is one of the summands. Thus,
$(v\varphi_{w})_{1m+1}=1$

Conversely, if $(v\varphi_{\mathrm{u}},)_{1m+1}=1$ , then at least one of the summands in the
right hand side of (8) is equal to 1. Let

$\alpha_{1j_{1}}^{(1)}\alpha_{j_{1}j_{2}}^{(2)}$ . . $\alpha_{j_{n-1}m+1}^{(n)}=1.$

By the definition of the mapping $\varphi_{w}$ , we have $\alpha_{ij}^{(s)}=0$ whenever $i\neq j,j+$ $11$

Therefore the increasing sequence $j\mathrm{o}=1\leq j_{1}\leq$ $\leq$ jn-i $\leq$ $m\mathit{1}$ $1=j_{n}$

contains exactly $m$ “jumps” of the form $lr<j_{r+1}$ $=j_{r}+1$ . If we denote
by $s_{i}$ , $i=1$ , . $\vee\cdot$ , $m$ , the position of the $i^{th}$ such jump, then tlie product

(1) (2)
, $\alpha^{(n)}$.

$\alpha_{1j_{1}}\alpha_{j_{1}j_{2}}$ $g_{n-1}m+1$ ca1l be $\mathrm{W}\mathrm{l}\cdot \mathrm{i}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{n}$ in the form (9), and since all the factors
$(s_{i})$

$\alpha_{ii+1}$ are equal to 1, we conclude from (7) that $y_{s_{i}}=x_{i}$ for every $i$ . Thus,
$w=x_{1}$ $\cdot x_{m}$ is indeed a scattered subword of $v=y_{1}$ $\cdot$

$y_{n}$ . $\blacksquare$
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Now in order to prove that $I_{k}\subseteq J_{k}$ , take any identity $u=v$ holding
in the monoid $\%^{r}fff\ovalbox{\tt\small REJECT}_{k+1}$ Then $u(\mathrm{p}$ $=v$ (2 under an arbitrary morphism
$\varphi$ :C’ $arrow\ovalbox{\tt\small REJECT} ff\ovalbox{\tt\small REJECT}_{k+1}$ In particular, $u\varphi_{w}=$ lj)$w$ for every word $w\in\Sigma$ ’

of length $m\leq k,$ whence $(u\varphi_{w})_{1m+1}=(v\varphi_{\mathrm{T}l},)_{1m+1}$ By Lemma 3.3, the
latter equality means that $w$ is a scattered subword of $u$ if and only if it is
a scattered subword of $v$ . Therefore the identity $u=v$ belongs to set $J_{k}$ .

The converse inclusion $J_{k}\subseteq I_{k}$ amounts to saying that for every identity
$/\mathrm{J}$ $=’\iota)$ in $J_{k}$ and for every morphism $\mathrm{p}$ : C’ $arrow$ ?le77kH1 one has

$(u\varphi)_{\ell m}=(v\varphi)_{\ell m}$

for each $p\leq m.$ By symmetry, it suffices to verify that $(u\varphi)_{\ell m}=1$ whenever
$(v\varphi)_{\ell m}.=1$ . Thus, consider $v=y_{1}$ $\cdot y_{n}$ for some $y_{1}$ , , $y_{n}\in\Sigma$ , and let
$y_{sf}=(\alpha_{ij}^{(s)})$ . Then

$(v\varphi)_{\ell m}=\ell\leq j_{1}\leq$

.
$.. \sum_{1\leq j,\leq m}$

$\alpha^{(1)}\alpha_{J1}^{(2)}\ell_{j_{1}j_{2}}$
’

. $\alpha_{j_{n-1}m}^{(n)}$ ,

and since the sum on the right hand side is equal to 1, one of its summands
is equal to 1. Let the product $\alpha_{lj_{1}}^{(1)}\alpha_{j_{1}j_{2}}^{(2)}$ ( $\cdot$ $\alpha_{j_{n-1}m}^{(n)}$ b$\mathrm{e}$ such a summand. The
number $p$ of “jumps” $7r<j_{rl1}$ in the increasing sequence $j_{0}=\ell\leq j_{1}\leq$

$\leq j_{n-1}\leq m=jn$ does not exceed $m-P\leq$ $(k+1)$ -l $=k$ If we denote
the position of the $i^{th}$ such jump by $s_{i}$ and its increment $j_{r11}-j_{r}$ by $d_{i}$ ,
$i=1$ , . , $p$ , then the chosen product can be written as

$(s_{1}+1)$
$\alpha_{\ell\ell}^{(1)}\}$ $\cdot\alpha_{\ell\ell}^{(s_{1}-1)}\alpha_{\ell}^{(}s\ell+d_{1}\ell+d_{1}\ell+d_{1}1)\alpha$ . $\alpha_{\ell+d_{1}\ell+d_{1}}^{(s_{2}-1)}\alpha_{\ell+d_{1}\ell+d_{1}+d_{2}}^{(s_{2})}$

.
$\alpha_{m-d_{p}m-d_{p}}$

.
$\alpha_{m-d_{p}m-d_{p}}\alpha_{m-d_{p}m}\alpha_{mm}$

$(s_{p-1}+1)$ $(s_{p-1}-1)$ $(s_{p})$ $(s_{p}+1)$ . $\alpha_{mm}^{(n)}$ ,

whence we conclude that

$\alpha_{\ell\ell+d_{1}}^{(s_{1})}=\alpha_{p+_{1}\ell+d_{1}+d_{2}}^{(s_{2})}=$ $=\alpha_{m--}^{(s_{p})}$ (10)

Consider the scattered subword $y_{s_{1}}y_{s_{2}}|\zeta$
$\cdot$

$y_{s_{p}}$ of the word $v$ . Since the length
of this subword is $\leq$ A and since the identity $u=v$ belongs to $J_{k}$ , the word
$u$ also has $\ell y_{s_{1}}y_{s_{2}}$ $\cdot y_{s_{p}}$ as a scattered subword. Thus, we can write $u$ as

u $=u_{0}y_{s_{1}}u_{1}ls_{2}u2$ $u_{p-1}y!s_{p}up$

for some suitable words no, $u_{1}$ , . . ’ $u_{p}\in$ C’ Therefore the entry $(u\varphi)_{\ell m}$ of
the matrix $\#\mathrm{C}^{2}$ has in its expansion the summand

$(u_{0})_{\ell\ell^{\alpha_{\ell\ell+d_{1}}^{(s_{1})}}}(u_{1})_{\ell+d_{1}l+d_{1}}\alpha_{\ell+d_{1}\ell+d_{1}+d_{2}}^{(\mathrm{s}_{2})}$ $(u_{p-1})_{m-d_{p}n-d_{\mathrm{p}}}\alpha_{m-d_{p}m}^{(s_{p})}(u_{p})_{mm}$
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which is equal to 1 in view of (10) and of the fact that all diagonal entries
of matrices in $\ovalbox{\tt\small REJECT} ff\ovalbox{\tt\small REJECT}_{k+1}$ are 1. Hence $(u\varphi)_{\ell m}=1$ as required. $\blacksquare$

From Propositions 3.1 and 3.2, we immediately obtain

Theorem 3.4. The monoid $iy_{n}$ is nonfinitely based for all $n\geq 5$ . The
monoids $\ovalbox{\tt\small REJECT}_{\mathrm{c}}\Psi\ovalbox{\tt\small REJECT}_{2_{f}}\ovalbox{\tt\small REJECT} F\ovalbox{\tt\small REJECT}_{3f}$ and $\ovalbox{\tt\small REJECT} F\ovalbox{\tt\small REJECT}_{4}$ are finitely based, and the identity
systems (4), (5), and respectively (6) may serve as their identity bases.

Remark 3.1. It is fairly easy to see that for each $n$ the variety var $7\mathrm{f}7_{n}$

contains neither $B_{2}^{1}$ nor non-trivial groups whence none of the monoids
% $F\ovalbox{\tt\small REJECT}_{n}$ are inherently nonfinitely based by [9, Theorem 2].

Remark 3.2. The approach used in our proof of Theorem 3.4 can be also
applied in order to provide a partial answer to Problem 6.3 in [13], namely,
to solve the finite basis problem for the monoids $\mathrm{z}_{n}$ of order preserving
and decreasing transformations of a chain with $n$ elements. (Recall that
a transformation $\alpha$ of the chain $\langle X, \leq\rangle$ is called order preserving if $i\leq j$

implies $\mathrm{i}.\mathrm{a}\leq j.\alpha$ for all $i,j\in X$ and decreasing if $\mathrm{i}.\mathrm{a}\leq i$ for every $i\in X$ .)
It can be shown that the monoid $\mathrm{z}_{n}$ satisfies precisely the same identities as
the monoid $\ovalbox{\tt\small REJECT} F\ovalbox{\tt\small REJECT}_{n}$ , and therefore, $\mathrm{z}_{n}$ is finitely based if and only if $n\leq 4.$

The proof of this result will be published elsewhere.

Remark 3.3. Using Simon’s celebrated characterization of piecewise testable
languages, Straubing [10] has shown that the monoids $\mathit{0}\chi ff\ovalbox{\tt\small REJECT}_{n}$ generate the
pseudovariety $\mathrm{J}$ of all $\ovalbox{\tt\small REJECT}$ -trivial finite monoids. This nice result, however,
does not seem to shed any extra light on the finite basis problem for the
monoids $\ovalbox{\tt\small REJECT} ff\ovalbox{\tt\small REJECT}_{n}$ (compare with Remark 2.1).

Remark 3.4. Straubing and Therien [11] have observed that the monoid
$\varphi\swarrow F\ovalbox{\tt\small REJECT}_{n}$ admits the following compatible partial order: $(\alpha_{ij})\leq(\beta_{ij})$ if for
$i$ , 7 either $a\% j=(\mathit{3}_{ij}$ or $\alpha_{ij}=1$ while $\mathrm{V}_{ij}=0.$ On the other hand, from their
elegant proof of Simon’s theorem [11, p.397] one can extract the following

Proposition 3.5. Let $M$ be a monoid with a compatible partial order $\leq$

under which 1 is the greatest element. If $k+1$ is the length of the longest
chain in $\langle$ $M,$ $\leq)$ , then $M$ satisfies every identity in the set $J_{k}$ .

sition 3.5 yields that $\ovalbox{\tt\small REJECT} ff\ovalbox{\tt\small REJECT}_{n}$,satisfies all identities in $J_{\frac{n(n-1)}{2}}$ . Our PropO-
sition 3.2 shows that in fact $\ovalbox{\tt\small REJECT} F\ovalbox{\tt\small REJECT}_{n}$ satisfies all identities in $J_{n-1}$ and this
is the best possible result.
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