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Abstract

In [4] P&l Domosi, Dirk Hauschildt, Geza Horvath and Manfred Kudlek gave all context-free
grammars in Chomsky normal form with not more than three nonterminals generating only primitive
words. In this paper we extend the characterization for grammars with four nonterminals generating
only primitive words over three nonterminal symbols.

1 Introduction
A number of recent papers have investigated the language of all primitive words over an alphabet of
at least two letters, and considered its placement to the Chomsky-hierarchy (see $[1]-[7]$ ). In [1] the
authors conjectured that this language is not context-free. This conjecture is still open. To help the
research on this problem, in this report we consider certain ‘small’ and ‘maximal’ context-free grammars
in Chomsky normal form which generate only primitive words. These grammars are small with respect
to nonterminals and maximal with respect to productions. Since a necessary condition for the generated
language to contain only primitive words (over terminal symbols) is that all sentential forms are also
primitive words (over nonterminals) it suffices to consider only the sentential form languages.

The motivation for studying these grammars was to hopefully deduce from the structure of such
grammars some insight for aproof of the conjecture that the set of all primitive words is not context-free
by showing that there are always certain primitive words missing from the language generated by the
grammar.

In the paper [4] the authors gave all context-free grammars with not more than three nonterminals
generating only primitive words. The one and two nonterminal case was quite simple, but for the 3
nonterminal cases a computer program is created. Using the computer program the authors found 12
different maximal skeleton candidates, (one of them is not reduced) up to symmetries. The computer
program in question checked that none of these 12 skeletons generates a non-primitive word $W$ of nonter-
minals with length $|$ TV $|\leq 12.$ The authors gave an exact proof for that all of these 12 skeletons generate
only primitive words, where the length of the words was not limited any more. The program was run
for the case of 4 nonterminals, starting with length 6, and repeating the procedure for length 8, 9, 10,
12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, and 27. The program produced 413 candidates for maximal
skeletons. This number is, however, too big to give an exact proof of that each of them is a maximal
skeleton indeed. In fact, it turned out that all such grammars generate infinite subsets of all primitive
words over 3 nonterminal symbol.

However, we observe that a grammar which generates all primitive words over an (at least two letter)
alphabet and does not generate any non-primitive word can not contain the start symbol on the right
hand side of any rule. So in this paper we limited our examination for skeletons, to those whose rules do
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not contain the start symbol on the right hand side. Using the computer program we found 30 different
maximal, above mentioned skeleton candidates over 4 nonterminals (2 of them are not reduced), and we
present the exact mathematical proof for all of these skeletons generating only primitive words. It turned
out that all such grammars generate infinite subsets of all primitive words over 3 nonterminal symbol.

2 Preliminaries
An alphabet I is a finite, nonempty set of symbols. Elements of $\Sigma$ are called letters. A word is a
finite sequence of the elements of an alphabet. The set of all words over I is denoted by $\Sigma’$ . We put
$\mathrm{X}^{+}=\Sigma^{*}\backslash \{\lambda\}$ , where A denotes the empty word having no letters. The length of a word $w$ , denoted
by $|w|$ , means the number of letters in $w$ when each letter is counted as many times as it occurs. By
definition, $|$ $\mathrm{X}|=0.$ If $u$ and $v$ are words over an alphabet $\Sigma$ , then their catenation $uv$ is also a word over
I. For any word uvev, we say that $v$ is a subword of $uvw$ .

A language over I is a set $L\subseteq\Sigma$ ’. We extend the concept of catenation to the class of languages as
usual. Therefore, if $L_{1}$ and $L_{2}$ are languages, then their catenation is $L_{1}L_{2}=\{p_{1}p_{2}|p_{1}\in L_{1},p_{2}\in L_{2}\}$ .
Let $p$ be a word. We put $p^{0}=$ A and $p^{n}=p^{n-1}p$ $(n>0)$ . Thus $p^{k}(k\geq 0)$ is t,h$\mathrm{e}k$ -th power of $p$ . If there
is no danger of confusion, then sometimes we identify $p$ with the singleton set $\{p\}$ . Thus we will write
$p^{*}$ and $p^{+}$ instead of $\{p\}^{*}$ and $\{p\}^{+}$ , respectively. A nonempty word is said to be primitive if it is not a
proper power $(k>1)$ of another word. A word is non-primitive if it is not primitive. Let $Q\Sigma$ denote the
set of primitive words over I.

An (unrestricted generative, or simply, unrestricted) grammar is an ordered quadruple $G$ $=$

$(N, \mathrm{X}, S, P)$ where $N$ and $\Sigma$ are disjoint alphabets, $S\in N,$ and $P$ is a finite set of ordered pairs $(U, V)$

such that $V$ is a word over the alphabet $N\cup\Sigma$ and $U$ is a word over $N\cup\Sigma$ containing at least one letter
of $N$ . The elements of $N$ are called variables or nonterminals, and those ofl $te$ rminals. $N\cup\Sigma$ is the total
alphabet and $S$ is called the start symbol. Elements $(U, V)$ of $P$ are called productions and are written
$Uarrow V.$ If $Uarrow V\in P$ implies $U\in N$ then $G$ is called context-free. Especially, $G$ is a context-free
grammar given in Chomsky normal form if all productions are of the form $Aarrow BC$ or $Aarrow a,$ where
$A$ , $B$ , $C$ are variables and $a$ is a terminal.

A word $W$ over $N\cup\Sigma$ derives directly a word $W’$ , in symbols, $W\Rightarrow W’$ , if and only if there are words
$W_{1}$ , $U$, $W_{2}$ , $V$ such that $W=W_{1}UW_{2}$ , $W’=W_{1}VW_{2}$ and $Uarrow V$ belongs to P. $W$ derives $W’$ , or in
symbols, $W\Rightarrow^{*}W’$ if and only if there is a finite sequence of words $W_{0_{\mathrm{J}}}\ldots$ , $W_{k}(k\geq 0)$ over $N\cup$ I with
$W_{0}=W$, $W_{k}=W’$ and $W_{i}\Rightarrow$ will for $0\leq i\leq k$ - 1. Thus for every $W\in(N\cup\Sigma)^{*}$ we have $W\Rightarrow^{*}$ W.

The set $S(G)=\{W|W\in(N\cup\Sigma)^{*}, S\Rightarrow^{*}W\}$ is called the set of sentential forms of $G$ . The language
$L(G)$ generated by $G$ is defined by $L(G)=S(G)\cap\Sigma^{*}$ . $L\subseteq\Sigma^{*}$ is a context-free language if we have
$L=L(G)$ for some context-free grammar $G$ .

The grammar $G_{1}=$ $(N_{1}, \mathrm{X}_{1}, S_{1},P_{1})$ is letter-isomorphic to another grammar $G_{2}=(N_{2}, \Sigma_{2}, S_{2}, P_{2})$ if
there exists a bijective mapping $\varphi$ : $7\mathrm{V}_{1}\cup\Sigma_{1}arrow N_{2}\cup$ $\Sigma_{2}$ such that $\varphi(5_{1})=S_{2}$ , $\{(\mathrm{p}\{\mathrm{A})|A\in N_{1}\}=N_{2}$ ,
$\{\varphi(a)|a\in \Sigma_{1}\}$ $=$ S2, moreover, { $\varphi(x_{1})$ . . . $\varphi(x_{s})arrow\varphi(y_{1})$ . .. $\varphi(y_{t})|x_{1}\ldots$ $x_{s}arrow$ !l1... $y_{t}\in P_{1}$ } $=P_{2}$ . In
this report we will not distinguish the letter-isomorphic grammars. Throughout this report by a grarnrnar
$G=(N,$ $\Sigma$ , $S$ , $P$} we mean a (A-free) context-free grammar given in Chomsky normal form.

For any terminal symbol $x$ we consider the set $N(x)=\{X\in N|Xarrow x\in P\}$ . We say that $x\in\Sigma$ is
similar to $y\in\Sigma$ with respect to $M\subseteq N$ with $M\neq l$) if $M\subseteq$ N(x) $\cap$ N(y). (Then we also say, in short,
that $x$ is similar to $y.$ )

A grammar $\mathrm{G}$ is reduced if it has the following properties :

$(\mathrm{i}.)$ For any pair $x$ , $y$ of terminal symbols, $N(x)=N(y)$ implies $x=y.$

$(\mathrm{i}\mathrm{i}.)$ For any $x\in N$ ) $\Sigma$ , there exists a pair $W_{1}$ , $W_{2}\in(N\cup\Sigma)^{*}$ such that the word $W_{1}xW_{2}\in$ S(G).

We shall restrict our investigations to reduced grammars.
For $X\in N$ let $\mathrm{Z}(\mathrm{X})=\{x\in \mathrm{i}? |Xarrow x\in P\}$ where also $\Sigma(X)=\emptyset$ is possible.
Now we define the skeleton of $G=(N, \Sigma, S, P)$ as $G_{0}=(N, S, P_{0})$ with productions $P_{0}=\{Aarrow$

$BC\in P$ $|A$ , $B$ , $C\in N\}$ . The set $S(G_{0})=$ $\{W\in N^{+}|S\Rightarrow^{*} \mathrm{I}4^{/}\}$ is called the (sentential $fom$) language
generated by the skeleton Go. We also say that a skeleton $G_{0}$ is maximal (with respect to the primitive
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words) if $\mathrm{S}(\mathrm{G}\mathrm{q})$ contains only primitive words, and if for any $X$ , $Y$, $Z\in N$ , $Xarrow YZ\not\in P_{0}$ we obtain a
non-primitive word in $S(G_{0}’)$ with $G_{0}’=(N, S, P_{0}’)$ and $P_{0}’=P_{0}\cup\{Xarrow YZ\}$ .

Note that $L(G)\underline{\subset}Q_{\Sigma}\Rightarrow S(G_{0})\subseteq Q_{N}$ . The opposite implication $S(G_{0})\subseteq Q_{N}\Rightarrow L(G)\subseteq Q_{\Sigma}$ holds
if $\Sigma(X)\cap$ $\mathrm{C}(Y)=\emptyset$ for all $X$ , $Y\in N$ with $X\neq Y.$ The proof of this can be found in [4]. With these
facts we may characterize all reduced grammars by using the characterization of maximal skeletons for
any fixed cardinality of nonterminals. (If $|N|>2$ then we have to take into consideration the similarity
possibilities of terminals as well.)

3 Maximal Skeletons with 4 Nonterminals
Before start investigating the 4 nonterminal cases we have to prove the following theorem:
Lemma 1 Suppose a grammar generates all of the primitive words over an (at least two letter) alphabet,
and does not generate any non-primitive word. Then the start symbol can not be contained in any (at
least two letter) word generated by the grammar.

Proof: Suppose the grammar generates the word $ASB$ , where $S$ is the start symbol, and $A$ , $B$ are any
words, one of them is not empty. Since the grammar generates all primitive words, it also generates the
word $X^{n}BAX^{n}$ (for an apropriate letter $X$ and integer $n$), and thus $AX^{n}BAX^{n}B$ , This is a contradiction
because AXnBAXnB is not primitive.

口

In the rest of the paper we limit our examination to skeletons, the right hand side of whose rules do
not contain the start symbol.

Using an appropriate computer program we found 30 different maximal skeleton candidates, up to
symmetries, with 4 nonterminals $(S, X, Y, Z)$ , the right hand side of whose rules do not contain the start
symbol.

These symmetries are $\sigma$ defined by $\mathrm{a}\{\mathrm{A}$) $=B$ , $\mathrm{a}(B)$ $=A$ , $\delta$ defined by $\mathrm{a}\{\mathrm{A})=B$ , $5\{\mathrm{B})=C$ , $\mathrm{L}(\mathrm{G})=A$

and $\pi$ defined by $\pi(Aarrow BC)=Aarrow CB.$

The computer program in question checked that none of these 30 skeletons generates a non-primitive
word $W$ of nonterminals with length $|W|\leq 12.$

It was run in several steps, using an input list of skeletons generating some non-primitive word such
that any enlarged skeleton (some productions added) could be disregarded. Another list contained only
such skeletons generating no non-primitive word with $|W|\leq 12$ such that any skeleton with a subset
of productions could be disregarded. Finally we got a list of 30 candidates for maximal skeletons (with
respect to primitive words, and up to symmetries). The program is the same which was given in the
appendix of paper [4] with minor corrections.

There exist no more skeletons with the property from above. In this section we prove that each of
them is a maximal skeleton indeed.

Consider $N=\{S, X, Y, Z\}$ with the start symbol $S$ , and (for simplicity) denote by $Q$ the set of all
primitive words having at least two letter over $\{X, Y, Z\}$ . We distinguish the following 30 cases.

Case 1

$P_{0}=\{Sarrow XY$, $Sarrow Y$X, $Sarrow XZ$, $Sarrow ZX$ , $Sarrow$ YZ,
$Sarrow ZY$, $Xarrow XX$, $Yarrow YY$, $Zarrow ZZ\}$ .

$\mathrm{s}(\mathrm{G}0)=(X^{+}\cdot Y^{+})\cup(Y^{+}\cdot X^{+})\cup(X^{+}\cdot Z^{+})\cup(Z^{+}\cdot X^{+})\cup(Y^{+}\cdot Z^{+})\cup$

$(Z^{+}\cdot Y^{+})\subset Q.$

This is shown in the following way:
Let $L=(X^{+}Y^{+})\cup(Y^{+}X^{+})\cup(X^{+}Z^{+})\cup(Z^{+}X^{+})\cup(Y^{+}Z^{+})\cup(Z^{+}Y^{+})\subset Q.$ By induction on $W\in L,$

namely $XY\in L$ , $YX\in L$ , $XZ\in L$ , $ZX\in L$ , $YZ\in L,$ $ZY\in L,$ and any application of a production
from $P_{0}$ on some $W\in L$ yields again some $W’\in L,$ which implies $5(\mathrm{G}\mathrm{o})\subseteq L$ .

On the other hand, any $W\in L$ can be derived from S. $\{XY, YX,XZ, ZX, YZ, ZY\}\subset S(G_{0})$ is
obvious. $X^{m}Yn$ $\in S(G_{0})$ by $S\Rightarrow XY^{m}\Rightarrow^{-1}X^{m}Y^{n-1}\Rightarrow X^{m}Y^{n}$ with productions { $S$ - $XY$, $Xarrow XX$ , $Yarrow$

$YY\}$ . $Y^{m}X^{n}\in S(G_{0})$ by $S\Rightarrow YX^{m-1n-1}\Rightarrow Y^{m}X\Rightarrow Y^{m}X^{n}$ with productions {$Sarrow YX$, $X$ - $XX$ , $Yarrow$

$YY\}$ , and so on. This implies $L\subseteq$ $5(\mathrm{G}0)$
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Note that all productions have to be applied.
$\mathrm{S}(\mathrm{G}0)\subseteq Q$ is obvious.
$XYX\not\in S(G_{0})$ implies $S(G_{0})\subset Q.$

口

Case 2

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Sarrow XZ$, $Sarrow ZX,$ $Sarrow Y$Z,
$Sarrow ZY$, $Xarrow XX$, $Yarrow Y$ Y, $Zarrow XY$, $Zarrow$

$\mathrm{y}\mathrm{x}$ }.
$\mathrm{S}(\mathrm{G}0)=(X^{+}\cdot Y^{+}\cdot X’)$ $\cup(Y^{+}. X^{+}\cdot\}"’)$ $\cup(X^{+}\cdot\{\mathrm{z}\})\cup(\{\mathrm{z}\}\cdot X^{+})\cup$

$(Y^{+}\cdot\{Z\})\cup(\{Z\}\cdot Y^{+})\subset Q.$

The proof is similar to case 1, for $\mathrm{S}(\mathrm{G}\mathrm{q})\subseteq L$ is shown by induction that any application of a production
yields again an element from $L$ , and for $L\subseteq S(G_{0})$ all productions have to be applied.

$\mathrm{S}(\mathrm{G}0)\subset Q$ , because $XYZ\not\in S(G_{0})$ .

The proof is similar to case 1, for $S(G_{0})\subseteq L$ is shown by induction that any application of a production
yields again an element from $L$ , and for $L\subseteq S(G_{0})$ all productions have to be applied.

$S(G_{0})\subset Q,$ because $XYZ\not\in S(G_{0})$ .
口

Case 3
$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Sarrow XZ$, $Sarrow ZX$, $Sarrow YZ$, $Sarrow ZY,$

$Xarrow XX$, $Yarrow YY$, $Zarrow XY$, $Zarrow XZ$, $Zarrow ZY\}$ .
$\mathrm{S}(\mathrm{G}0)=(Y^{*}\cdot X^{*}\cdot\{Z, \lambda\}\cdot Y^{*})\cup(X^{*}\cdot\{Z, \lambda\}\cdot Y^{*}\cdot X^{*})$ ’ $\{\lambda, X^{+}, Y^{+}, Z\}\subset Q.$

Again, the proof is similar to case 1, to show that $\mathrm{S}(\mathrm{G}\mathrm{q})\subseteq L$, and for $L\subseteq S(G_{0})$ all productions
have to be applied.

$XYZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 4

$P0=\{Sarrow XY$, $Sarrow YX$, $Sarrow XZ$, $Sarrow ZX,$ $Sarrow$ $YZ$, $Sarrow ZY,$

$Xarrow XX$, $Yarrow YY$, $Zarrow XZ$, $Zarrow ZX$, $Zarrow YZ$, $Zarrow ZY\}$ .
$S(G_{0})=(X^{+}\cdot Y^{+})\cup(Y^{+}\cdot X^{+})\cup$ ({x, $Y\}^{*}\cdot\{Z\}\cdot\{X,$ $Y\}^{*}$ ) $3$ $\{Z\}\subset Q.$

For $L\subseteq S(G_{0})$ all productions have to be applied.
$S(G_{0})\subseteq Q,$ because all words $W\in$ 5(G0) contains one occurence of the letter $Z$ , or are of the form

$X^{+}Y^{+}$ or $Y^{+}X^{+}$ , a $\mathrm{d}$ $\mathrm{S}(\mathrm{G}0)\subset Q$ , since $XyX\not\in S(G_{0})$ .

For $L\subseteq S(G_{0})$ all productions have to be applied.
$S(G_{0})\subseteq Q,$ because all words $W\in S(G_{0})$ contains one occurence of the letter $Z$ , or are of the form

$X^{+}Y^{+}$ or $Y^{+}X^{+}$ , and $S(G_{0})\subset Q,$ since $XyX\not\in S(G_{0})$ .
口

Case 5

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Sarrow XZ$, $Sarrow ZX$, $Sarrow$ YZ,
$Sarrow ZY$, $Xarrow XX$, $Xarrow YZ$, $Xarrow ZY\}$ .

Let $n(Y),n(Z)$ the number of $Y$, $Z$ letters in the generated word. It can be show by induction
that $n(Y)\#$ $1=n(Z)$ holds for all $W\in S(G_{0})$ , $|\mathrm{I}W|$ $\geq 3.$ Assure that $W=U^{k}$ , $k>1,$ and let
$nu(Y),n_{U}(Z)$ the number of letters $Y$ and $Z$ in the word $U$ . Now $\mathrm{n}(\mathrm{y})=kn_{U}(Y)$ , $n(Z)=kn_{U}(Z)$ , so
$knu(Y)\pm 1=knu(Z)$ , $k>1,$ which is a contradiction.

$\mathrm{S}$ (GO)\subset Q, since $XyX\not\in S(G_{0})$ .
口

Case 6

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Sarrow XZ$, $Sarrow ZX$, $Sarrow Y$Z,
$Sarrow ZY$, $Xarrow XX$, $Xarrow YZ$, $Yarrow t$ $YX$ , $Zarrow XZ\}$ .

We consider 3 subcases, based on the productions involving $S$ :

(a) Start generating with one of the productions $\{Sarrow XY, Sarrow YX, Sarrow XZ, Sarrow ZX\}$ . In this
case the $n(Y)\pm 1=n(Z)$ equation holds.

(a) Start generating with one of the productions $\{Sarrow XY, Sarrow YX, Sarrow XZ, Sarrow ZX\}$ . In this
case the $n(Y)\pm 1=n(Z)$ equation holds.

(6) Now start with the production $Sarrow$ yZ. We receive a skeleton which is letter-isomorphic to the
case 9 of the 3 nonterminals which was proved in [4]. (The $X” x$ $XX$ production is unnecessary.)
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(c) Finally start with the production $Sarrow ZY.$ Suppose there exists a non-primitive word $W$ , which
is generated by the skeleton started with $Sarrow ZY.$ In this case – since non-primitive words are
closed under cyclic permutation, - there exists a non-primitive word $W’$ , which is generated by the
skeleton started with the $Sarrow YZ$ production. This contradicts (b).

$XYY\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 7

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Sarrow XZ$, $Sarrow ZX$, $Sarrow$ YZ,
$Sarrow ZY$, $Xarrow XX$, $Yarrow XY$, $Yarrow YX$, $Yarrow Y$Z,
$Yarrow ZY$, $Zarrow XZ$, $Zarrow ZX\}$ .

In this case every $W\in$ 5(G0) contains either:

(a) exactly one $Y$ , when we start generating with $\{Sarrow XY, Sarrow YX, Sarrow YZ, Sarrow ZY\}$ , or

(6) exactly one $Z$ , when we start generating with $\{Sarrow XZ, Sarrow ZX\}$ .
$XYY\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

In this case every $W\in S(G_{0})$ contains either:

(a) exactly one $Y$ , when we start generating with $\{Sarrow XY, Sarrow YX, Sarrow YZ, Sarrow ZY\}$ , or

(6) exactly one $Z$ , when we start generating with $\{Sarrow XZ, Sarrow ZX\}$ .
$XYY\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 8

$P_{0}=\{S$ -si $XY$, $Sarrow YX$ , $Sarrow XZ$, $Sarrow ZX$, $Sarrow Y$Z,
$Sarrow ZY$, $Xarrow YZ$, $Xarrow ZY$, $Yarrow X$ Z, $Yarrow t$ $ZX$ }.

(a) Start with one of the productions $\{Sarrow XZ, Sarrow ZX, Sarrow YZ, Sarrow ZY\}$ . Then any generated
word contains exactly one $X$ or exactly one $Y$ .

(b) Start with one of the productions $\{Sarrow XY, Sarrow YX\}$ . Then $n(X)+n(Y)=2$ holds for every
generated word, and if $n(X)=2$ or $n(Y)=2,$ then $n(Z)$ is odd.

$XYX\not\in$ 5(G0), so $\mathrm{S}(\mathrm{G}0)\subset Q$ .
口

Case 9

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Sarrow XZ$, $Sarrow ZX$, $Xarrow XX,$

$Yarrow YY$, $Yarrow ZZ$, $Zarrow YY$, $Zarrow ZZ$, $Yarrow$ YZ,
$Yarrow ZY$, $Zarrow Y$Z, $Zarrow ZY$ }.

$\mathrm{S}(\mathrm{G}0)=(X^{+}\cdot\{Y, Z\}^{+})\cup(\{Y, Z\}^{+}. X^{+})\subset Q.$

The proof is similar to case 1. To show $L\subseteq$ 5(G0), only productions $\{Sarrow X\mathrm{Y}$, $Sarrow YX$ , $S\dashv$

$XZ$, $Sarrow ZX$, $Xarrow XX$ , $Yarrow YY$, $Zarrow ZZ$, $Yarrow YZ$, $Yarrow$ $Zy\}$ have to be used.
$YZ\not\in S(G_{0})$ implies $5(\mathrm{G}0)\subset Q$ .

The proof is similar to case 1. To show $L\subseteq S(G_{0})$ , only productions $\{Sarrow X\mathrm{Y}$, $Sarrow YX$ , $Sarrow$

$XZ$, $Sarrow ZX$, $Xarrow XX$ , $Yarrow YY$, $Zarrow ZZ$, $Yarrow YZ$, $Yarrow ZY\}$ have to be used.
$YZ\not\in S(G_{0})$ implies $S(G_{0})\subset Q.$

口

Case 10

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Sarrow XZ$, $Sarrow ZX,$ $Xarrow XX$ , $Yarrow Y$Y,
$Zarrow YY$, $Zarrow XY$, $Zarrow YX$ , $Zarrow r$ $XZ$, $Zarrow ZX\}$ .

$\mathrm{S}(\mathrm{G}0)=(X^{*}\cdot\{Z, Y^{+}\}\cdot X’)$ ’ $\{Z, Y^{+}\}\subset Q.$

Again, the proof is similar to case 1. To show $L\underline{\subset}5(\mathrm{G}\mathrm{o})$ , only productions {$Sarrow XY$, $Sarrow YX$, $Sarrow$?
$XZ$, $Sarrow ZX$, $Xarrow XX$, $Yarrow YY$, $Zarrow XY$, $2\mathrm{i}$ $arrow XZ\}$ have to be applied,

$YZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

Again, the proof is similar to case 1. To show $L\underline{\mathrm{C}}S(G_{0})$ , only productions $\{Sarrow XY$, $Sarrow YX$, $Sarrow$

$XZ$, $Sarrow ZX$, $Xarrow XX$, $Yarrow YY$, $Zarrow XY$, $Zarrow XZ\}$ have to be applied,
$YZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 11

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Sarrow XZ$, $Sarrow ZX$, $Xarrow X$X,
$Y” \mathrm{p}$ $YY$, $Zarrow YY$, $Z$ $arrow XY$, $Zarrow XZ$, $Zarrow ZY\}$ .
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$\mathrm{s}(\mathrm{G}0)=(X^{*}\cdot\{Z, \lambda\}\cdot Y^{*}. X’)$ $s$ $\{\lambda, X^{+}, Y^{+}, ZY^{*}\}\subset Q.$

Similar to case 1 again. For $L\subseteq$ 5(G0) all productions have to be applied except $Zarrow YY$

$YZ$ ( $S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 12

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Sarrow XZ$, $Sarrow ZX$ , $Xarrow X$X,
$Yarrow YY$, $Yarrow YZ$, $Zarrow XZ\}$ .

(a) If we start with one of the productions $\{Sarrow XZ, Sarrow ZX\}$ , any generated word contains exactly
one $Z$ .

(a) If we start with one of the productions $\{Sarrow XZ, Sarrow ZX\}$ , any generated word contains exactly
one $Z$ .

(b) If we start with the production $Sarrow FX,$ any generated $W$ word has a form $Y\{Y, X^{*}Z\}^{*}X^{+}$ .
if $W=U^{k}$ , $k\geq 2,$ then $U=YU’ X$ for some $U’$ , and $U=ZU’X$ or $U=XU’X$ , which is a
contradiction.

(c) Start with the production $Sarrow X$Y. In this case - since non-primitive words are closed under cyclic
permutation, and starting with $Sarrow$? $YX$ we receive only primitive words, – all of the generated
words are primitive.

$YZ\not\in S(G_{0})$ implies $S(G_{0})\subset Q.$

口

Case 13

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Sarrow XZ$, $Sarrow ZX$, $Xarrow XX$ , $Xarrow$ YZ,
$Xarrow ZY$, $Yarrow XY$, $Yarrow YX$, $Zarrow XZ$ , $Zarrow t$ $ZX\}$ .

Let $\mathrm{n}(\mathrm{Y})$ $n(Z)$ the number of $Y$, $Z$ letters in the generated word. It can be show by induction that
$n(Y)\pm 1=n(Z)$ holds for all $W\in$ $5(\mathrm{G}0)$ , Let $W=U^{k}$ , $k>1,$ and let $n(F),n(Z)$ the number of
letters $Y$ and $Z$ in the word $U$ . Then $n(Y)=$ knu(Y), $\mathrm{n}(\mathrm{Z})=knv\{Z$), so $knv\{Y$ ) $\pm 1=knv\{Z$ ), $k$. $>1,$

which is a contradiction.
$YZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 14

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Sarrow X$Z, $Sarrow ZX$ , $Xarrow X$X,
$Xarrow YZ$, $Yarrow XY$, $Yarrow XZ\}$ .

(a) If we start with the production $S$ $arrow$ $X$Y, any generated word $W$ has the form
$\{X, Y\}V\{Y, XZ^{j}, YZ^{j}\}$ for some $\mathrm{V}$ , where $i2$ $1$ , $i$ odd, $j\geq 2$ , $j$ even. In $W$ every letter $Y$ ,
every word $XZ^{i}$ , $i2$ $1$ , $i$ odd, and every word $YZ^{j}$ , $j\geq 2$ , $j$ even, is followed by $Z$ . Now, if
$W=U^{k}$ , $k\geq 2,$ then $U=\{X, Y\}U’$ for some $U’$ , and $U=ZU’$ , which is a contradiction.

(a) If we start with the production $S$ $arrow$ $X$Y, any generated word $W$ has the form
$\{X, Y\}V\{Y, XZ^{j}, YZ^{j}\}$ for some $\mathrm{V}$ , where $i\geq 1$ , $i$ odd, $j\geq 2$ , $j$ even. In $W$ every letter $Y$ ,
every word $XZ^{i}$ , $i\geq 1$ , $i$ odd, and every word $YZ^{j}$ , $j\geq 2$ , $j$ even, is followed by $Z$ . Now, if
$W=U^{k}$ , $k\geq 2,$ then $U=\{X, Y\}U’$ for some $U’$ , and $U=ZU’$ , which is acontradiction.

(6) Start with the production $Sarrow Y$X. In this case - since non-primitive words are closed under cyclic
permutation, and starting with $Sarrow X$Y, we receive only primitive words, – all of the generated
words are primitive.

(c) If we start with the production $Sarrow X$Z, the generated word $W$ has the form $XZ^{+}$ or $YZ^{+}$

or $\{X, Y\}V\{XZ^{i}, YZ^{j}\}$ for some $\mathrm{V}$ , where $i\geq 1$ , $i$ odd, $j2$ $2$ , $j$ even. In $W$ every word
$XZ^{i}$ , $i\geq 1$ , $i$ odd, and every word $YZ^{j}$ , $j\geq 2$ , $j$ even is followed by $Z$ . Now, if $W=U^{k}$ , $k\geq 2,$

then $U=\{X, Y\}U’$ for some $U’$ , and $U=ZU’,$ which is a contradiction.

(d) Start with the production $Sarrow ZX.$ In this case - since non-primitive words are closed under cyclic
permutation, and starting with $Sarrow X$Z, we receive only primitive words, – all of the generated
words are primitive,



68

$YZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 15

$P_{0}=\{\{Sarrow X$Y, $Sarrow YX$ , $Sarrow XZ$, $Sarrow ZX$ , $Xarrow X$X,
$Yarrow XY$, $Yarrow YX$ , $Yarrow XZ$, $Yarrow ZX$, $Zarrow X$Y,
$Zarrow YX$, $Zarrow XZ$, $Zarrow ZX\}$ .

The generated word contains exactly one $Y$ , or exactly one $Z$ . This can be proved by simple induction.
$YZ\not\in$ 5(G0), so $S(G_{0})\subset Q.$

The generated word contains exactly one $Y$ , or exactly one $Z$ . This can be proved by simple induction.
$YZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 16

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Sarrow XZ$, $Sarrow ZX$, $Yarrow YY$, $Yarrow ZZ,$

$Zarrow YY$, $Zarrow ZZ$, $Xarrow XY$, $Xarrow YX$, $Xarrow X$Z,
$Xarrow ZX$ , $Yarrow Y$Z, $Yarrow ZY$, $Zarrow YZ$, $Zarrow ZY$ }.

The generated word contains exactly one $X$ . This can be proved by simple induction.
$YZ\not\in$ S(GQ) implies 5(GO)\subset Q.

口

Case 17

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Sarrow XZ$, $Sarrow ZX$ , $Yarrow Y$Y,
$Yarrow ZZ$, $Yarrow XZ\}$ .

(a) Start with one of the productions $\{Sarrow XZ, Sarrow ZX\}$ . The generated language is $\{XZ, ZX\}$ .

(b) Start with the $Sarrow YX$ production. Any generated word $W$ has the form $\{X, Y, Z^{i}\}V\{X\}$ for some
$V$ , where $i\geq 2$ , $i$ even. In $W$ every $X$ is followed by an odd nuber of $Z$ . If $W=U^{k}$ , $k\geq 2,$ then
$U=\{X, Y, Z^{i}\}U’$ for some Uf, where $i$ even, and $U=Z^{i}U’$ , where $i$ odd. This is a contradiction.

(c) Start with the production $Sarrow X$Y. In this case - since non-primitive words are closed under cyclic
permutation, and startig with $Sarrow yX,$ we receive only primitive words, – all of the generated
words are primitive.

$YZ$ ( $5(\mathrm{G}0)$ , so $S(G_{0})\subset Q.$

口

Case 18

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Sarrow XZ$, $Sarrow ZX$ , $Yarrow$ $YY$,
$Zarrow ZZ$, $Yarrow XZ$ , $Yarrow YZ\}$ .

(a) Start with one of the productions $\{Sarrow XZ, Sarrow ZX\}$ . The generated language is $(XZ^{+})\cup$

$(Z^{+}X)\subset Q.$

(b) Start with the production $Sarrow yX,$ any generated word $W$ has a form $\{X, \mathrm{y}\}\mathrm{F}\{\mathrm{X}\}$ for some V.
In $W$ every letter $X$ is followed by aZ. Now, if $W=U^{k}$ , $k\geq 2,$ then $U=\{X, Y\}U’$ for some $U’$ ,
and $U=ZU’$ , which is a contradiction.

(c) Start with the production $Sarrow X$Y. In this case all of the generated words are primitive, since
starting with $Sarrow yX,$ we receive only primitive words.

$YZ\not\in$ 5(G0), so $S(G_{0})\subset Q.$

口

Case 19

$P_{0}=$ { $Sarrow XY,$ $Sarrow YX,$ $Sarrow XZ,$ $Sarrow ZX,$ $Yarrow ZZ,$ $Zarrow$ ZY}.
Let $n(X)$ , $n(Y)$ , $n(Z)$ the number of letters $X$ , $Y$, $Z$ in the generated word.
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(a) First start with one of the productions $\{Sarrow XY, Sarrow YX\}$ . It can be shown by induc-
tion that $2n(Y)+n(Z)-n(X)=1$ holds for all $W\in S(G_{0})$ . Let $W=U^{k}$ , $k>1$ , and
let $n_{U}(X)$ , $n(Y)$ , $n_{U}(Z)$ the number of letters $X$ , $Y$ and $Z$ in the word $U$ . Then $n(X)=$
$knu(X)$ , $\mathrm{n}(\mathrm{Y})=knu(X)$ , $\mathrm{n}(\mathrm{Z})=knu\{Z$ ), so $\mathrm{k}(2\mathrm{n}\mathrm{u}(\mathrm{Y})+n(Z)$ –n $(\mathrm{X})=1$ , which is a
contradiction.

(6) Now start with the production $Sarrow X$Z. Here $2n(Y)+n(Z)=n(X)$ holds for all $W\in S(G_{0})$ .
By induction it follows that for any proper prefix of any $W\in$ S(G0) : $2n(Y)+n(Z)<$ $\mathrm{n}(\mathrm{X})$ . Let
$W=U^{k}$ , $k>1,$ and let $n_{U}(X)$ , $n(Y)$ , $n_{U}(Z)$ the number of letters $X$ , $Y$ and $Z$ in the word $U$ .
Then $n(X)=$ knu(X), $\mathrm{n}(\mathrm{Y})=knu(X)$ , $\mathrm{n}(\mathrm{Z})=knu\{Z$ ), and - since the $U$ is proper prefix of $W$

-k(2nu(Y) $+$ nu{Z) $)<$ knv(X), which is contradicting $2n(Y)+n(Z)=n(X)$ .

(c) Start with the production $Sarrow ZX.$ In this case all of the generated words are primitive, since
starting with $Sarrow X$Z, we receive only primitive words.

$YZ\not\in$ 5(G0), so $S(G_{0})\subset Q.$

口

Case 20

$P_{0}=\{Sarrow XY, Sarrow YX, Xarrow XX, Xarrow ZZ, Xarrow YZ, Yarrow XY\}$ .
(a) If we start with the production $Sarrow X$Y, any generated word $W$ has the form $\{\mathrm{X} , Z^{:}\}V\{Y\}$ for

some $\mathrm{V}$ , where $i\geq 2$ , $i$ even. In $W$ every letter $Y$ is followed by an odd number of occurences of
$Z$ . Now, if $W=U^{k}$ , $k\geq 2,$ then $U=\{X, Y, Z:\}U’$ for some $U’$ , where $i$ is even, and $U=Z^{i}U’$ ,
where $i$ is odd. This is a contradiction.

(a) If we start with the production $Sarrow X$Y, any generated word $W$ has the form $\{X, Y, Z^{:}\}V\{Y\}$ for
some $\mathrm{V}$ , where $i\geq 2$ , $i$ even. In $W$ every letter $Y$ is followed by an odd number of occurences of
$Z$ . Now, if $W=U^{k}$ , $k\geq 2,$ then $U=\{X, Y, Z:\}U’$ for some $U’$ , where $i$ is even, and $U=Z^{i}U’$ ,
where $i$ is odd. This is acontradiction.

(6) Start with the production $Sarrow$ $YX$ . In this case all of the generated words are primitive, since
starting with $Sarrow X$Y, we receive only primitive words.

$XZ$ ( $S(G_{0})$ implies $S(G_{0})\subset Q.$

口

Case 21

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Xarrow XX$ , $Yarrow YY$, $Zarrow Z$Z,
$Xarrow XZ$, $Xarrow ZX$, $Yarrow YZ$, $Yarrow ZY\}$ .

$S(G_{0})=$ ({x, $Z\}^{*}\cdot X\cdot Z^{*}\cdot\{Y,$ $Z\}^{*}\cdot Y\cdot Z^{*}$ ) $\cup$

$(\{\mathrm{x}, Z\}^{*}. Y\cdot Z’\cdot\{X, Z\}’\cdot X\cdot Z^{*})\subset Q.$

Similar to case 1 again. For $L\subseteq$ S(Gq) all productions have to be applied except $Zarrow ZZ$ .
Let the function $h$ be the following: $h(S)=S$, $\mathrm{h}\{\mathrm{X}$ ) $=X$ , $\mathrm{n}(\mathrm{Y})=Y$, $h(Z)=$ A. Let $L_{1}=$

$\mathrm{h}(\mathrm{W})|W\in$ S(G0). $L_{1}=(X^{+}Y^{+})\cup(Y^{+}X^{+})$ .
Suppose there exists a non-primitive word $W\in$ $5(G_{0})$ . Then there exists a non-primitive word $h(W)$

in $L_{1}$ . This is a contradiction.
$XZ$ ( $5(\mathrm{G}0)$ , so $S(G_{0})\subset Q.$

口

Case 22

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Xarrow XX$ , $Yarrow YY$, $Zarrow ZZ,$

$Xarrow XZ$, $Yarrow ZY$, $Zarrow ZX$, $Zarrow YZ\}$ .
(a) If we start with the production $Sarrow X\mathrm{y}$ , any generated word $W$ has the form $\{X\}V\{Y\}$ for some

V. In $W$ every letter $Y$ is followed by $Y$ or $Z$ . Now, if $W=U^{k}$ , $k\geq 2,$ then $U=X$U’ for some
$U’$ , and $U=\{Y,$ $\mathrm{z}\mathrm{y},$ . This is a contradiction.

(6) Start with the production $Sarrow$ $YX$ . In this case all of the generated words are primitive, since
starting with $Sarrow XY$ we receive only primitive words.



70

$XZ$ ( $S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 23

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Xarrow XX$ , $Zarrow XX$, $Zarrow Y$Y,
$Zarrow ZZ$, $Xarrow XZ$, $Xarrow ZX$ , $Zarrow X$Z, $Zarrow ZX$}.

(a) Start with the production $Sarrow X$Y. Then any generated word $W$ has the form $\{X, Z, Yl\}V\{Yj\}$

for some V.‘ where $i\geq 2$ , $i$ even, $j\geq 1$ , $j$ odd. In $W$ every odd number of occurences of $Y$ is
followed by odd number of occurences of Y. (Except the last $Y$-block.) If $W=U^{k}$ , $k\geq 2,$ then
$U=\{X, Z, Y^{i}\}U’$ for some $U’$ , where $i\geq 2$ , $i$ even, and $U=Y^{j}U’$ , where $j\geq 1$ , $j$ odd. This is a
contradiction.

(b) Start with the production $Sarrow$ FX. In this case aU of the generated words are primitive, since
starting with $S” \mathrm{p}$ $XY$ we receive only primitive words.

$XZ$ ( $S(G_{0})$ , implies $S(G_{0})\subset Q.$

口

Case 24

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Xarrow XX$ , $Zarrow YY$, $Zarrow Z$Z,
$Xarrow XZ$ , $Xarrow ZX$, $Yarrow YZ$, $Yarrow ZY\}$ .

(a) Let the function $h$ be the following: $h(S)=S$, $\mathrm{h}(\mathrm{S})=X$ , $\mathrm{h}(\mathrm{S})=Y$, $\mathrm{h}(\mathrm{S})=$ A. Let $L_{1}=$

$\{h(W)|W\in S(G_{0})\}$ .
Start with the production $Sarrow X$Y. Let $W\in S(G_{0})$ . In this case the word $\mathrm{h}(\mathrm{W})$ has a form
$\{X, Y^{i}\}V\{Y^{j}\}$ for some $V$ , where $i2$ $2$ , $i$ even, $j\geq 1$ , $j$ odd. In $h(W)$ every odd number of
occurences of $Y$ is followed by odd number of occurences of Y. (Except the last $Y$-block.) If
$h(W)=U^{k}$ , $\ \geq 2,$ then $U=\{X, Y^{i}\}U’$ for some $U’$ , where $i\geq 2$ , $i$ even, and $U=Y^{j}U’$

) where
$j\geq 1$ , $j$ odd. This is the proof that $L_{1}$ contains only primitive words.
Suppose that exists a non-primitive word $W\in S(G_{0})$ . Then exists a non-primitive word $h(W)$ in
$L_{1}$ . This is a contradiction.

(6) Start with the production $Sarrow$ $YX$ . In this case all of the generated words are primitive, since
starting with $Sarrow X$Y, we receive only primitive words.

$XZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 25

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Xarrow XX$ , $Zarrow ZZ$, $Xarrow X$Z,
$Xarrow YZ$, $Yarrow XY$, $Zarrow ZX\}$ .

(a) If we start with the production $Sarrow X$ Y, any generated word $W$ has the form $\{X, Y\}V\{Y\}$ for
some V. In $W$ every letter $Y$ is followed by $Z$ . Now, if $W=U^{k}$ , $k\geq 2,$ then $U=\{X, Y\}U’$ for
some $U’$ . and $U=ZU’$ . This is a contradiction.

(b) Start with the production $Sarrow t$ $\mathrm{F}\mathrm{X}$ . In this case all of the generated words are primitive, since
starting with $Sarrow XY$ we receive only primitive words.

$XZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 26
$P_{0}=\{Sarrow XY, Sarrow YX, Xarrow ZZ, Zarrow XY, Zarrow YX\}$ .
Let $\mathrm{h}(\mathrm{S})$ , $\mathrm{n}(\mathrm{Z})$ , $n(Z)$ the number of letters $X$ , $Y$, $Z$ in the generated word. It can be show by induction

that $2n(X)+n(Z)-n(Y)$ $=1$ holds for all $W\in S(G_{0})$ . Let $W=U^{k}$ , $k>1,$ and let $n_{U}(X)$ , $n_{U}(Y)$ , $n_{U}(Z)$
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the number of letters $X$ , $Y$ and $Z$ in the word $U$ . Then $n(X)=$ knu{X), $\mathrm{n}(\mathrm{Y})=knu(Y)$ , $\mathrm{n}(\mathrm{Z})=$

$knu(Z)$ , so $k(2n_{U}(Y)+n (Z)-\mathrm{n}\mathrm{u}\{\mathrm{X}))=1$ , which is a contradiction.
$XZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 27

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Zarrow XX$ , $Zarrow YY$, $Zarrow ZZ$,
$Xarrow XZ$, $Xarrow ZX$, $Yarrow YZ$, $Yarrow ZY\}$ .

Let the function $h$ be the following: $h(S)=S$, $\mathrm{n}(\mathrm{X})=X$ , $\mathrm{n}(\mathrm{Y})=Y$, $\mathrm{n}(\mathrm{Z})=$ A. Let $L_{1}=$

{$h(W)|W\in$ 5(G0)}. Every $W\in S(G_{0})$ contains $X$ and $Y_{:}$ so if there exists a non-primitive word
$W\in 5(G_{0})$ , then there exists a non-primitive word $W’\in L_{1}$ too. So to prove that $\mathrm{S}(\mathrm{G}\mathrm{o})$ does not
contain any non-primitive word, it is enought to prove that $L_{1}$ does not contain any non-primitive words.

Every $W’\in L_{1}$ has the following form:
1. $\{\mathrm{X}, YX\}\subset L_{1}$ ,
2. If $W’\in L_{1}$ , then we can insert $XX$ or YY into $W’$ before or after any letter, and we receive another
word from $L_{1}$ .

Let $V=U^{k}$ , $k>1$ be a non-primitive word over the alphabet $\{X, Y\}$ . Remove all of the occurences
of $XX$ and $YY$ from $U$ , and repeat until there exists no $XX$ or YY in the word. The received $U’$ word
has the following form:

$\{\{XY\}^{i}\cdot\{X, \lambda\}, \{YX\}’\cdot\{Y, \lambda\}|i\geq 0\}$ .

Now remove all of the occurences of $XX$ and $YY$ from $U^{lk}$ , and repeat until there exists no $XX$ or YY
in the word. Denote the received word by $V’$ . Now if $|U’|$ was even, then $V’$ has the form:

$\{\{XY\}^{i*k}, \{YX\}^{i*k}|i\geq 0, k>1\}$,

and if $|U’|$ was odd, then $V’$ has the form:
$\{U’, \lambda\}$ .

Suppose there exists $W’\in L_{1}$ , $W’=U^{k}$ , $k>1$ non-primitive word. In this case the $W$’ contains odd
number of $X$ and odd number of $Y$ , $k$ is odd, and $|U|$ is even. Execute the above mentioned algorithm
on W. The received word $W’$ has the form $\{\{XY\}^{\dot{\iota}*k}, \{YX\}^{i*k}|i\geq 0, k>1\}$ , because $|U’|$ is even.
However we started from $XY$ or $Y$X, and these words do not have the form $\{\{XY\}^{i*k}$ , $\{YX\}^{i*k}|i\geq$

$0$ , $k>1\}$ . This is a contradiction.
$XZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 28

$P_{0}=\{Sarrow XY, Sarrow YX, Xarrow YZ, Yarrow ZX, Zarrow YX\}$ .
(a) Let us start with the production $Sarrow$ yX. We receive a skeleton which is letter-isomorphic to the

case 11 of the 3 nonterminals which was proved in [4].
(a) Let us start with the production $Sarrow$ yX. We receive a skeleton which is letter-isomorphic to the

case 11 of the 3nonterminals which was proved in [4].

(b) Start with the production $Sarrow X$Y. In this case all of the generated words are primitive, since
starting with $Sarrow yX,$ we receive only primitive words.

$XZ$ ( $\mathrm{S}(G_{0})$ , so $S(G_{0})\subset Q.$

口

Finally we get the following non-reduced skeletons:

Case 29

$P_{0}=\{Sarrow XY$, $Sarrow YX$, $Xarrow XX$ , $Yarrow YY$, $Zarrow XX$,
$Zarrow YY$, $Zarrow ZZ$, $Zarrow XY$, $Zarrow YX$, $Zarrow X$Z,
$Zarrow ZX$, $Zarrow YZ$, $Z” \mathrm{t}$ $ZY\}$ .

$\mathrm{S}(\mathrm{G}\mathrm{o})=(X^{+}\cdot Y^{+})\cup(Y^{+}\cdot X^{+})\subset Q.$

This is a non-reduced skeleton, since there does not exist $W\in$ $\mathrm{S}(\mathrm{G}\mathrm{q})$ which contains $Z$ .
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The proof is similar to case 1. To show $L\subseteq$ $S(G_{0})$ , only productions { $Sarrow XY$, $Sarrow YX$ , $X\prec$?
$XX$, $Y$ - $Y$Y} have to be used.

$XZ$ ( $5(G_{0})$ , so $S(G_{0})\subset Q.$

口

Case 30

$P_{0}=\{Sarrow XY$, $Sarrow YX$ , $Xarrow XX$, $Zarrow XX$, $Z$ $sr$ $Y$Y,
$Zarrow ZZ$, $Yarrow XY$, $Yarrow YX$, $Zarrow XY$, $Zarrow Y$X,
$Zarrow XZ$, $Zarrow ZX$ , $Zarrow YZ$ , $Zarrow ZY\}$ .

$S(G_{0})=(X^{*}\cdot Y\cdot X^{*})\mathrm{k}$ $\{Y\}\subset Q.$

This is a non-reduced skeleton, since there does not exist $W\in$ S(Go) which contains $Z$ .
The proof is similar to case 1. To show $L\subseteq S(G_{0})$ , only productions $\{Sarrow XY$, $Sarrow YX$, $Yarrow$

$XY$, $Yarrow YX\}$ have to be used.
$XZ\not\in S(G_{0})$ , so $S(G_{0})\subset Q.$

口
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