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Borel Summability of Divergent Solutions
for Singularly Perturbed First Order Linear
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1 Introduction and Main Result.

In this paper we are concerned with the following first order linear ordinary differential

equation with a parameter € (€ C):
(1.1) a(z,€)Dyu(z, €) + b(z, e)u(z,€) = f(z,€),

where z € C, D, = d/dz. a, b and f are holomorphic at (z,&) = (0,0) € C2.
First of all we give two fundamental assumptions. The first one demands that ¢ is a

perturbation parameter, that is, we assume the following:
(1.2) a(z,0) = 0.
The second one is

(1.3) a:(0,0) #0,

where a.(z,e) = (d/de)a(z,€). These two assumptions imply that a(0,€) # 0 for suffi-
ciently small € # 0, which means that the equation (1.1) has a regularity at z = 0.
Throughout this paper we always assume (1.2) and (1.3).
It follows from (1.2) and (1.3) that solutions of (1.1) can be expressed by convergent
power series around z = 0. Here, however, let us consider solutions éxpressed by pdwer

series in the parameter €. Then we shall see that under a suitable condition the equation
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(1.1) has a unique formal power series solution u(z,&) = 3, 7 un(z)e" (un(z) are holo-
morphic in a common neighborhood of z = 0), which is divergent in general (cf. Definition
1.1, (3) and Theorem 1.1).

So in this paper we shall deal with the summability problem for such divergent solu-
tions. Our main purpose is to obtain the conditions under which such formal solutions
are Borel summable (cf. Definition 1.1, (5)). Those conditions will be given in Theorem
1.2.

1.1 Definition and Fundamental Result.

Firstly, in order to state our problem precisely, let us introduce some notations.

Definition 1.1 (1) For R > 0, O[R] denotes the ring of holomorphic functions on the
closed ball B(R) := {z € C; |z| < R}.

(2) The ring of formal power series in e (€ C) over the ring O[R] is denoted as
ORI[[e]): O[RI[fE]] = {u(z,€) = X0 un(a)e™; un(z) € O[R]}.

(3) We say that u(z,€) = Y oo un(z)e™ € O[R][[¢]] belongs to O[R][[e]]2 if there exist
some positive constants C' and K such that max;<g|un(z)| £ CK"n! for all n € N.
Therefore an element of O[R][[e]]2 diverges in general.

(4) For € R and T > 0, we define the region O(#,T) by

(1.4) 0(0,T) = {e; |e — Te¥| < T}.

(5) Let u(z,e) = 3.2 jun(z)e™ € O[R)[[e]]l. We say that u(z,e) is Borel summable
in 0 if there exists a holomorphic function U(z,¢) on B(r) x O(#,T) for some 0 <7 < R
and 7' > 0 which satisfies the following asymptotic estimates: There exist some positive

constants C and K such that

(1.5)
N-1
max U(z,e) — Zun(m)an < CKNNUelN, e€0(,T), N=1,2,....
Z|Isr n=0

In general a given power series u(z,e) € O[R][[¢]]2 is not necessarily Borel summable.
However, if u(z,€) is Borel summable in 6, we see that the above holomorphic function
U(z,e) is unique by a general theory of Gevrey asymptotic expansion (cf. Balser(1][2],
Lutz-Miyake-Schifke[5] and Malgrange[6]). So we call this U(z, €) the Borel sum of u(z, £)

The following theorem is fundamental in the argument below.
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Theorem 1.1 (cf. Hibino[4]) Let us assume b(0,0) # 0. Then the equation (1.1)

has a unique formal power series solution u(z,€) = Y o un(z)e™ € O[R]([e]]2 for some

R > 0.

In the following we always assume b(0,0) # 0. On the basis of Theorem 1.1, let us

study the Borel summability of the formal solution.

1.2 Main Result.

Before stating the main theorem in this paper, let us rewrite the equation (1.1).

By the condition b(0,0) # 0, we may assume that b(z,e) # 0 in the neighborhood of
(z,€) = (0,0). Theorefore by dividing b(z, ) into both sides of (1.1), we may assume that
b(z,e) = 1. Then it follows from (1.2) and (1.3) that the equation (1.1) is rewritten in

the following form:
(1.6) {a(z) + v(z,e)}eD,u(z, ) + u(z, €) = f(z,¢),

where a(z) and y(z,€) are holomorphic at z = 0 and (z,¢) = (0, 0), respectively. More-
over they satisfy ‘

(17) e £0,
(1.8) v(z,0) = 0.

Furthermore in this paper we assume for simplicity that a(z) is the constant. That is, we

consider the Borel summability of the formal solution for the following equation:
(1.9) {a+(z,e)}eDu(x, ) + ulz,€) = f(z,¢),

where ¢ is the constant satisfying o # 0. On the general case, see Hibino(3).

Now let us give the conditions under which the formal solution of (1.9) is Borel
summable.
First we define the region E, (6, ) (x > 0) by

(1.10) E.(6,k) = {& dist(¢, Rye”) < &},

where R, = [0, +00). Then the first assumption is stated as follows:

(A1) f(z,¢) can be continued analytically to E. (6 + 7 + arg(a), k) X {e € C; |e] £
¢} (s, 3¢ > 0). Moreover f(z,¢) has the following exponential growth estimate on
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E.(8+ 7+ arg(a),x) x {€ € C; |g| < c}: There exist some positive constants C and §
such that

(1.11) max |f(z,¢)| < Ce'Pl, z € EL(0+ 7+ arg(a), k).

lel<e

Next we assume the following for y(z,€):
(A2) 7(z,€) can be continued analyticall& to E,(0+7+arg(a), k) x {e € C; |g| < c}.
Moreover ¥(z, €) is bounded on E,(f + 7 + arg(a), k) X {€ € C; |g| < c}:

(1.12) M = sup ly(z, €)| < oo.
Ey (8+rn+arg(a),k)x{e€C; |e|<c}

Then we obtain the following main result in this paper.

Theorem 1.2 Under the assumptions (A1) and (A2) the formal solution u(z,€) of the

equation (1.9) is Borel summable in 6.

Remark 1.1 When the formal solution u(z, €) of (1.9) is Borel summable, we see that
its Borel sum is a holomorphic solution of (1.9). This is an immediate consequence of the

uniqueness of the Borel sum.

We will prove Theorem 1.2 in §3. In the proof, we consider an differential convolution
equation (the equation (2.5) in §2) which is obtained by applying the formal Borel trans-
form (cf. Definition 2.1) to (1.9), and prove an analytic continuation property and an
exponential growth estimate for solutions of (2.5) by using the iteration method. Lemma

3.1 in §3 will play the most important role in the proof.

2 Formal Borel Transform of Equations.

Before proving Theorem 1.2, we give some preliminaries.

Definition 2.1 For u(z,&) = 3o o un(z)e™ € O[R]([¢]]2, we define a convergent power
series B(u)(z,n) in a neighborhood of (z,n) = (0,0) by

(2.1) | Bw)(z,n) = Zu,,(x)%f!.

n=0

We call B(u)(x,n) the formal Borel transform of u(z, £).
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When we want to check the Borel summability of formal power series u(z,e) =

oo
n—O

un(z)e™ € O[R][[g]]2, the following theorem plays a fundamental role in general.

Theorem 2.1 (Lutz-Miyake-Schifke[5], Malgrange[6]) The following two condi-
tions (i) and (ii) are equivalent:

(i) ulz,e) =Y 2 sun(z)e™ € O[R]([€]]2 is Borel summable in 6.

(ii) B(u)(z,n) can be continued analytically to B(ro) X E4(8, ko) for some o > 0 and
ko > 0, and has the following exponential growth estimate for some positive constants C
and ¢:

(2.2) max |B(u)(z,n)| < Ce'M, € E(8, k).

|z|<ro
When the condition (i) or (ii) (therefore both) is satisfied, the Borel sum U(z,€) of u(z, €)

in 6 is given by

(2.3) Ulz,e) = 1 /R e B(u)(@,n)dn,

Therefore in order to prove Theorem 1.2, it is sufficient to prove that the formal Borel
transform B(u)(z,n) of the formal solution u(z, ¢) satisfies the above condition (ii) under
the conditions (A1) and (A2). In order to do that, firstly let us write down the equation
which B(u)(z,n) should satisfy. By operating the formal Borel transform to (1.9), we see
that B(u)(z,n) is a solution of the following equation:

(2.4)
aD, *Dav(ay) + [ BO)e,1— ) Dav(a, e +v(z,n) = B(f) (@),

1

where D,™! = / , and B(y)(z,n) and B(f)(z,n) are the formal Borel transforms of
0

Yz, €) =Y ooy Yu(@)e™ and f(z,€) =D oy fn(2)E™, respectively, that is,

B(y)(z,7) Zw T and B(f)(@n) = 5 f@L.

n=0
Furthermore by operating D,, to the equation (2.4) from the left, we see that B(u)(z,n)

is a solution of the following initial value problem:
Dy + aDa}ola,m) = = [ B)a(on — os(a -+ ola )

v(z,0) = f(z,0),

(2.5)
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where g(z,n) = DyB(f)(z,7)-

It is easy to prove that B(u)(z,n) is the unique locally holomorphic solution of (2.5).
Hence Theorem 1.2 will be proved by showing that the solution v(z,7) of the equation
(2.5) satisfies the condition (ii) in Theorem 2.1.

3 Proof of Theorem 1.2.

Let us prove that the solution v(z,n) of the equation (2.5) satisfies the condition (ii) in
Theorem 2.1. Firstly we remark that in general the solution V(z,n) of the initial value

problem of the following first order linear partial differential equation

(3.1) { {Dy + D}V (z,7) = k(z,n),
V(z,0) = l(z)

is given by

(3.2) V(z,n) = /n k(z — a(n — t),t)dt + I(z — an).

Proof of Theorem 1.2. First, let us transform the equation (2.5). It follows from
(3.2) that the equation (2.5) is equivalent to the following equation:

wen) = fz—an0) +/" (@ — aln ~ 1), )t
/ / B(7y)q(z — —t),t — s)vg(z — a(n —t), s)dsdt.
Let us transform the third term of the right hand side. By using Fubini’s Theorem, we
write /On f; - -dsdt = /017 /n .. -dtds. Here we remark that
/ B(Y)n(z — a(n —t),t — s)vz(z — a(n — 1), s)dt
— 2 [ Bone-atn -1t~ ) ole — aln — £),9)dt.

Therefore by an integration by parts and Fubini’s Theorem again we see that (2.5) is
equivalent to the following equation:

33 ven=se-m0)+ [ se-am-1),0d+ ] ol

i=1



where each operator J; is given by

D) = =3 [ B - etz

(67
san) = % [ Ble - aln - 9),00(z - atn - 1), i,
dan) = 2 [ [ B)ma - aln—,t = ol - aln 1) asdt,

Jov(z,m) = /On /0 B(Y)zn(z — a(n —t),t — s)v(z — a(n —t), s)dsdt.

79

In order to prove that the solution v(z,n) of (3.3) satisfies the condition (ii) in Theorem

2.1 we employ the iteration method. Let us define {v,(z,7)}52, as follows:

vo(z,n) == f(z — an,0) + /Ong(x —a(n—t),t)dt.

Forn > 0,

(3.4) Un+1(Z, ) 1= vo(x, n) + Z Jivn(z, n)-

i=1

Next, we define {wn(z,7)}22o by wo(z,n) := vo(z,n) and wa(z, 1) = vn(@, 1) = vn-1(z,)

(n > 1), and define {W,(z,n,t)}, by

(3.5) Wa(z,m,t) := wp(z — a(n —t),t).

Definition 3.1 (1) For A > 0 and p > 0, U,[0, A] denotes the p-neighborhood of [0, A]

in C.
(2) For n € C, we define the function G,(7) by

G,(1) = re'*e 1€ C,
and define G, and G as follows:

Gy = {Gy(R)€C; 0< R<|nl},
G = {Gy(7) € C; 7 € Up[0, |n]}-

We remark that G, is the segment from 0 to 7 and that G?, is the p-neighborhood of G,

Now we can take rg > 0 and kg > 0 such that

(3.6) {o—aC; |a] < 7o, ¢ € By (6, ko)} C B4 (6+ 7 + arg(a), x).
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So let us define v(z, ¢, €) by

(37) 7(x, Ca 6) = 7(1; - a<76)‘
Then it follows from the assumption (A2) and (3.6) that y(z,(,€) is holomorphic on
{z € C; |z| < 1o} x E1(8, ko) x {€ € C; [e] < c}. Moreover it holds that

(3.8) Mo := sup [v(z,¢,€)] < oo
{z€C; |z/<ro} x B+ (6,50 x {c€C; lel<c}

Next let us define B(y)(z,¢,n) by

(39) B)(@. ¢, ) = B)(@ — ag,n) (: > e - ac)’—;—,) .

n=1 ’
Then it follows from (3.8) and Cauchy’s integral formula that B(v)(z, ¢, 7) is holomorphic
on {z € C; |z| < ro} x E4(0,Ko) x C and that there exist some positive constants M,

and d;g such that

{
sup

{z€C; |z|<ro}x B4 (8,50) | &

‘1‘3(’)’)17(37,(,77)‘ < M, necC,

1
(3.10) . sup —B(v)m(w,c,n)l < My, pec,
{z€C; |z|<ro} x E4+(6,%0)
1d ol
sup —_‘B(’Y)n(%g,n) S 1‘41e orm y N € Ca
| {zeC; [z|<ro}x B (6,507 | @ A

where ko' = Kko/2.
Under these preparations let us take a monotonically decreasing positive sequence

{pn}xo satisfying

(3.11) . Ri=Ko — an > 0.

n=0

Then we obtain the following lemma:

Lemma 3.1 W, (x,7,t) is continued analytically to {(z,n,t); |z| < ro, n € E4(6, ko' —

> 50 pi), t € Gir}. Moreover on {(z,m1); |z| < 70, N € Esx(0,60 — 370 P5), t € Gn}
we have the following estimate: For some positive constant Ci,

3.12) Wian, o)l < ittty S (L7 )
‘ k=n )

where &; = max{d|a|,do}.
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If we admit Lemma 3.1, Theorem 1.2 is proved as follows: It follows from Lemma
3.1 that wn(x,n) (= Wa(z,n,1)) is continued analytically to B(ro) x E4(0, ko' — 3 7o £5)
with the estimate

lwn(z,n)| = Wa(z,n, Gn(|n))]
2n n k
< G2y lc:Zn (k - n) %

Hence on B(ry) x E, (#, k) we obtain

= St |nl S n - n J-Tll-f
Sl < ot ey (" )2

n=0 n=0 k=n

< Ceélm’

for some positive constants C and 9.

This shows that v,(z,7) (= Y_r_ wk(z,n)) converges to the solution V'(z,7) of (3.3)
uniformly on B(ry) X E,(0,K). Therefore V(z,n) is an analytic continuation of v(z,n)
and it holds that

max [V (z,n)| < G, 5 e EL(0,7).

Jzi<ro
It follows from the above argument that v(z, ) satisfies the condition (ii) in Theorem 2.1.

This completes the proof of Theorem 1.2. |
Therefore it is sufficient to prove Lemma 3.1.

Proof of Lemma 3.1. It is proved by the induction. First we consider the case n = 0.

Wo(z,n,t) has the following form:
t
Wile,nt) = f@-an0)+ [ oo aln-s),s)ds
0
= Il(x7 n, t) + I2(x1 m, t)

Before proving the lemma for Wy, we remark the following: It follows from the assumption
(A1) and Cauchy’s integral formula that g(z,7) is holomorphic on E, (6+n+arg(a), ) xC

with the estimate
(3.13) lg(z,n)| < C'eélxleé’lnl, (z,m) € EL(8 + 7+ arg(a), k) x C,

for some positive constants C’ and §'.
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Let us prove that I, (z,7m,t) and Iy(z,7,t) are well-defined on {(z,n,t); |z| < 1o, 1 €
E.(6,k0' — po), t € GP°}. Let |z| < 1o, n € E4 (8, k0" — po), t € G, and let us write
te G ast=Gy(r) (1 € Uy 0, n]).

On the well-definedness of I1(z,n, G,(7)): It is clear from the assumption (Al) and
(3.6).

On the well-definedness of I(z, 7, G,(7)): In the integral expression of Iz(z, 1, G4(T)),
by taking an integral path as

(3.14) s(o) = oet*®™ (o € [0, 1)),

where [0,7] is a segment from 0 to 7, it holds that 1 — s(0) € E.(6, k') (C E+(6, K0))-

Hence it follows from (3.6) and the above remark that Ir(z,n, Gy(7)) is well-defined.
Therefore Wo(z,7,t) is well-defined on {(z,7n,t); |z] < 70, 7 € E1(8,k0' — po), t €

G#o}. Moreover on {(@,n,1); |z| < 70, 1 € E+(0, 50" — po),t € Gy} we have the following

representation:

Wo(z,m,Gy(R)) = f(z—an,0)
R
+ / g(z — a(|n| — R1)e*¥?, Ryé’ wr8(n)) ¢t 28 g R,
0
= Iiy(z,n, R) + Ta(z,n, R).

Let us estimate each Z;(z,n, R) and Zy(z,n, R).
On Z(z,7n, R): It follows from (1.11) that

|1 (2, m, R)| |f(z — am,0)] < Cedlz=on

< Ceflelnl

where C" = Ce?™.

On T,(x,n, R): It follows from (3.13) that
lg(z — a(ln| - Ry)eierem Rieteem)| < ¢ edlelinlg=8lelRa eé’Rl' = Q" llelinlg=(8lol-8) R

where C" = C'e®™. Here we may take § > 0 so large that 6" := d|a| — &' > 0. Hence we

obtain . o
|Z2(z, 7, R)| < Cmeélallnl/o e_guRlde < _5_”_86|a||17|_

By the above argument, we have

|Wo(z,n, Gp(R))| < 01651““”‘ < Cle51|"|,
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where C; = C"” + C"/§". Therefore the case n = 0 is proved.
Next, we assume that the claim of the lemma is proved up to n and prove it for n+1.
By (3.4) and (3.5) we have the following relation between W, and W;:

4

(315) Wn+1(man7t) = Z\.Z‘Wn(m,nat),

i=1

where

Jan(x’n:t) = len('r - 01(77 - t)7t)

t
= —é / B(Y)n(z,n —t,t — SYWh(z,n—t+s, s)ds,
0
ToWn(z,n,t) = Jown(z — a(n—1t),t)

1 t
- E/O B(7)n(w,1 = 8, 0)Wa(z,n, 5)ds,
s73Wn(xa7]a t) = J3wn(m - 04(77 - t)a t)

t 8
= 51; /O /0 B(Y)m(z,m = 8,5 = y)Wa(z,n — s + y,y)dyds,

TiWn(z,1,t) = Jawn(z —a(n—1),1)

- 1 /t /s iB('y),,(x, ¢,s—vy)| - -Walz,n—s+y,y)dyds.
a Jo Jo dC {=n—s

Let us prove that each J;W,(z,1n,t) (i = 1, 2, 3, 4) is well-defined on {(z,7,1); 2| <
ro, N € EL(0, ko' — Z;‘I& pi), t € Gf+'} by taking suitable integral paths. Let us write
te G as t = Gy(7) (7 € Up,,a 0, Inl):

On JiW,(z,n,Gn(7)): Let us take an integral path as (3.14). Then we have 1 —
Gn(1) + 8(0) € EL(6, k' — 3_j—op;) and s(0) € G ()~ Hence Wa(z,n — Gy(T) +
s(0), s(0)) is well-defined. It is clear that B(y),(z,n—Gy(7), Gn(T) —s(0)) is well-defined.
Therefore JiWy(z,n, Gy(7)) is well-defined.

On JoW,(z,n,Gy(7)): Let us take an integral path as (3.14). Then we have 7 €
E, (0,50’ — 3 ;o p;) and s(o) € Gi~. Hence Wa(z,n, s(c)) is well-defined. It is clear that
B(7),(z,n — s(c),0) is well-defined. Therefore oWy (z,n,Gy(7)) is well-defined.

On JsWo(z,n,Gy(T)) and JuW,(z,n,G,(7)): We only state the integral paths. The
suitable integral paths are (3.14) and

(3.16) y(A) = Aet> &M (X € [0,0]),

for both JsW,(z,n, Gy(7)) and JuWa(z,n, Gy(7))-
By taking the above integral paths, we see that each JiWn(z,n,t) (i = 1, 2, 3, 4) is
well-defined (therefore W41 (z,7n,t) is well-defined) on {(z,n,t); |z| < 7o, n € E (0, ko —
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Z;“Lg pi), t € Gf,““}. Moreover on {(z,7,t); || <10, 1 € E. (6, mg’—Z?"'é pi), t € Gp}

we have the following representations:

I

_,/ B(¥),(z, (In| = R)e i are(n) ,(R— Ry) wrg(n))

x Wi(z,n, R, R1)e'*8MdR,,

1 [B ‘ : W
TaWal@,1,G(R)) = — / B(y)y(a, (1] — Ba) &, 0)Wa(w, 0, By, Ba)e € dR,,

1 R Rl . .
L[ [ Bmn il R, (s = Rt
0 0

x Wa(z,n, R, R2){e'* 5™ }2dRydR,,
I iarg(n)
TsW, (CC m, n(R)) = - —*B(")’),,(.’II,T], (Rl - R2)6 )
, ajo Jo d¢ ¢=(|n|— R )et era(n)

X Wn(l', U Rla R2){ei arg(n) }2dR2dR1,

J3Wn(x’77, GW(R))

where
(3.17) W@, m, thy v) = Walz, (0] =t + )€ ¥, G101 ppiyesersin (V)

Let us estimate each J;W,(z,n, Gn(R)).
On JiWiy(x,1,Gy(R)): It follows from the assumption of the induction that

R/*
K

2n
n
318)  Dalan R Ri)| S CretMen b IARm @MY (k - n)

Hence (3.10) and do < 0; imply that

2n
E R.*
| T Wa(z,1,Gn(R))| < cle&‘"'MwZMﬂ"Z(knn) i
- 0

Rk+1

= CeBM M (2M)" Z (k n> (k+ 1)

On JoWa(z,n, G,(R)): Let us consider R; instead of R in (3.18). Then we have

2n k
& nl n n 1_2_1.._
[Wa(z,n, By, B)| < Cre (2M1) ; (k - n) R

Therefore by (3.10), it holds that

2n n k+1
lJ2Wn(m7naGﬂ(R))l < 01651|71|M1(2M1)n Z (k - ’ﬂ) (’f++1)!‘

k=n



By the above argument it holds that
(3.19) | AWa(z, n, Gy(R))| + |72Wa (2,7, Gn(R))|

2n Rk+1
01651 Inl (2M n+1 Z ( ) )

k=

2n+1 n Rk
— 81in| n+1 iy
(@MY D (k —(n+ 1)) x

k=n+1
On JsW,(z,n,Gy(R)): 1t follows from the assumption of the induction that

IA

2n k
n R
[Wa(z,m, Ry, Ra)| < Crefiimle=1RaefiR2(204,)" Z (k - n> _152'—

k=n
Hence (3.10) implies that
2n

|TsWa(z,n,Go(R))| < Cle‘h""Ml(QMl)"Z(k n)/ /Rl—RiddeR1

2n
Rk+2
= Gl 2m)™) :( " )———
c~\k—n (k+2)!

On JyWa(z,n,Gy(R)): Similarly to the calculation for JzsWy(x,nG,(R)), we have

5 2n n Rk+2
| TeWa(z,m, Gn(R))| < Cre™ My (2M01) Y (k - n) (k+2)!
k=n )

By the above argument it holds that

&1nl +1 - n RF2
< Ciefhlan) )———
1T (2M,) I;(k—n (k+2)!

I | 2(n+1) n Rk
— d1ln n+1 —
GuetM(@M)™ 3 (k —(n+1)- 1) Kl

k=n+2
Therefore it follows from (3.19) and (3.20) that
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which implies the lemma for n + 1. The proof is completed. i
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