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Abstract

We present a theory of moment summability methods that is particularly suited br application
to formal power series.

1 Introduction
In this article we introduce the concept of moment $su$ mmability corresponding to kernels of finite positive
order $k$ . One such method is J.-P. Ramis’ $k$ summability [10, il], but we shall present many more,
among them some in terms of J. Ecalle’s acceleration operators [7]. Although it is made clear that
all summability methods of the same order are equivalent, it is worthwhile to allow general methods,
instead of restricting oneself to the better known method of $k$-summability: For once, showing that a
given series is summable can be considerably simplified by choosing a method that is well suited for this
particular series. Moreover, one can easily use this general approach to prove that certain sequences form
summability factors for $k$-summability. For a more complete presentation of this theory, and in particular
for the prooffi of the results presented here, see [3]. Also, compare [1] for a presentation of more general
moment methods, including some of infinite order that, however, do not seem to have the same good
properties as the ones presented here.

2 Kernel functions
A function $e(z)$ shall be called a kernel function of order $k>1/2,$ provided that it has the following
properties:

$\mathrm{o}$ We require that $e(z)$ is holomorphic in $S_{k,+}=$ $\{z\in \mathbb{C}\backslash \{0\} : 2k| \arg z|<\pi\}$ , and $z^{-1}e(z)$ is
integrable at the origin. For positive real $z$ $=x,$ we assume that the values $e(x)$ are positive real.
Moreover, we demand that $e(z)$ is exponentially flat of order $k$ in $S_{k,+}$ , $\mathrm{i}$. $\mathrm{e}.$ , for every $\epsilon$ $>0$ there
exist constants $C$, $K>0$ such that

$|e(z)|\leq C\exp[-(|z|/K)^{k}]$ , $2k|\arg z|\leq$ rr-e. (2.1)

@ In terms of the kernel function $e(z)$ , we define the corresponding rnornent function by

$\mathrm{m}(\mathrm{u})=\int_{\mathit{0}}$

”

$x^{u-1}\mathrm{e}(\mathrm{x})$ dx, ${\rm Re} u\geq 0$ .
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Note that the integral converges absolutely and locally uniformly for these $u$ , so that $m(u)$ is
holomorphic for ${\rm Re} u>0$ and continuous up to the imaginary axis, and the values $m(x)$ are
positive real numbers for $x\geq 0.$ In terms of this moment function, we then define

$E(z)=$ $\sum_{n=0}^{\infty}\frac{z^{n}}{m(n)}$ (2.2)

and require that the function $E(z)$ is entire and and of exponential growth at most $k$ , meaning that
for constants $C,K>0,$ not necessarily the same as above, we have

$|E(z)$ $\leq C\exp[K|z|^{k}]$ $l$ $z\in \mathbb{C}$ .

Finally, in Sk- $=$ { $z\in \mathrm{C}\backslash \{0\}$ : $2|\pi-\arg z|<\pi(2-$ l/k} $=\mathbb{C}\backslash \overline{s}_{\mathrm{k},1}$ , the function $z^{-1}E(1/z)$ is
required to be integrabie at the origin.

Obviously, (2.1) implies $km(n)\leq CK^{n}\Gamma(n/k)$ for $n\geq 1.$ On the other hand, the fact that $E(z)$ is
assumed to be of exponential growth at most $k$ implies existence of $\hat{C},$ $K\wedge>0$ so that $m(n)\geq\hat{C}\hat{K}^{n}\Gamma(1+$

$n/k)$ for $n\geq 0.$ Hence the moments $m(n)$ are of order $\Gamma(1+n/k)$ as $n$ tends to infinity in the sense that
for suitable $C\pm$ we have

0 $<C_{-}$ $\leq$
$[ \frac{m(n)}{\Gamma(1+n/k)}]^{1/n}\leq$ $c_{+}$ $\forall n\geq 1$ .

In particular, this shows that the order of a kernel function is uniquely defined, and that the entire
function $E(z)$ is exactly of exponential growth $k$ , or in other words, is of exponential order $k$ and finite
type. We consider the following ffist examples of kernel functions; other interesting ones shall follow
later:

1. For $k>0,$ take $e(z)=k$ $z^{k}\exp[-z^{k}]|$. in this case $m(u)=\Gamma(1+u/k)$ , and $E(z)=E_{1/k}(z)$ is
Mittag-Leffler’s function. Using $\mathrm{w}\mathrm{e}\mathrm{u}$-known properties of this function, it is easy to see that all
requirements of above are satisfied for values of $k>1/2_{\mathrm{J}}$ while for smaller $k$ the condition of
integrability of $z^{-1}E(1/z)$ at the origin becomes meaningless, since the sector $s_{k,-}$ is empty.

2. Slightly more generally, the function $e(z)=k$ $z^{k}$’ $\exp[-z^{k}]$ , with $k>1/2,$ $ot>0$ , can also be seen
to be a kernel function of order $k$ . The corresponding moment function is $m(u)=\Gamma(\alpha+u/k)$ .

3. In the above examples, the kernel of order $k$ is obtained ffom that one of order 1 by a change of
variable $z\mapsto z".$ This generaEzes to arbitrary kernels as follows: Let $e(z)$ be any kernel function
of order $k>1/2,$ and let $0<$ a $<2k.$ Then $e(z;\alpha)=e(z^{1/\alpha})/\alpha$ is a kernel function of order $k/\alpha$,
and the corresponding entire function $E(z)=E(z;\alpha)$ is given by

$E(z; \alpha)=\frac{1}{2\pi i}\int_{\gamma}E(w)\frac{w^{\alpha-1}}{w^{\alpha}-z}dw$ , (2.3)

with a path of integration as in HankeVs formula for the inverse Gamma function [3]. Compare
(2.3) to the integral representation of Mttag-Leffler’s function!

3 Integral operators
With help of any kernel function $e(z)$ of order k $>1 \oint 2$ and the corresponding entire function $E(z)$ , we
now define a pair of integral operators as follows:

$\circ$ Let $S=S(d, \alpha)=\{z\in \mathbb{C}\backslash \{0\}:2|d-\arg z|<\alpha\}$ be a sector of infinite radius, bisecting direction
$d$, and opening $\alpha$ . Moreover, let $f\in A^{(k)}(S)$ , by which we mean to say that $f$ is holomorphic and
of exponential growth of order at most $k$ in $S$ , meaning that for every $\epsilon$ $>0$ there exist constants
$C$, $K>0$ with $|f$ ($z\mathrm{l}\leq C\exp[K|z|^{k}]$ for 2 $|d-\arg z|\leq$ (a $-\epsilon$). Then for $2|d-\tau|<Ot$ , the integral

$(Tf)(z)= \int_{0}$

””
$e(u/z)$ $f(u) \frac{du}{u}$ (3.1)
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converges absolutely and locally uniformly for $z$ in a sectorial region with bisecting direction $\tau$ and
opening $\pi/k$ and can, by variation of $\tau$ , be continued into a sectorial region $G=G(d, \alpha+\pi/k)$ of
opening $\alpha+\pi/k$ and bisecting direction $\arg z=d.$ In this region, $Tf$ is holomorphic and bounded
at the origin.

$\mathrm{o}$ If $G$ is as above, and $f$ is holomorphic in $G$ and bounded at the origin, then we define

$(T^{-}f)(u)= \frac{-1}{2\pi i}\int_{\gamma k(\mathcal{T})}E$(u/z) $f(z) \frac{dz}{z}$ (3.2)

with $2|\tau-d|<\alpha$ , and $\gamma_{k}(\tau)$ denoting the path from the origin along $\arg z$ $=\tau+(\epsilon+$ n/(2k) to
some $z_{1}\in G$ of modulus $r$ , then along the circle $|z|=$ r to the ray $\arg z=\tau-(\epsilon+\pi)/(2k)$ , and
back to the origin along this ray) for $\epsilon$ , $\mathrm{r}$ $>0$ so small that $\gamma_{k}(\tau)$ fits into $G$ . In other words, the
path $\gamma_{k}(\tau)$ is the boundary of a sector in $G$ with bisecting direction $\tau$ , finite radius, and opening
slightly larger than $\pi/(2k)$ , and its orientation is negative. The dependence of the path on $\epsilon$ and $r$

will be inessential and therefore is not displayed. Then one can show that $T^{-}f\in$
$4^{(\mathrm{k})}$

$(S(d, \alpha))$ .
In the case of $e(z)=kz$’ $\exp[-z^{k}]$ , the two integral operators coincide with Laplace resp. Borel

operators. Even in general they have many properties in common with those classical operators:

1. For $f(u)=u’$ with ${\rm Re}$ A $>0,$ so that $f(u)$ is continuous at the origin, we have $(Tf)(z)=m(\lambda)z^{\lambda}$ .
2. For $f(u)=$ $\sum_{0}^{\infty}f_{n}u^{n}$ being entire and of exponential growth at most $k$ , the function $Tf$ is holo

morphic for $|z|<\rho$ , with sufficiently small $\rho>0,$ and $(Tf)(z)= \sum_{0}^{\infty}f_{n}m(n)z^{n}$ , $|z|<\rho$.
3. For $w\neq 0$ and $z\neq 0$ so that $|z/w|$ is sufficiently small, it follows from the above fact that

$\frac{w}{w-z}$ $= \int_{0}^{\infty(\tau)}e( z)E(u/w)$ $\frac{du}{u}$ (3.3)

This formula extends to values to $\neq 0$ and $z$ $\neq 0$ for which both sides are defined. In particular,
this is so for $\arg w\neq\arg z$ modulo $2\pi$ , since then we can choose $\mathrm{r}$ so that $|\tau-\arg z|<\pi$f $(2k)$

and $2|\pi-$ r-f- $\arg w|<\pi(2-1/k)$ , implying absolute convergence of the integral, according to the
properties of kernel functions.

4. For a sectorial region $G=G(d, \alpha)$ ofopening more than $\pi$fk, and $f$ holomorphic in $G$ and continuous
at the origin, the composition $h=$ $(T\mathrm{o}T^{-})f$ is defined. Interchanging the order of integration and
then evaluating the inner integral with help of (3.3) implies

$h(z)=$ $\frac{-1}{2\pi i}\int_{\gamma_{\mathrm{k}}(\tau)}\frac{f(w)}{w-z}dw=f(z)$,

since $\gamma_{k}(\tau)$ has negative orientation. Hence we conclude that $T^{-}$ is an injective integral operator,
and $T$ is its inverse. Note, however, that this does not yet show that either operator is bijective;
for this, see Theorem 4.

5. For ${\rm Re}\lambda>0$ and $f(z)=$ zx, we conclude from (3.2) by a change of variable $u/z$ $=w,$ and using
Cauchy’s theorem to deform the path of integration:

$(T^{-}f)(u)=$ u’ $\frac{1}{2\pi i}$

)

$E(w)w^{-\lambda-1}dw$ ,

with 7 as in Hankel’s formula. Hence $T^{-}f$ equals $u^{\lambda}$ times a constant. Using that $T$ is the
inverse operator, we conclude that this constant equals $1/m(\lambda)$ . In particular, this shows $m(u)\neq 0$

for Retg $>0.$ Moreover, we have the following integral representation for the reciprocal moment
function:

$\frac{1}{m(u)}=\frac{1}{2\pi i}\int_{\gamma}E(w)w^{-u-1}dw$ .
Compare this to Hankel’s formula for the reciprocal Gamma function, and note that the integral
also converges for $u$ on the imaginary axis.

It is convenient to say that the operators T, $T^{-}$ , as well as the moment function $m(u)$ , corresponding
to a kernel of order k $>1/2,$ are also of this order.
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4 Kernels of small order
In the previous section we restricted ourselves to kernels and corresponding operators of order $k>1/2.$

Here we generalize these notions to smaller orders.. A function $e(z)$ will be called a kernel function of order $k>0$ if we can find a kernel function $\tilde{e}(z)$

of order $\tilde{k}>1/2$ so that
$e(z)=\tilde{e}(zk/\tilde{k})k/\tilde{k}$ , $z$ $\in S(0, \pi/k)$ . (4.1)

Note that the sector $S(0, \pi/k)$ may have opening larger than 2 $\pi$ , in which case $e(z)$ will have a
branch point at the origin.

From Example 3 we conclude that if a kernel function of some orde$\mathrm{r}$ $\tilde{k}>1/2$ exists so that (4.1) holds,
then there exists one for any such $\tilde{k}$ . In particular, if $k$ happens to be larger than 1/2, then we can
choose $\tilde{k}=k,$ hence $e(z)$ is a kernel function in the earlier sense. Moreover, to verify that $e$(:) is a kernel
function of order $k$ , we may always assume that $\tilde{k}=pk$ , for a sufficiently large $p\in$ N. This then implies
the following characterization of such kernel functions: For arbitrary $k>0,$ $e(z)$ is a kernel function of
order $k$ if, and only if, it has the folloing properties:. The function $e$ (z) is holomorphic in $S_{k,+}=S(0, \pi/k)$ , and $z^{-1}e(z)$ is integrable at the origin.

Moreover, $e(z)$ is exponentially flat of order $k$ in $S_{k,+}$ .. For positive real $z=x,$ the values $e(x)$ are positive real.

$\mathrm{o}$ For some $p\in \mathrm{N}$ with $pk>1/2,$ the function $E_{\mathrm{p}}(z)= \sum_{0}^{\infty}z^{n}/m(n/p)$ is entire and of exponential
growth not more than $pk$ . Moreover, in the sector $s_{pk}$,-the function $z^{-1}E_{\mathrm{p}}(1/z)$ is integrable at
the origin.

Let a kernel function $e(z)$ of order $k$ with $0<k\leq 1/2$ be given. Then we define the corresponding
integral operator $T$ as in (3.1). The definition of $T^{-}$ , however, cannot be given as in (3.2): While we can
define an entire function $E(z)$ by means of (2.2), this function does not have the same properties as for
$k>1/2.$ Therefore, we define the operator $T^{-}$ as follows:. Let a kernel function $e(z>$ of order $0<k\leq 1/2$ be given. Choos $\tilde{k}>1/2$ and let $\tilde{e}(z)$ and $\tilde{E}(z)$ be

as above. For a sectorial region $G=G(d, \alpha)$ of opening larger than $\pi/k$ , and any $f$ holomorphic in
$G$ and bounded at the origin, we define:

$(T^{-}f)(u)= \frac{-1}{2\alpha\pi i}\int_{\gamma k(r)}\tilde{E}((u/z)^{k/\tilde{k}})f(z)\frac{dz}{z}$ .

This definition gives good sense, since the right-hand side can be shown not to depend upon the choice
of $\overline{k}$ . However, observe that the operator $T^{-}$ allows infinitely many different integral representations!

5 Properties of the integral operators

In this section, we consider fixed operators $T$, $T^{-}$ of some order $k>0$ and state results saying that both
operators “behave well” with respect to Gevrey asymptotics:

Theorem 1 Let $f\in 4^{(k)}(5)$ , for $k>0$ and a sector $S=S(d, \alpha)$ , and let $g=Tf$ be given by (3.1);

defined in a corresponding sectorial region $G=G$ ( $d$, at 1- $\pi/k$). For $s_{1}$ $\geq 0,$ assume $f(z)\cong$,1 $\sum$ $f_{n}z^{\mathfrak{n}}$ in
$S$ and set $s_{2}=$ l/k1 $s1$ . Then

$g(z) \cong_{\epsilon_{2}}\sum f_{n}m(n)z^{n}$ in $G$ .

Theorem 2 Let $G=G(d, \alpha)$ be an arbitrary sectorial region of opening $\alpha>\pi$fk, let $f$ be holomorphic
in $G$, and for $s_{1}>0$ assume $f(z)\cong$ ,1 $\sum$ $f_{n}z^{n}$ in G. Then $T^{-}f$ is defined and holomorphic in $S=$

$S(d, at-\pi/k)$ . For $s_{2}$ $= \max\{s_{1}- k^{-1},0\}$ we then have

$( \mathrm{T}-/)(\mathrm{u})\cong_{\epsilon_{2}}\sum z^{n}f_{n}/m(n)$ in S,

observing that a Gevrey asymptotic of order s $=0$ is equivalent to saying that the power series converges
to the function.
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Roughly speaking, the folowing two theorems say that $T$ and $T^{-}$ are inverse to one another:

Theorem 3 Let $G(d, \alpha)$ be a sectorial region of opening $\alpha>\pi/k$ . For $f$ holomorphic in $G$ and contin-
uous at the origin, let

$g(u)=(T^{-}f)(u)$ , $u\in S=$ G(d, $\alpha-\pi/k$).

Then $g\in 4^{(\mathrm{k})}(S)$ , so that $(Tg)(z)$ is defined and holomorphic in a sectorial region $\tilde{G}=\tilde{G}(d, \alpha\sim)$ of
opening $\tilde{\alpha}>\pi/k$ , and

$f(z)=(Tg)(z)$ $\forall z\in\tilde{G}\cap G$ .

Theorem 4 For a sector $S=$ G(d, $\alpha$) of infinite radius and $k>0,$ let $f\in 4^{(k)}(S)$ and define $g(z)=$
$(Tf)(z)$ , $z\in G=G(d, \alpha+\pi/k)$ . Then we have $f(z)=(T^{-}g)(z)$ in $S$ .

For the proofe of these and later theorems the reader may refer to [3].

6 Construction of kernels
In this section, we consider two kernels $e_{1}(z)$ , $e_{2}(z)$ of orders $k_{1}$ , k2 with corresponding moment func-
tions $m_{1}(u)$ , $m_{2}(u)$ , respectively. The following two theorems are concerned with existence of kernels
corresponding to the product, resp. the quotient, of the two moment functions:

Theorem 5 For $e_{1}(z)$ , e2(z) as above, there is a unique kernel function $e(z)$ of order $k=(1/k_{1}+1/k_{2})^{-1}$

with corresponding moment function $m(u)=m_{1}(u)m_{2}(u)$ . The function $e(1/z)$ can be viewed as given
by applying the integral operator $T_{1}$ to the function $e_{2}(1/u)$ . This can also be $w$ ritten as

$e$ (z) $= \int_{0}^{\infty(\tau)}e_{1}(z/w)$ $e_{2}(w) \frac{dw}{w}$ ,

for $2k_{2}|\tau|<\pi$ , and $2k_{1}|\mathrm{r}$ $-\arg$ $z|<\pi$ . For the integral operator $T$ corresponding to the kernel $e(z)$

we have $Tf=T_{1}$ $(T_{2}(f))$ , provided that both sides are defined and in the double integral on the right the
order of integration rnay be interchanged.

Note that the above integral defining $e(z)$ can be viewed as a multiplicative version of a convolution
of two functions.

Theorem 6 For $e_{1}(z)$ , $e2(:)$ as above, assurne $k_{1}>k_{2}$ . Then there is a unique kernel function $e(z)$ of
order $k=(1/k_{2}-1/k_{1})^{-1}$ with corresponding rnornent function $m(u)=m_{2}(u)/m_{1}(u)$ . The function
$e$ (1’z) can be $vi$ ewed as given by applying the integral operator $T_{1}^{-}$ to the function $\mathrm{e}_{2}(1/\mathrm{u})$ . For $k_{1}>1/2,$

this can also be $wf\dot{\mathrm{B}}tten$ as
$e(z)=$ $\frac{1}{2\pi i}\int_{\beta}E_{1}(w/z)$

$e_{2}(w) \frac{dw}{w}$ .

for $2k|\arg z|<\pi$, and a path of integration $\beta$ as follows: From infinity to the origin along the ray
$\arg$ rp $=-(\pi/(2k_{2})- \mathrm{e})$ , and back to infinity along $\arg w=\pi/(2k_{2})-\epsilon$ , with $\epsilon>0$ sufficlently small.
For the integral operator $T$ corresponding to the kernel $e(z)$ we have $Tf=\mathit{7}_{1}^{-}(T_{2}(f))$ , provided that both
sides are defined and in the double integral on the right the order of integration rnay be interchanged.

The above theorems shall be used in Section 8 to show existence of many more useful kernel functions.

7 Moment summability
Analogous to J.-P. Rarnis’ definition of $k$-summability, we now define moment-summaM$ity$ of formal
power series as follows: Let a kernel function $e(z)$ of order $k>0,$ with corresponding moment function
$m(u)$ and integral operator $T$ , be given. We say that a formal power series $\hat{f}(z)=\sum f_{n}z^{n}$ is T-su mmable
in a direction $d\in \mathbb{R}$, if the following holds:

(SI) The series $g(z)=$ $\sum$ $z^{n}f_{n}[m(n)$ has positive radius of convergence.
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(S2) For some $\epsilon$ $>0,$ the function $g$ defined above can be holomorphically continued into $S=S(d, \epsilon)$

and is of exponential growth at most $k$ there; or in other words, $g\in A^{(k)}(S)$ .

Obviously, (SI) holds if, and only if, $\hat{f}(z)$ has Gevrey order $s=$ l/k. Condition (S2) implies applicability
of the integral operator $T$ to $g$ , and we call $f=Tg$ the $T$-sum of $\hat{f}$ , and write $f=S_{T,d}\hat{f}$ . For the special
case of $e(z)=kz^{k}\exp[-z^{k}]$ the above definition of moment summability coincides with fc-summability
in Ramis’ sense. Due to the results presented above, it is immediately seen that all moment summabilty
methods of fixed order $k>0$ are equivalent to $k$-summability in the following sense:

Theorem 7 Let arbitrary kernel functions $e_{1}(z)$ , $\mathrm{e}(\mathrm{z})$ of the same order $k>0$ be given. Then $\hat{f}(z)$ is
$T_{1}$ -summable in a direction $d$ if, and only if, it is $T_{1}$ -surnrnable in the direction $d$, and $(\mathrm{S}_{T_{1},d}\hat{f})(z)=$

$(S_{T_{\mathit{2}},d}\hat{f})$ (z) for every $z$ in a sectorial region of bisecting direction $d$ and opening more than $\pi/k$ .

The above result shows that using general moment methods of the above type does not lead to
more power series that can be summed. On the other hand, we shall show in the next section that an
appropriate choice of a kernel will help in showing that a concrete series is, indeed, fc-summable.

8 Applications and examples

As an application of the results presented above, we can now construct many more kernels, some of which
will turn out to be equal to J. Ecolle ’s acceleration operators. Moreover, we shall make clear that in many
cases one can more easily prove $k$-summability of a given power series by choosing an appropriate kernel
of order $k$ .

$\mathrm{o}$ Using the above results, one can verify existence of a kernel $e(z)$ corresponding to the moment
function

$m(u)= \frac{\Gamma(\alpha_{1}+s_{1}u)\cdot\ldots\cdot\Gamma(\alpha_{y}+s_{\nu}u)}{\Gamma(fl+\sigma_{1}u)\cdot\ldots\cdot\Gamma(\sqrt\mu+\sigma_{\mu}u)}$ ,

with $\alpha_{j}$ , $\sqrt j$ , $s_{j}$ , $\sigma_{j}>0$ satisfying $s:= \sum_{j=1j}^{\nu}s-\sum_{j=1}^{\mu}\sigma_{j}>0,$ and the order of the kernel equals
$k=1/5.$ One can represent $e(z)$ , as well as the corresponding entire function $E(z)$ , as multiple
integrals involving exponential resp. Mittag-Lefller functions, but we shall not attempt doing this
here. For $s_{j}=\sigma k=1$ and $\nu=$ $\mathrm{p}11$ , the corresponding entire function $E(z)$ is closely related to
the generalized confluent hypergeometric function.

$\mathrm{o}$ As a special case of the operators considered above, we shall now take $\nu=$ $\mathrm{u}$ $=1$ and $\alpha_{1}=\hslash$ $=1:$

To represent the corresponding kernel, let $\alpha>1$ and define an entire function by means of the
integral

$C_{\alpha}(z)= \frac{1}{2\pi i}\int_{\gamma}u1/\alpha-1\exp[u-zu^{1/}’]$ du ,

with a path of integration $\gamma$ as in Hankel’s integral for the inverse Gamma fimction. By achange of
variable $zu^{1/a}=w^{-1}$ , and then substituting $z=t^{-1}$ , we see that $t^{-1}C_{\alpha}(t^{-1})$ is the Borel transform
of index $\alpha$ of $z^{-1}e^{-1/z}$ . From Theorem 6 we conclude that $e(t)=tC_{\alpha}(t)$ is a kernel function of
order $\beta=$ a/(a–1), corresponding to the moment function $m(u)=\Gamma(1+u)/\Gamma(1+u/\alpha)$ . For
$\tilde{k}>k>0,$ set $\alpha=\tilde{k}/k$ . Then the function $e_{\tilde{k},k}(t)=kt^{k}C_{\alpha}(t^{k})$ is a kernel function of order
$\kappa=k$ $\beta$ $=$ $(l/k -1/\tilde{k})^{-1}$ , whose moment function equals

$m(u)= \frac{\Gamma(1+u/k)}{\Gamma(1+u/\tilde{k})}$

The corresponding integral operator, or to be precise: one of a slightly modified form, as well as its
inverse, have been introduced by J. Ecalle [5-7] under the names of acceleration, resp. deceleration
operator. These operators played a central role in Ecalle’s definition of multisummability resp. in $B$.
Braaksma ’s [4] proof of multisummabilty of formal solutions of meromorphic ordinary differential
equations.
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. Let $m(u)$ resp. $T$ be the moment function resp. integral operator corresponding to some kernel of
order $k$ . To check that the series $\hat{f}(z)=\sum_{0}^{\infty}f_{n}z^{n}$ , with $f_{n}=m(n)$ for every $n$ , is $k$-summable in the
direction $d$ , using Ramis’ definition, requires holomorphic continuation of $g(z)= \sum_{0}^{\infty}z^{n}m(n)/’(1+$

$n/k)$ . Using the fact that $k$-summability is equivalent to $\mathrm{T}$ -summability we can immediately say
that, since $\tilde{g}(z)=$ $\sum_{0}^{\infty}z^{n}f_{n}/m(n)$ is the geometric series, $\hat{f}(z)$ is $T$-summable, and hence k-
summable, in every direction $d\not\equiv 0$ modulo $2\pi$ . E. $\mathrm{g}.$ , this can be applied to the divergent
generalizd hypergeometric series

$F( \alpha_{1}, \ldots, \alpha_{\nu};\beta_{1}, \ldots, \mathrm{f}1_{\mu};z)=\sum_{n=0}^{\infty}\frac{(\alpha_{1})_{n}\cdot\ldots\cdot(\alpha_{\nu})_{n}}{(\beta_{1})_{n}\cdot\ldots\cdot(\beta_{\mu})_{n}}\frac{z^{n}}{n!}$

for $\nu-$ $2$ $\geq\mu \mathrm{g}$ $0$ , reproving a result obtained by K. Ichinobe [8].

$\mathrm{o}$ Similarly to the situation discussed above, investigations of formal solutions of partial differential
equations are facilitated by the use of moment summability methods instead of $k$-summability For
the case of the heat equation, compare articles of Lutz, Miyake, and Schdfke [9] and the author’s [2].

@ For $k>0,$ a sequence $(\lambda_{n})_{n\geq 0}$ shall be called a summability factor for $k$-summability, if for every
series $\sum$ $f_{n}z^{n}$ that is $k$-summable in a direction $d$ , we have that $\sum$ $\lambda_{n}f_{n}z^{n}$ is again fc-summable
in the direction $d$ . Let $e_{1}(z)$ , e2 (z) be kernel functions of the same order $\tilde{k}>0,$ with corresponding
moment functions $m_{1}(u)$ , $m_{2}(u)$ . Then the sequence $m_{1}(n)/m_{2}(n)$ is a summability factor for k-
summability. To see this, ffist assume that $\tilde{k}=k,$ and let $\hat{f}(z)=\sum z^{n}f_{n}$ be $\mathrm{f}\mathrm{c}$-summable in a
direction $d$ . Then $\hat{f}(z)$ also is $T\mathrm{c}$TVsummable in the direction $d$; hence, the function $g$ , defined be
the convergent series $g(z)= \sum z^{n}f_{n}/m_{2}(n)$ , is so that the operator $T_{1}$ may be applied, and $T_{1}g$

is holomorphic in a sectorial region with bisecting direction $d$ and opening more than $\pi/k$ , and
has the series $\hat{h}(z)$ $= \sum z^{n}f_{n}\mathrm{m}\mathrm{i}(\mathrm{n})/\mathrm{m}2(\mathrm{n})$ as its Gevrey asymptotic of order $s=$ 1/k. This fact,
however, is equivalent to $k$-summability of $\hat{h}(z)$ in the direction $d$ . If $\tilde{k}>k,$ observe that there exist
kernel functions $\tilde{e}1(z)$ , $\tilde{e}\mathrm{f}(\mathrm{z})$ whose moment functions are $m_{1}(u)\Gamma(11su)$ resp. $m_{2}(u)\Gamma(1+su)$ ,
with $s=$ l/k $-1/\tilde{k}$ . The new kernels both are of order $k$ , and the quotient of the two new
moment functions is the same as that of the previous ones. For the remaining case of $\tilde{k}<k$ we
may proceed analogously, with new kernels whose moment functions equal $m_{1}(u)/\Gamma(1+su)$ resp.
$m_{2}(u)/\Gamma(1+su)$ .

$\mathrm{o}$ More generally, let $e_{j}(z)$ be kernel functions of orders $k_{j}>0$ and corresponding moment functions
$m_{j}$ (u), for $1\leq j\leq\mu$ . If some $\mu$ exists for which

$s:= \sum_{\mathrm{j}=1}^{\nu}1/k_{j}=\sum_{\mathrm{j}=\nu+1}^{\mu}1/k_{j}$

holds, then the sequence
$\lambda_{n}=\frac{m_{1}(n)\cdot\ldots\cdot m_{\nu}(n)}{m_{\nu+1}(n)\cdot\ldots\cdot m_{\mu}(n)}$

is a summability factor for &-summabilty. To prove this, use the above result, together with the
fact that there exist kernels of order $\tilde{k}=$ 1/s whose moment functions are equal to the products
$m_{1}(n)\cdot\ldots$ $\cdot m_{\nu}(n)$ resp. mv (n) . . . . $\cdot$ $m_{\mu}(?1)$ .
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