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Numerical study of acoustic wave scattering
from assemblies of cylinders

Takeru Yano
Department of Mechanical Science, Hokkaido University, Sapporo 060-8628, Japan

1. Introduction

Wave motions in inhomogeneous media, such as bubbly liquids, biological tis-
sue, etc, have been extensively studied in physics and engineering. The multiple
scattering of acoustic waves is one of typical examples. Averaging techniques and
continuum approximation may resolve these problems. However, understanding of
real phenomena will require the direct simulation of the problem. In the present
study, we shall consider the problem of acoustic wave scattering from assemblies of
cylinders by the numerical method PHYSALIS, originally devised for incompress-
ible potential flows by Prosperetti and Oguz.!

2. Formulation of the problem
We shall consider a two-dimensional acoustic wave propagation in an ideal gas.
The geometry of the problem considered is shown in Fig. 1.
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Fig. 1 Schematic of the model.

As shown in Fig. 1, a plane acoustic wave ¢* = eils(z=t}+%o] propagates from
the left-side of a two-dimensional channel with rigid walls, where « is a nondimen-
sional wave number, z is a nondimensional coordinate along the channel, ¢ is a
nondimensional time, and (g is an initial phase. There are a number of circular
cylinders with the same radius a in the channel. The incident plane acoustic wave



is scattered by the cylinders, and as a result, a part of which propagates forward
as a transmitted wave and the other propagates backward as a reflected wave.
The acoustic wave motion is governed by the Helmholtz equation

Ap+rK29=0, ¢=0¢r+idr (1)

where ¢ is a complex velocity potential. The boundary condition on the sidewall
of the channel is
99 _

B =0 ()
and at the entrance of the channel (z = z,) and at the exit (z = 1),
g{é = —iKkg + ke (FTtP0) (2 = o) 3)
0 ,
9p = 0 (z =) (4)

Equations (3) and (4) are a kind of non-reflecting boundary condition based on a
local one-dimensional approximation.

The acoustic pressure p and the z component of fluid velocity u can be retrieved
from the velocity potential ¢ by the following relations:

0

p=—5(e7"9) = ine™"'$ ()
° = _g%e—int (6)

The acoustic energy flux (acoustic intensity) based on the local one-dimensional
approximation can be given as

(7)
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3. Numerical method

Numerical approach is based on the method of PHYSALIS originally devised
for incompressible potential flows by Prosperetti and Oguz.! We here extend the
method to the Helmholtz equation. '

In the neighborhood of each cylinder, the method utilizes a local analytical
representation of a general solution of the Helmholtz equation,

¢ =3 [Jn(kr)Y,(ka) — Yn(rr)Jp,(50)](An cosné + By sin nf) (8)

n=0

where J,, and Y,, are the Bessel functions of the first and second kinds, r is the
distance from a cylinder, a is the radius of the cylinder, 8 is the azimuthal angle
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measured from the z axis, and the prime denotes the differentiation with respect
to the argument.

The coefficient of expansion, A, and B,,, are determined in an iteration:

(0) Start with an appropriate initial expansion coefficients.

(1) From the local analytical representation (truncated suitably), we evalu-
ate the normal derivative of the velocity potential along a closed curve
enclosing each cylinder.

(2) We solve the Helmholtz equation with the finite-difference method with
the second-order central difference. The finite-difference solution is di-
rectly obtained with the help of FFT, without any iterative procedure.

(3) The expansion coefficients are updated by the finite-difference solution
near each cylinder.
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Fig. 2 Numerical example.

In Fig. 2, we present an example as an illustration of the numerical method,
where one can see nine cylinders in the channel, The boundary of each cylinder is
denoted by a circle plotted by a thin solid curve. Along a closed line like octagon in
the circle, we evaluate the normal derivative of the velocity potential, with which
the exterior boundary-value problem of the Helmholtz equation is solved. At the
17 black spots around each cylinder, we update the values of expansion coefficients
A, and B, with the help of the finite-difference solution. In this example, we
use 17 x 2 coefficients. The small arrows are the fluid velocity obtained from the
finite-difference solution.

4. Results
Figure 3 shows the pressure wave fields for the case that the incident wave
is scattered by a column of cylinders and by three columns of cylinders. One



can easily see that the amplitude of transmitted wave depends on the number of
columns and the parameter ka.

1 column case, Ka=1.08

3 column case Ka=0.41

Fig. 3 Scattering from columns of cylinders.
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Fig. 4 Reflection coefficient.
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