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1 Introduction
All spaces we shall consider here are separable metrizable spaces.
It is well known that there exist (transfinite) dimension functions $d$ such that $d(X_{1}\cup X_{2})>$

$\max\{dX_{1}, dX_{2}\}$ even if the subspaces $X_{1}$ and $X_{2}$ are closed in the union $X_{1}\cup X_{2}$ .
Let $\mathcal{K}$ be a class of spaces, ’, $\alpha$ be ordinals such that $\beta<\alpha$ , and $X$ be a space from

$\mathcal{K}$ with $dX=$ a which is the union of finitely many closed subsets with $d\leq$ $\mathrm{f}1$ . Define
$m(X, d, \beta, \alpha)=\min\{k$ : $X=)_{i=1}^{k}$ $X_{i}$ , where $X_{i}$ is closed in $X$ and $dX_{i}\leq$ $\mathrm{f}1[$ $m\kappa(d, \beta, \alpha)=$

$\min${ $m$ ($X$ , $d$ , $\beta$ , $\alpha$) : $X\in \mathcal{K}$ and $m(X,$ $d$ , $\beta$ , $\alpha)$ exists} and $M \kappa(d, \beta, \alpha)=\sup\{m(X, d, \beta, \alpha)$ :
$X\in \mathcal{K}$ and $m$ ($X$ , $d$ , !, a) exists}.

We will say that $m\kappa(d, \beta, \alpha)$ and $M_{\kappa}(d, \beta, \alpha)$ do not exist if there is no space $X$ from $\mathcal{K}$

with $dX=\alpha$ which is the union of finitely many closed subsets with $d\leq$ $\beta$ . It is evident
that either $m_{\mathcal{K}}(d, \beta, \alpha)$ and $M_{\kappa}(d, \beta, \alpha)$ satisfy $2\leq m\kappa(d, \beta, \alpha)\leq M\kappa(d, \beta, \alpha)\leq$ oo or they
do not exist.

Two natural questions arise.

Question 1.1 Determine the values of $m\kappa(d, \beta, \alpha)$ and $M\kappa(d, \beta, \alpha)$ for given $\mathcal{K}$ , $d$ , $\beta$ , $\alpha$ .

Question 1.2 Find $a$ (transfinite) dimension function $d$ having for given pair $2\leq k\leq l\leq$

$\infty$ , $m_{\mathcal{K}}(d, \beta, \alpha)=k$ and $M_{\kappa}(d, \beta, \alpha)=l.$

Let $\mathrm{C}$ be the class of metrizable compact spaces and $P$ be the class of separable completely
metrizable spaces. By trind(trlnd) we denote Hurewicz’s ( Smirnov’s ) transfinite extension
of ind (Ind) and Cmp is the large inductive compactness degree introduced by de Groot.
We shall recall their definitions in the next section. Let $\alpha=\lambda(\alpha)+n(\alpha)$ be the natural

数理解析研究所講究録 1370巻 2004年 14-21



15

decomposition of the ordinal $\alpha\geq 0$ into the sum of a limit number $\lambda(\alpha)$ ( observe that
$\lambda$ (an integer $\geq$ $0$ ) $=0)$ and a nonnegative integer $n(\alpha)$ . Let $\beta<\alpha$ be ordinals, put
$p( \beta, \alpha)=\frac{n(\alpha)+1}{n(\beta)+1}$ and $q(\beta, \alpha)=$ the smallest integer $\geq p(\beta, \alpha)$ . We have the following
theorems. The outline of the proof will be presented in section 2.

Theorem 1.1 1. Let $0\leq$ d $<$ cz be finite ordinals. Then we have $m_{P}(Cmp,$ $(\mathit{3}, \alpha)=$

$q(\beta, \alpha)$ and $M_{P}(Cmp, \beta, \alpha)=\infty$ .
2. Let $\beta<at$ be infinite ordinals. Then we have

$mc(trInd, \beta, \alpha)=\{$
$q(\beta, \alpha)$ , if $\lambda(\beta)=\lambda(\alpha)$ ,

does not exist, othemise

$Mc(trInd, \beta, \alpha)=\{$
$\infty$ , if $\lambda(\beta)=)(cx)$ ,

does not exist, othemise

Theorem 1.2 1. For every finite $\alpha\geq 1$ there eists a space $X_{\alpha}\in P$ such that
(a) $CmpX_{\alpha}=\alpha$ ;
(b) $X_{\alpha}= \bigcup_{i=1}^{\infty}\mathrm{Y}_{i}$ , where each $\mathrm{Y}_{\dot{l}}$ is closed in $X_{\alpha}$ and $Cmp\mathrm{Y}_{i}\leq 0;$

(c) $X_{\alpha} \neq\bigcup_{i=1}^{m}Z_{i}$ , where each $Z_{i}$ is closedin $X_{\alpha}$ and $CmpZ_{i}\leq\alpha-1$ and $m$ is any integer
$\geq 1.$

2. For every infinite $\alpha$ will $n(\alpha)\geq 1$ there eists a space $X_{\alpha}\in$ C such that
(a) $trIndX_{\alpha}=\alpha j$

(b) $X_{\alpha}= \bigcup_{i=1}^{\infty}\mathrm{Y}_{i}$, where each $\mathrm{Y}_{i}$ is closed in $X_{\alpha}$ and finite-dimensional;
(c) $X_{\alpha}$ I $\bigcup_{i=1}^{m}Z_{i}$ , where each $Z_{i}$ is closed in $X_{a}$ and $trIndZ_{i}\leq\alpha-1$ and $m$ is any

integer $\geq 1.$

2 Evaluations of $m\kappa$ (d, $\beta$ , $\alpha$ ) and $M_{\mathcal{K}}(d,$ $\beta$ , $\alpha)$

The notation $X\sim \mathrm{Y}$ means that the spaces $X$ and $\mathrm{Y}$ are homeomorphic. At first we
consider the following construction.

Step 1. Let $X$ be a space without isolated points and $P$ a countable dense subset
of $X$ . Consider Alexandroff’s dublicate $D=X$ ) $X^{1}$ of $X$ , where each point of $X^{1}$ is
clopen in $D$ . Remove from $D$ those points of $X^{1}$ which do not correspond to any point
from $P$ . Denote the obtained space by $L(X, P)$ . Observe that $L(X, P)$ is the disjoint
union of $X$ with the countable dense subset $P^{1}$ of $L(X, P)$ consisting of points from $X^{1}$

corresponding to the points from $P$ . The space $L(X, P)$ is separable and metrizable. It
will be compact if $X$ is compact. Put $L_{1}(X, P)=L(X, P)$ . Assume that $X$ is a completely
metrizable space (recall that the increment $bXs$ $X$ in any compactification $bX$ of $X$ is an
$F_{\sigma}$-set in $bX$). Observe that $L(bX, P)$ is a compactification of $L(X, P)$ and the increment
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$L(bX, P)\backslash L(X, P)(\sim bX\backslash X)$ is an $F_{\sigma}$-set in $L(bX, P)$ . Hence $L(X, P)$ is also completely
metrizable.

Step 2. Let $X$ be a space with a countable subset $R$ consisting of isolated points. Let
$\mathrm{Y}$ be a space. Substitute each point of $R$ in $X$ by a copy of $\mathrm{Y}$ The obtained set $W$ has
the natural projection $pr$ : $Warrow X$ . Define the topology on $W$ as the smallest topology
such that the projection $pr$ is continuous and each copy of $\mathrm{Y}$ has its original topology as a
subspace of this new space. The obtained space is denoted by $L(X, R, \mathrm{Y})$ . It is separable
and metrizable and it will be compact (completely metrizable) if $X$ and $\mathrm{Y}$ are the same.
Moreover $L(X, R, \mathrm{Y})$ is the disjoint union of the closed subspace $X\backslash R$ of $X$ (which we will
call basic for the space $L(X, R,\mathrm{Y}))$ and count many clopen copies of Y.

Step 3. Let $X$ be a space without isolated points and $P$ be a countable dense subset
of $X$ . Define $L_{n}(X, P)=L(L_{1}(X, P),$ $P^{1}$ , $L_{n-1}(X, P))$ , $n\geq 2.$ Observe that for any open
subset $O$ of $L_{n}(X, P)$ meeting the basic subset $X$ of $L_{n}(X, P)$ there is a copy of $L_{n-1}(X, P)$

contained in $O$ . Put $L_{*}(X, P)$ $=\{*\}\cup\oplus_{n=1}^{\infty}L_{n}(X_{=} P)$ . (Here by $\{*\}\cup\oplus_{i=1:}^{\infty \mathrm{x}}$ we mean
the one-point extension of the free union $\oplus_{i=1}^{\infty}X_{i}$ such that a neighborhood base at the
point $*$ consists of the sets $\{*\}\cup\oplus_{i=k}^{\infty}X_{i}$ , $k=1,2$ , $\ldots)$ . Observe that $L_{*}(X, P)$ is separable
and metrizable, and it contains a copy of $L_{q}(X, P)$ for each $q$ . $L_{*}(X, P)$ will be compact
(completely metrizable) if $X$ is the same.

All our dimension functions $d$ are assumed to be monotone with respect to closed subsets
and $d$ ( a point ) $\leq 0.$

Lemma 2.1 Let $d$ be a dimension function and $X$ be a space without isolated points which
cannot be written as the union of $k\geq 1$ closed subsets with $d\leq\alpha$ , where $\alpha$ is an ordinal.
Let also $P$ be a countable dense subset of X. Then

(a) for every $q$ we have $L_{q}(X, P)\neq$ $\bigcup_{i=1}^{qk}X_{i}$ , where each $X_{i}$ is closed in $L_{q}(X, P)$ and
$dX_{i}\leq\alpha$ ;

(b) $L_{*}(X, P)\neq\cup \mathit{7}_{=1}^{X_{i}}$ , where each $X_{i}$ is closed in $L_{*}(X, P)$ and $dX_{\dot{l}}\leq\alpha$ , and $m$ is any
integer $\geq 1.$

All our classes 7( of topological spaces are assumed to be monotone with respect to closed
subsets and closed under operations $L(, )$ and $L(, , )$ .

Lemma 2.2 Let $\mathcal{K}$ be a class of topological spaces, $\alpha$ be an ordinal $\geq 0$ and $d$ be a dimension

function such that $dL(L(S, P)$ , $P^{1}$ , $T)\leq\alpha$ for any $S$, $T$ from $\mathcal{K}$ with $dS\leq at,$ $dT\leq\alpha$ and
any P. Let $X\in \mathcal{K}$ such that $X= \bigcup_{\dot{\iota}=1}^{k}X_{i}$, where each $X_{i}$ is closed in $X$ , without isolated
points and $dX_{\dot{l}}\leq\alpha$ . Let also $P_{i}$ be a countable dense subset of X.$\cdot$ for each $i$ . Then for
each $q$ the space $L_{q}(X, \bigcup_{\dot{l}}^{k}{}_{=1}P_{\dot{1}})$ $e$$\dot{m}ts$ and is the union of $k^{q}$ closed subsets with $d\leq\alpha$ .
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We will say that a dimension function $d$ satisfies the sum theorem of type $A$ if for any $X$

being the union of two closed subspaces $X_{1}$ and $X_{2}$ with $dX_{i}\leq\alpha_{i}$ , where each $\alpha_{i}$ is finite
and $\geq 0,$ we have $dX\leq\alpha_{1}+\alpha_{2}+1.$ A space $X$ is completely decomposable in the sense of
the dimension function $d$ if $dX=\alpha$ , where $\alpha$ is an integer $\geq 1,$ and $X= \bigcup_{i=1}^{\alpha+1}X_{i}$ , where
each $X_{i}$ is closed in $X$ and $dX_{i}=0.$ Observe that if this space $X$ belongs to a class $\mathcal{K}$ of
topological spaces then $m_{\kappa}(d, \beta, \alpha)\leq m(X, d, \mathrm{J}, \alpha)\leq\alpha+1$ for each 4 with $0\leq$ d $<\alpha$ .

We will say that a transfinite dimension function $d$ satisfies the sum theorem of type $A_{tr}$

if for any $X$ being the union of two closed subspaces $X_{1}$ and $X_{2}$ with $dX_{i}\leq\alpha_{i}$ and a$2\geq\alpha_{1}$

we have $dX\leq\alpha_{2}$ , if $\lambda(\alpha_{1})<\lambda(\alpha_{2})$ , and $dX\leq$ a2 $+n(\alpha_{1})$ $+1$ , if $\lambda(\alpha_{1})=\lambda(\alpha_{2})$ . A space $X$

is completely decomposable in the sense of the transfinite dimension function $d$ if $dX=\alpha$ ,
where $\alpha$ is an infinite ordinal with $n(\alpha)$ $\geq 1,$ and $X= \bigcup_{i=1}^{n(\alpha)+1}X_{i}$ , where each $X_{i}$ is closed
in $X$ and $dX_{i}=\lambda(\alpha)$ . Observe that if this space $X$ belongs to a class $\mathcal{K}$ of topological
spaces then $m\kappa(d, \beta, \alpha)\leq m(X, d, \beta, \alpha)\leq n(\alpha)+1$ for each $\beta$ with $\lambda(\alpha)\leq\beta<\alpha$ .

To every space $X$ one assigns the large inductive compactness degree Cmp as follows.
(i) Cmp $X=-1$ iff $X$ is compact;
(ii) Cmp $X=0$ iff there is a base $B$ for the open sets of $X$ such that the boundary Bd $U$

is compact for each $U$ in $B$ ;
(iii) Cmp $X\leq\alpha$ , where $\alpha$ is an integer $\geq 1,$ if for each pair of disjoint closed subsets $A$

and $B$ of $X$ there exists a partition $C$ between $A$ and $B$ in $X$ such that Cmp $C\leq\alpha-1;$

(iv) Cmp $X=\alpha$ if Cmp $X\leq\alpha$ and Cmp $X>\alpha-1;$

(v) Cmp $X=$ oo if Cmp $X>$ a for every positive integer $\alpha$ .

Recall also the definitions of the transfinite inductive dimenions trind and trlnd.
(i) trlndX $=-1$ iff $X=\emptyset$ ;
(ii) trlndX $\leq\alpha$ , where cr is an ordinal $\geq 0,$ if for each pair of disjoint closed subsets $A$

and $B$ of $X$ there exists a partition $C$ between $A$ and $B$ in $X$ such that trIndC $<\alpha$ ;
(iii) trlndX $=\alpha$ if trlndX $\leq\alpha$ and trlndX $\leq\beta$ holds for no $\beta<\alpha$ ;
(iv) trlndX $=\infty$ if trlndX $\leq\alpha$ holds for no ordinal $\alpha$ .
The definition of trind is obtained by replacing the set $A$ in (ii) with a point of $X$ .

Remark 2.1 (i) Note that $Cmp$ satisfies the sum theorem of type $A$ ($[ChH$, Theorem 2. 2])
and for each integer $\alpha\geq 1$ there eists a separable completely metrizable space $C_{\alpha}$ with
$CmpC_{a}=\alpha$ which is completely decomposable in the sense of $Cmp$ ($[ChH$, Theorem $\mathit{3}.\mathit{1}J$).
For the convenience of the reader, we recall that $C_{\alpha}= \{0\}\cross([0,1]^{\alpha}\backslash (0,1)^{\alpha})\cup\bigcup_{\dot{\iota}=1}^{\infty}\{x_{i}\}\mathrm{x}$

$[0,1]^{\alpha}\subset I^{\alpha+1}$ , where $\{x_{i}\}_{i=1}^{\infty}$ is a sequence of real numbers such that $0<x_{\dot{\iota}+1}<x_{i}\leq 1$

for all $i$ and $\lim_{\dot{\alpha}arrow\infty}X:=0.$ Note that the closed subsets in the decomposition of $C_{\alpha}$ can be
assumed without isolated points.

(ii) Note also that trInd satisfies the sum theorem of type $A_{tr}$ ($[E$, Theorem 7. 2. 7]) and for
each infinite ordinal ct with $n(\alpha)\geq 1$ there eists a metrizable compact space $S^{\alpha}$ (Smirnov’s
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compactum) with $trIndS^{\alpha}=\alpha$ which is completely decomposable in the sense of trlnd $([Ch$,
Lemma $\mathit{3}.\mathit{5}f$). Recall that Smirnov’s compacta $S^{0}$ , $S^{1}$ , $\ldots$ , $S^{\alpha}$ , $\ldots$ , $\alpha<\omega_{1}$ , are defined by

transfinite induction: $S^{0}$ is the one-point space, $S^{\alpha}=S^{\beta}\cross[0,1]$ for a $=$ V $+1,$ and if $\alpha$

is a limit ordinal, then $S^{a}= \{*_{\alpha}\}\cup\bigcup_{\beta<\alpha}S^{\beta}$ is the one-point compactification of the free
union of all the previously defined $S^{\beta}$ ’s, where $*_{\alpha}$ is the compactifying point. Note that the
closed subsets in the decomposition of $S^{\alpha}$ can be assumed without isolated points.

(iii) Observe that trind satisfies another sum theorem. $Nam_{\iota}ely$, for any $X$ being the union

of two closed subspaces $X_{1}$ and $X_{2}$ with $t\dot{n}ndX_{i}\leq\alpha_{i}$ and $\alpha_{2}\geq\alpha_{1}$ we have trindX $\leq\alpha_{2}$ ,

if $\lambda(\alpha_{1})$ $<$ A $(\alpha_{2})$ , and trindX $\leq$ a2 +1, if $\lambda(\alpha_{1})=\lambda(\alpha_{2})$ [$Ch$, Theorem 3.9].

Proposition 2.1 (i) Let $\mathcal{K}$ be a class of topological spaces, $d$ be a dimension function
satisfying the srrm theorem of type $A$ , ce be an integer $\geq 1$ and $X$ be a space ffom $\mathcal{K}$ with
$dX=\alpha$ which is completely decomposable in the sense of $d$ . Then for any integer $0\leq$ d $<$ a
we have $m\kappa(d, \beta, \alpha)=m(X, d,\beta, \alpha)=q(\beta, \alpha)$ .

(ii) Let $\mathcal{K}$ be a class of topological spaces, $d$ be a transfinite dimension function satisfying
the sum theorem of type $A_{t\mathrm{r}}$ , $\alpha$ be an infinite ordinal with $n(\alpha)\geq 1$ and $X$ be a space

from $\mathcal{K}$ with $dX=\alpha$ which is completely decomposable in the sense of $d$ . Then for any

infinite ordinal $\beta<\alpha$ we have $m\kappa(d, \beta, \alpha)=m(X, d, \beta, \alpha)=q(\beta, \alpha)$ if A(!) $=)$ (a) and
$m\kappa(d, \beta, \alpha)$ does not exist othemise.

The deficiency def is defined in the following way: For a space $X$ ,

def $X= \min${$\dim$ ( $\mathrm{Y}\backslash X$ ) : $\mathrm{Y}$ is a metrizable compactification of $X$ }.

Recall that Cmp $X\leq$ def $X$ and def $X=0$ iff Cmp $X=0.$

Lemma 2.3 (%) $defL(L(X, P),$ $P^{1}$ , $\mathrm{Y})=\max\{defX, def\mathrm{Y}\}$ for any $X$ , $P_{f}\mathrm{Y}$ In partic-
ular, we have $CmpL(L(X, P)$ , $P^{1}$ , $\mathrm{Y})\leq 0$ if $CmpX\leq 0$ and $Cmp\mathrm{Y}\leq 0.$

(it) trIndL(L($X$ , $P$), $P^{1}$ , Y) $= \max${ trIndSa trlnd } for any compacta $X$ , $\mathrm{Y}$ and any $P$ .

Proof, (i) Let $bX$ and bY be metrizable compactifications of $X$ and $\mathrm{Y}$ respectively
such that $\dim(bX\backslash X)=$ def $X$ and $\dim(b\mathrm{Y}\backslash \mathrm{Y})=$ def Y. Observe that the space
$L(L(bX, P)$ , $P^{1}$ , bY) is a compactification of $L(L(X, P)$ , $P^{1}$ , Y) and the increment $Z=$

$L\{L(X, P)$ , $P^{1}$ , bY) ’ $L(L(X, P),$ $P^{1}$ , Y) is the union of countably many closed subsets,
one of which is homeomorphic to $bXs$ $X$ and the others are homeomorphic to bY ’ $\mathrm{Y}$ So
by the countable sum theorem for $\dim$ we get that $\dim Z=\max\{\dim(bX\mathrm{s} X)$ , $\dim(b\mathrm{Y}\backslash$

$\mathrm{Y})\}=\max${ $\mathrm{d}\mathrm{e}\mathrm{f}X$ , def $\mathrm{Y}$ }. Hence def $L(L(X, P),$ $P^{1}$ , $\mathrm{Y})\leq\max$ { $\mathrm{d}\mathrm{e}\mathrm{f}X$, def $\mathrm{Y}$ }, thereby
def $L(L(X, P)$ , $P^{1}$ , $\mathrm{Y})=\max\{\mathrm{d}\mathrm{e}\mathrm{f}X, \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{Y}\}$ .

(ii) At first let us prove the statement when $\mathrm{Y}$ is a singleton. Observe that in this case
$L(L(X, P)$ , $P^{1}$ , $\mathrm{Y})=L(X, P)$ . Consider two disjoint closed subsets $A$ and $B$ of $L(X, P)$ .
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Recall that $L(X, P)$ contains a copy of $X$ . Choose a partition $C$ between $A\cap X$ and $B\cap X$

in $X$ . Extend the partition to a partition $C_{1}$ between $A$ and $B$ in $L(X, P)$ . Consider
aluother partition $C_{2}$ between $A$ and $B$ in $L(X, P)$ which is ”thin” (i.e. $\mathrm{I}\mathrm{n}\mathrm{t}_{L(X},{}_{P)}C_{2}=\emptyset$ )

and is in $C_{1}$ . Observe that $C_{2}\subset C$ . Hence trIndL$(X, P)$ $=$ trlndX.
Now let us consider the general case. Assume that $A$ and $B$ are disjoint closed sub-

sets in $L(L(X, P)$ , $P^{1}$ , $\mathrm{Y})$ . Recall that there is the natural continuous projection $pr$ :
$L(L(X, P)$ , $P^{1}$ , $\mathrm{Y})arrow L(X, P)$ . Consider the closed subsets $prA$ and $prB$ of $L(X, P)$ . If
they are disjoint, choose a partition $C_{2}$ between $prA$ and $prB$ in $L(X, P)$ like in the previ-
ous part. Observe that $pr^{-1}C_{2}$ is a partition between $A$ and $B$ in $L(L(X, P)$ , $P^{1}$ , Y) such
that $pr^{-1}C_{2}$ is homeomorphic to a closed subset of $C$ . Assume now that $prA\cap prB!-$ $\emptyset$ .
Note that $Q^{1}=prA$ ” $prB$ is finite and $L(L(X, P)$ , $P^{1}$ , Y) is the free union of $L(L(X,$ $(P\backslash$

$Q))$ , $P^{1}\backslash Q^{1}$ , $\mathrm{Y})$ , where $Q$ is the finite subset of $P$ corresponding to $Q^{1}$ and finitely many
copies of $\mathrm{Y}$ Choose a partition between $A$ and $B$ in $X$ and a partition between $A$ and $B$

in each of the copies of $\mathrm{Y}$ corresponding to points of $Q$ . It follows from the foregoing dis-
cussion that the free union of these partitions constitutes a partition in $L(L(X, P),$ $P^{1}$ , Y)

between Aand $B$ . We conclude that trIndL$(L(X, P)$ , $P^{1}$ , Y) $= \max${trIndX, trlndX. $\square$

Proof of Theorem 1.1.
(i) Because of Remark 2.1 and Proposition 2.1, we need only establish that $M_{\mathcal{P}}(\mathrm{C}\mathrm{m}\mathrm{p}$,

$\beta$ , $\alpha)=\infty$ . Consider the space $C_{\alpha}= \bigcup_{i=1}^{\alpha+1}X_{i}$ , where each $X_{i}$ is closed in $X$ , without
isolated points and Cmp $X_{i}=0,$ from Remark 2.1. Let $P_{i}$ be a countable dense subset of
$X_{i}$ . Put $P= \bigcup_{i=1}^{\alpha+1}P_{i}$ . Recall that def $C_{\alpha}=\alpha$ ( $[\mathrm{C}\mathrm{h}\mathrm{H}$ , Theorem 3.1]). So by Lemma 2.3 for
any integer $q$ we have def $L_{q}(C_{\alpha}, P)=$ a and hence Cmp $L_{q}(C_{\alpha}, P)=\alpha$ . Observe that by

Lemmas 2.2 and 2.3, we get that the completely metrizable space $L_{q}(C_{\alpha}, P)$ is the union of
$(\alpha+1)^{q}$ many closed subspaces with Cmp $\leq 0$ . Hence $m(L_{q}(C_{\alpha}, P),\mathrm{C}\mathrm{m}\mathrm{p},$ $\beta$ , $\alpha)\leq(\alpha+1)^{q}$ .
Since Cmp satisfies the sum theorem of type $A$ , $C_{\alpha}$ cannot be represented as $\alpha$-many closed
subsets with $\mathrm{C}\mathrm{m}\mathrm{p}\leq 0$ . By Lemma 2.1, we have $m(L_{q}(C_{\alpha}, P),\mathrm{C}\mathrm{m}\mathrm{p},\beta$ , $\alpha)\geq q\alpha\geq q$ . Since
$\lim_{qarrow\infty}q=$ oo we get $M_{P}(\mathrm{C}\mathrm{m}\mathrm{p},\beta, \alpha)=\infty$ .

(ii) By similar arguments as in the proof of (i) one can prove $Mc(\mathrm{t}\mathrm{r}\mathrm{I}\mathrm{n}\mathrm{d},\beta, \alpha)=\infty$ , if
$\lambda(\beta)=$ $\mathrm{A}(\mathrm{a})$ ; and does not exist otherwise. $\square$

Proof of Theorem 1.2.
(i) Put $X_{\alpha}=\{*\}\cup\oplus_{i=1}^{\infty}L_{i}(C_{\alpha}, P)$ . Observe that $X_{\alpha}$ is completely metrizable and is the

union of countably many closed subspaces with Cmp $\leq 0.$ Since def $X_{\alpha}=\alpha$ , we have
Cmp $X_{\alpha}=\alpha$ . Now observe that $\lim_{iarrow\infty}m(L_{i}(C_{\alpha}, P)$ , $\mathrm{C}\mathrm{m}\mathrm{p}$ , $\alpha-1$ , $\alpha)=\infty$ . Hence $X_{\alpha}$

cannot be written as the finite union of closed subsets with Cmp $\leq\alpha-1.$

(ii) Put $X_{\alpha}=\{*\}\cup\oplus_{i=\mathrm{i}}^{\infty}L_{i}(S^{\alpha}, P)$ . Observe that $X_{\alpha}$ is compact and is the union of
countably many finite-dimensional closed subspaces (recall that $S^{\alpha}$ and therefore $L\dot{.}(S^{\alpha}, P)$

have the same property). Since for each $i$ , $\mathrm{t}\mathrm{r}\mathrm{I}\mathrm{n}\mathrm{d}L_{i}(S^{\alpha}, P)=\alpha$ , we have $\mathrm{t}\mathrm{r}\mathrm{I}\mathrm{n}\mathrm{d}X_{\alpha}=\alpha$ . Now
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observe that $\lim_{iarrow\infty}m(L_{i}(S^{\alpha}, P)$ , trlnd, $\alpha-1$ , $\alpha$ ) $=\infty$ . Hence $X_{\alpha}$ cannot be written as the
finite union of closed subsets with trlnd $\leq\alpha-1.$ $\square$

Remark 2.2 Let $Q$ be the set of rational numbers of the closed interval $[0, 1]$ . Recall that
for the spaces $X=Q\cross[0,1]^{n}$ and $\mathrm{Y}=([0,1]\backslash Q)\cross I^{n}$ we have $CmpX=defX=$
$Cmp\mathrm{Y}=def\mathrm{Y}=n$ ([AN, $p$ . 18 and $\mathit{5}\mathit{6}J$). It is easy to observe that $X$ satisfies points $(a)-$

$(c)$ of Theorem 1.2 (i). However, $X$ is not completely metrizable. Note that $\mathrm{Y}$ is completely
metrizable and satisfies points (a) and (c) of Theorem 1.2 (i) but not (b). Observe that
Smirnov’s compactum $S^{\alpha}$ with $n(\alpha)\geq 1$ satisfies points (a) and (b) of Theorem 1.2 (ii)
but not (c). Note also that any Cantor manifold $Z$ with trlndZ $=\alpha$ , where $\alpha$ is infinite
ordinal with $n(\alpha)\geq 1,$ (see for such spaces for example in [0]) satisfies points (a) and (c)

of Theorem 1.2 (ii) but not (b).

Let $d$ be a (transfinite) dimension function. A space $X$ with $dX\neq\infty$ is said to have
property $(*)_{d}$ if for every open nonempty subset $O$ of the space $X$ there exists a closed in
$X$ subset $F\subset O$ with $dF=dX.$

Observe that the spaces $X$, $\mathrm{Y}$ from Remark 2.2 have property $(*)cmp$ and $Z$ has property
$(*)_{trInd}$ .

Proposition 2.2 Let $X$ be a completely metrizable space with $dX\neq\infty$ . Then $X\neq$

$\bigcup_{i=1}^{\infty}4_{i}$ , where each $X_{i}$ is closed in $X$ and $dX_{i}<dX$ iff there exists a closed subspace $\mathrm{Y}$

of $X$ such that
(i) $d\mathrm{Y}=dX$ and
(ii) $\mathrm{Y}$ has the property $(*)_{d}$ .

Remark 2.3 This remark concerns non-metrizable compact spaces. Using the constmction
of Lokucievskij’s example ($[E$, p. 140]), Chatyrko, Kozlov and Pasynkov [ChKP, Remark
3.15 (b)$]$ presented for each $n=3,4$, $\ldots$ a compact Hausdorff space $X_{n}$ such that $ind$ $X_{n}=2$

and $m(X_{n},ind, 1,2)=n.$ Hence it is clear that my(ind, 1, $2$ ) $=2$ and $M_{N}(ind, 1,2)=\infty$ ,
where $N$ is the class of compact Hausdorff spaces. In $[K]$ Kotkin constmcted a compact
Hausdorff space $X$ with $indX=3$ which is the union of three one-dimension$al$ in the
sense of $ind$ closed subspaces. Hence, my(ind, 1, $3$ ) $=3$ and my(ind, 2, $3$ ) $=2.$ Filippov
in $[F]$ presented for every $n$ a compact Hausdorff space $F_{n}$ with $indF_{n}=n,$ which is
the union of finitely many one-dimensional in the sense of $ind$ closed subspaces, thereby
my(ind, $k$ , $n$ ) $<$ oo for each $1\leq k<n$ . By the sum theorem from Remark 2.1 (Hi) for $ind$

which is valid in fact for all regular spaces, one can get that $mN(ind, 1,n)\geq 2^{n-2}+1$ for
each $n$ .
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