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The behaviour of dimension functions on unions of
closed subsets 1
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1 Introduction

All spaces we shall consider here are separable metrizable spaces.

It is well known that there exist (transfinite) dimension functions d such that d(X;UX5) >
max{dX,dX,} even if the subspaces X; arid X, are closed in the union X; U X,.

Let K be a class of spaces; §,a be ordinals such that 8 < o, and X be a space from
K with dX = a which is the union of finitely many closed subsets with d < 3. Define
m(X,d, 3,a) = min{k : X = U~ X;, where X; is closed in X and dX; < 8}, mg(d, 8,0) =
min{m(X,d,3,a) : X € K and m(X, d, 8, @) exists} and Mx(d, 8, @) = sup{m(X,d, 5,¢) :
X € K and m(X,d, 3, a) exists}. '

We will say that my(d, 8, @) and Mx(d, 5, @) do not exist if there is no space X from K
with dX = a which is the union of finitely many closed subsets with d < 3. It is evident
that either mx(d, 3, o) and Mx(d, 8, @) satisfy 2 < mx(d, 8, @) < Mg(d, 8,a) < oo or they
do not exist.

Two natural questions arise.

Question 1.1 Determine the values of mx(d, 8, @) and Mx(d, 8, ) for given K,d, 3, c.

Question 1.2 Find a (transfinite) dimension function d having for given pair2 < k <[ <
0o, mi(d, B,a) = k and Mx(d,3,a) = L.

Let C be the class of metrizable compact spaces and P be the class of separable completely
metrizable spaces. By trind(trInd) we denote Hurewicz’s ( Smirnov’s ) transfinite extension
of ind (Ind) and Cmp is the large inductive compactness degree introduced by de Groot.
We shall recall their definitions in the next section. Let @ = A(a) + n(a) be the natural
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decomposition of the ordinal @ > 0 into the sum of a limit number A(a)( observe that
Alan integer > 0) = 0) and a nonnegative integer n(a). Let § < a be ordinals, put
p(B,a) = 'TZJ(—Z)Z:L} and ¢(08,«) = the smallest integer > p(B,a). We have the following
theorems. The outline of the proof will be presented in section 2.

Theorem 1.1 1. Let 0 < f < a be finite ordinals. Then we have mp(Cmp ,B3,a) =
q(8,0) and Mp(Cmp , 3, a) = .
2. Let B < o be infinite ordinals. Then we have

me(trind, 8, ) = { 9(B,), i A(B) = Mo,

does not exist, otherwise
_ oo, i MB) =X a),
Me(trind, §,0) = { does not exist,  otherwise

Theorem 1.2 1. For every finite a > 1 there exists a space X, € P such that

(a) CmpX, = a;

(b) Xo = U2, Y, where eachY; is closed in X, and CmpY; < 0;

(¢) Xo # U, Z;, where each Z; is closedin X, and CmpZ; < a—1 and m is any integer
>1.

2. For every infinite o with n(a) > 1 there exists a space X, € C such that

(a) trindX, = a;

(b) Xo = U2, Y;, where each Y; is closed in X, and finite-dimensional;

(c) Xo # UZ, Z;, where each Z; is closed in X, and trindZ; < a — 1 and m is any
integer > 1.

2 Evaluations of my(d, 3, a) and My(d, 3, )

The notation X ~ Y means that the spaces X and Y are homeomorphic. At first we
consider the following construction.

Step 1. Let X be a space without isolated points and P a countable dense subset
of X. Consider Alexandroff’s dublicate D = X U X' of X, where each point of X! is
clopen in D. Remove from D those points of X' which do not correspond to any point
from P. Denote the obtained space by L(X,P). Observe that L(X, P) is the disjoint
union of X with the countable dense subset P of L(X, P) consisting of points from X*
corresponding to the points from P. The space L(X, P) is separable and metrizable. It
will be compact if X is compact. Put L, (X, P) = L(X, P). Assume that X is a completely
metrizable space (recall that the increment bX \ X in any compactification bX of X is an
Fy-set in bX). Observe that L(bX, P) is a compactification of L(X, P) and the increment
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L(bX,P)\ L(X, P) (~bX\ X) is an F,-set in L(bX, P). Hence L(X, P) is also completely
metrizable.

Step 2. Let X be a space with a countable subset R consisting of isolated points. Let
Y be a space. Substitute each point of R in X by a copy of Y. The obtained set W has
the natural projection pr : W — X. Define the topology on W as the smallest topology
such that the projection pr is continuous and each copy of Y has its original topology as a
subspace of this new space. The obtained space is denoted by L{X, R,Y’). It is separable
and metrizable and it will be compact (completely metrizable) if X and Y are the same.
Moreover L(X, R,Y) is the disjoint union of the closed subspace X \ R of X (which we will
call basic for the space L(X, R,Y)) and countably many clopen copies of Y.

Step 3. Let X be a space without isolated points and P be a countable dense subset
of X. Define L,(X,P) = L(Ly(X, P), P}, L,_1(X, P)),n > 2. Observe that for any open
subset O of L, (X, P) meeting the basic subset X of L, (X, P) there is a copy of L,_1(X, P)
contained in 0. Put L.(X, P) = {*} U@ L,(X,P). (Here by {*} U®X,X; we mean
the one-point extension of the free union @$2,X; such that a neighborhood base at the
point * consists of the sets {*x} U®2, X;, k =1,2,...). Observe that L.(X, P) is separable
and metrizable, and it contains a copy of Ly (X, P) for each ¢. L.(X, P) will be compact
(completely metrizable) if X is the same.

All our dimension functions d are assumed to be monotone with respect to closed subsets
and d( a point ) <0.

Lemma 2.1 Let d be a dimension function and X be a space without isolated points which
cannot be written as the union of k > 1 closed subsets with d < o, where a is an ordinal.
Let also P be a countable dense subset of X. Then
(a) for every q we have Lyo(X, P) # U, X;, where each X; is closed in L,(X,P) and
dX; < o; |
(b) L.(X, P) # U2, X;, where each X; is closed in L.(X, P) and dX; < o, and m is any
integer > 1.

All our classes K of topological spaces are assumed to be monotone with respect to closed
subsets and closed under operations L(,) and L, , ).

Lemma 2.2 Let K be a class of topological spaces, a be an ordinal > 0 and d be a dimension
function such that dL(L(S, P), P}, T) < a for any S,T from K with dS < a, dT < a and
any P. Let X € K such that X = Ule X;, where each X; is closed in X, without isolated
points and dX; < a. Let also P; be a countable dense subset of X; for each i. Then for
each g the space L,(X, UX_, P) exists and is the union of k? closed subsets with d < c.
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We will say that a dimension function d satisfies the sum theorem of type A if for any X
being the union of two closed subspaces X; and X, with dX; < a;, where each ¢ is finite
and > 0, we have dX < a; +az + 1. A space X is completely decomposable in the sense of
the dimension function d if dX = o, where a is an integer > 1, and X = U X;, where
each X; is closed in X and dX; = 0. Observe that if this space X belongs to a class K of
topological spaces then mx(d, 8,a) < m(X,d,,a) < a+1 for each f with 0 < 3 < a.

We will say that a transfinite dimension function d satisfies the sum theorem of type A,
if for any X being the union of two closed subspaces X; and X, with dX; < a; and as > o
we have dX < ag, if AM(a1) < A(az), and dX < az+n(a1)+1, if A(oq) = A(a). A space X
is completely decomposable in the sense of the transfinite dimension function d if dX = a,
where « is an infinite ordinal with n(a) > 1, and X = UX¥*! X;, where each X; is closed
~in X and dX; = A(a). Observe that if this space X belongs to a class K of topological
spaces then mx(d, 8,a) < m(X,d, 3,a) < n(a) + 1 for each 3 with A(a) < f < a.

To every space X one assigns the large inductive compactness degree Cmp as follows.

(i) Cmp X = -1 iff X is compact;

(ii) Cmp X = 0 iff there is a base B for the open sets of X such that the boundary Bd U
is compact for each U in B;

(iii) Cmp X < a, where « is an integer > 1, if for each pair of disjoint closed subsets A
and B of X there exists a partition C between A and B in X such that Cmp C < a—1;

(iv)Cmp X = if Cmp X <o and Cmp X >a—1;

(v) Cmp X = oo if Cmp X > « for every positive integer a.

Recall also the definitions of the transfinite inductive dimenions trind and trind.

(i) trIndX = -1 iff X = §;

(ii) trlndX < a, where a is an ordinal > 0, if for each pair of disjoint closed subsets A
and B of X there exists a partition C between A and B in X such that trIndC < o;

~ (iii) trIndX = a if trIndX < @ and trIndX < S holds for no 8 < a;

(iv) trlndX = oo if trIndX < o holds for no ordinal o.

The definition of trind is obtained by replacing the set A in (ii) with a point of X.

Remark 2.1 (i) Note that Cmp satisfies the sum theorem of type A ([ChH, Theorem 2.2])
and for each integer a > 1 there erists a separable completely metrizable space C, with
Cmp C, = a which is completely decomposable in the sense of Cmp ([ChH, Theorem 8.1]).
For the convenience of the reader, we recall that C, = {0} x ([0,1]*\ (0,1)*) UUR, {z:} X
[0,1]® C I**, where {z;}2, is a sequence of real numbers such that 0 < z;4; < z; <1
for all i and lim; ;o z; = 0. Note that the closed subsets n the decomposztzon of C,, can be -
assumed without isolated points.

(ii) Note also that trind satisfies the sum theorem of type Ay (/E, Theorem 7.2.7] ) and for
each infinite ordinal a with n(a) > 1 there ezists a metrizable compact space S* (Smirnov’s
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compactum) with trIndS® = a which is completely decomposable in the sense of trind ([Ch,
Lemma 3.5]). Recall that Smirnov’s compacta S°, S, ..., 5% ...,a < w,, are defined by
transfinite induction: S° is the one-point space, S® = S# x [0,1] fora = S+ 1, and if
is a limit ordinal, then 5% = {*a} U Up<q SP is the one-point compactification of the free
union of all the previously defined SP’s, where x, is the compactifying point. Note that the
closed subsets in the decomposition of S® can be assumed without isolated points.

(ii) Observe that trind satisfies another sum theorem. Namely, for any X being the union
of two closed subspaces X1 and Xy with trindX; < o; and oy > o1 we have trindX < ay,
if May) < Maz), and trindX < ag + 1, if M(an) = Aaz) [Ch, Theorem 3.9].

Proposition 2.1 (i) Let K be a class of topological spaces, d be a dimension function
satisfying the sum theorem of type A, o be an integer > 1 and X be a space from K with
dX = a which is completely decomposable in the sense of d. Then for any integer 0 < 8 <
we have mg(d, 8,a) = m(X,d,(,a) = q(3,a).

(ii) Let K be a class of topological spaces, d be a transfinite dimension function satisfying
the sum theorem of type A, a be an infinite ordinal with n(a) > 1 and X be a space
from K with dX = o which is completely decomposable in the sense of d. Then for any
infinite ordinal B < o we have mx(d, B,0) = m(X,d, B,c) = q(8,a) if A\(8) = Aa) and
mx(d, 8,a) does not ezist otherwise.

The deficiency def is defined in the following way: For a space X,
def X = min{dim(Y \ X) : Y is a metrizable compactification of X}.
Recall that Cmp X < def X and def X =0 iff Cmp X = 0.

Lemma 2.3 (i) def L(L(X, P), P1,Y) = max{def X, def Y} for any X, P, Y. In partic-
ular, we have Cmp L(L(X,P),PL,Y)<0if Cmp X <0 and CmpY <0.
(i) trIndL(L(X, P), P',Y) = max{trIndX, trIndY'} for any compacta X,Y and any P.

Proof. (i) Let bX and bY be metrizable compactifications of X and Y respectively
such that dim(bX \ X) = def X and dim(bY \ Y) = def Y. Observe that the space
L(L(bX, P), P},bY) is a compactification of L(L(X,P), P1,Y) and the increment Z =
L(L(bX, P), P1,bY) \ L(L(X, P), P1,Y) is the union of countably many closed subsets,
one of which is homeomorphic to bX \ X and the others are homeomorphic to bY \ Y. So
by the countable sum theorem for dim we get that dim Z = max{dim(bX \ X), dim(bY \
Y)} = max{def X,def Y}. Hence def L(L(X, P), P',Y) < max{def X,def Y}, thereby
def L(L(X, P), P1,Y) = max{def X,def Y}. '

(ii) At first let us prove the statement when Y is a singleton. Observe that in this case
L(L(X, P),P.,Y) = L(X, P). Consider two disjoint closed subsets A and B of L(X, P).
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Recall that L(X, P) contains a copy of X. Choose a partition C between ANX and BNX
in X. Extend the partition to a partition C; between A and B in L(X, P). Consider
another partition C, between A and B in L(X, P) which is thin” (i.e. Intzx,p)C2 =0 )
and is in C;. Observe that C; C C. Hence trIndL(X, P) = trIndX.

Now let us consider the general case. Assume that A and B are disjoint closed sub-
sets in L(L(X, P),P'Y). Recall that there is the natural continuous projection pr :
L(L(X,P),P',Y) = L(X, P). Consider the closed subsets prA and prB of L(X, P). If
they are disjoint, choose a partition C; between prA and prB in L(X, P) like in the previ-
ous part. Observe that pr=1C, is a partition between A and B in L(L(X, P), P1,Y) such
that pr—1C, is homeomorphic to a closed subset of C. Assume now that prANprB # 0.
Note that Q! = prANprB is finite and L(L(X, P), P,Y) is the free union of L(L(X, (P\
Q)), P*\ @1,Y), where Q is the finite subset of P corresponding to @' and finitely many
copies of Y. Choose a partition between A and B in X and a partition between A and B
in each of the copies of Y corresponding to points of Q. It follows from the foregoing dis-
cussion that the free union of these partitions constitutes a partition in L(L(X, P), P1,Y)
between A and B. We conclude that trindL(L(X, P), P',Y) = max{trInd X, trIndY’}. O

Proof of Theorem 1.1.

(i) Because of Remark 2.1 and Proposition 2.1, we need only estabhsh that Mp(Cmp,
B,a).= oo. Consider the space C, = U X;, where each X; is closed in X, without
isolated points and Cmp X; = 0, from Remark 2.1. Let P; be a countable dense subset of
X;. Put P = 24! P. Recall that def C, = a ([ChH, Theorem 3.1]). So by Lemma 2.3 for
any integer q¢ we have def Ly(C,, P) = a and hence Cmp L,(C,, P) = a. Observe that by
Lemmas 2.2 and 2.3, we get that the completely metrizable space Ly(Cy, P) is the union of
(0.+1)? many closed subspaces with Cmp < 0. Hence m(Ly(Ca, P),Cmp, 8,a) < (a+1)4.
Since Cmp satisfies the sum theorem of type A, C, cannot be represented as a-many closed
subsets with Cmp < 0. By Lemma 2.1, we have m(Ly(Ca, P),Cmp,3,a) > ga > g. Since
limg 00 ¢ = 00 We get Mp(Cmp,B, ) = oo.

- (ii) By similar arguments as in the proof of (i) one can prove Mc(trInd,3,a) = oo, if
A(B) = A(a); and does not exist otherwise. O

Proof of Theorem 1.2.

(i) Put X, = {*} U@L, L;(Ca, P). Observe that X, is completely metrizable and is the
union of countably many closed subspaces with Cmp < 0. Since def X, = a, we have
Cmp X, = a. Now observe that lim; ,c m(L;(Cy, P),Cmp ,a — 1,a) = co. Hence X,
cannot be written as the finite union of closed subsets with Cmp < a — 1. -
(i) Put X, = {*} U ®X;L;(S% P). Observe that X, is compact and is the union of
countably many finite-dimensional closed subspaces (recall that S* and therefore L;(S®, P)
have the same property). Since for each i, trindL;(S®, P) = a, we have trlndX, = a. Now
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observe that lim;_,o m(L;(S%, P), trInd, o — 1, a) = oo. Hence X, cannot be written as the
finite union of closed subsets with trlnd < a—-1. O

Remark 2.2 Let Q be the set of rational numbers of the closed interval [0,1]. Recall that
for the spaces X = @ x [0,1]" and Y = ([0,1] \ @) x I" we have Cmp X = def X =
CmpY =defY =n ([AN, p. 18 and 56]). It is easy to observe that X satisfies points (a)-
(c) of Theorem 1.2 (i). However, X is not completely metrizable. Note thatY is completely
metrizable and satisfies points (a) and (c) of Theorem 1.2 (i) but not (b). Observe that
Smirnov’s compactum S* with n(a) > 1 satisfies points (a) and (b) of Theorem 1.2 (ii)
but not (c). Note also that any Cantor manifold Z with trindZ = o, where « is infinite
ordinal with n(a) > 1, (see for such spaces for example in [O]) satisfies points (a) and (c)
of Theorem 1.2 (ii) but not (b).

Let d be a (transfinite) dimension function. A space X with dX # oo is said to have
property (x)q if for every open nonempty subset O of the space X there exists a closed in
X subset F' C O with dF =dX.

Observe that the spaces X,Y from Remark 2.2 have property (*)cmp and Z has property

(*)trInd-

Proposition 2.2 Let X be a completely metrizable space with dX # oo. Then X #
U2 Xi, where each X; is closed in X and dX; < dX iff there erists a closed subspace Y
of X such that

(i) Y = dX and

(i1) Y has the property (x)4.

Remark 2.3 This remark concerns non-metrizable compact spaces. Using the construction
of Lokucievskij’s example ([E, p. 140]), Chatyrko, Kozlov and Pasynkov [ChKP, Remark
3.15 (b)] presented for eachn = 3,4, ... a compact Hausdorff space X,, such that ind X, = 2
and m(X,,ind,1,2) = n. Hence it is clear that mp(ind,1,2) = 2 and My (ind, 1,2) = o0,
where N is the class of compact Hausdorff spaces. In [K] Kotkin constructed a compact
Hausdorff space X with ind X = 3 which is the union of three one-dimensional in the
sense of ind closed subspaces. Hence, my(ind,1,3) = 3 and my(ind,2,3) = 2. Filippov
in [F] presented for every n a compact Hausdorff space F, with ind F, = n, which is
the union of finitely many one-dimensional in the sense of ind closed subspaces, thereby
my(ind, k,n) < oo for each 1 < k < n. By the sum theorem from Remark 2.1 (iii) for ind
which is valid in fact for all regular spaces, one can get that myr(ind,1,n) > 2""2 + 1 for
each n.
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