On dense subsets of the boundary of a Coxeter system

宇都宮大学教育学部

保坂 哲也 (Tetsuya Hosaka)

The purpose of this note is to introduce main results of my recent paper [10] about dense subsets of the boundary of a Coxeter system.

A Coxeter group is a group W having a presentation

$$\langle S | (st)^{m(s,t)} = 1 \text{ for } s, t \in S \rangle,$$

where S is a finite set and $m: S \times S \to \mathbb{N} \cup \{\infty\}$ is a function satisfying the following conditions:

(1)
$$m(s,t) = m(t,s)$$
 for each $s,t \in S$,

(2) m(s,s) = 1 for each $s \in S$, and

(3) $m(s,t) \ge 2$ for each $s,t \in S$ such that $s \ne t$.

The pair (W, S) is called a *Coxeter system*. Let (W, S) be a Coxeter system. For a subset $T \subset S$, W_T is defined as the subgroup of Wgenerated by T, and called a *parabolic subgroup*. If T is the empty set, then W_T is the trivial group. A subset $T \subset S$ is called a *spherical* subset of S, if the parabolic subgroup W_T is finite. For each $w \in W$, we define $S(w) = \{s \in S | \ell(ws) < \ell(w)\}$, where $\ell(w)$ is the minimum length of word in S which represents w. For a subset $T \subset S$, we also define $W^T = \{w \in W | S(w) = T\}$.

Let (W, S) be a Coxeter system and let S^f be the family of spherical subsets of S. We denote WS^f as the set of all cosets of the form wW_T , with $w \in W$ and $T \in S^f$. The sets S^f and WS^f are partially ordered by inclusion. Contractible simplicial complexes K(W, S) and $\Sigma(W, S)$ are defined as the geometric realizations of the partially ordered sets S^f and WS^f , respectively ([7, §3], [5]). The natural embedding $S^f \to WS^f$ defined by $T \mapsto W_T$ induces an embedding $K(W, S) \to \Sigma(W, S)$ which we regard as an inclusion. The group W acts on $\Sigma(W, S)$ via simplicial automorphism. Then $\Sigma(W, S) = WK(W, S)$ ([5], [7]). For each $w \in W$, wK(W, S) is called a *chamber* of $\Sigma(W, S)$. If W is infinite, then $\Sigma(W, S)$ is noncompact. In [12], G. Moussong proved that a natural metric on $\Sigma(W, S)$ satisfies the CAT(0) condition. Hence, if W is infinite, $\Sigma(W, S)$ ([6, §4], [8]). This boundary $\partial \Sigma(W, S)$ is called the *boundary* of (W, S). We note that the natural action of W on $\Sigma(W, S)$ is properly discontinuous and cocompact ([5], [6]), and this action induces an action of W on $\partial \Sigma(W, S)$.

A subset A of a space X is said to be *dense* in X, if $\overline{A} = X$. A subset A of a metric space X is said to be *quasi-dense*, if there exists N > 0 such that each point of X is N-close to some point of A.

Let (W, S) be a Coxeter system. Then W has the word metric d_{ℓ} defined by $d_{\ell}(w, w') = \ell(w^{-1}w')$ for each $w, w' \in W$.

Here we obtained the following theorems in [10].

Theorem 1. Let (W, S) be a Coxeter system. Suppose that $W^{\{s_0\}}$ is quasi-dense in W with respect to the word metric and $m(s_0, t_0) = \infty$ for some $s_0, t_0 \in S$. Then there exists $\alpha \in \partial \Sigma(W, S)$ such that the orbit $W\alpha$ is dense in $\partial \Sigma(W, S)$.

Suppose that a group Γ acts properly and cocompactly by isometries on a CAT(0) space X. Every element $\gamma \in \Gamma$ such that the order $o(\gamma) = \infty$ is a hyperbolic transformation of X, i.e., there exists a geodesic axis $c : \mathbb{R} \to X$ and a real number a > 0 such that $\gamma \cdot c(t) = c(t+a)$ for each $t \in \mathbb{R}$ ([3]). Then, for all $x \in X$, the sequence $\{\gamma^i x\}$ converges to $c(\infty)$ in $X \cup \partial X$. We denote $\gamma^{\infty} = c(\infty)$.

Theorem 2. Let (W, S) be a Coxeter system. If the set

 $\left| \begin{array}{c} \left| \{W^{\{s\}} \mid s \in S \text{ such that } m(s,t) = \infty \text{ for some } t \in S \right| \right. \right|$

is quasi-dense in W, then $\{w^{\infty} | w \in W \text{ such that } o(w) = \infty\}$ is dense in $\partial \Sigma(W, S)$.

Remark. For a negatively curved group G and the boundary ∂G of G,

- (1) we can show that $G\alpha$ is dense in ∂G for each $\alpha \in \partial G$ by an easy argument, and
- (2) it is known that $\{g^{\infty} | g \in G \text{ such that } o(g) = \infty\}$ is dense in ∂G ([2]).

Example. Let $S = \{s, t, u\}$ and let

$$W = \langle S | s^2 = t^2 = u^2 = (st)^3 = (tu)^3 = (us)^3 = 1 \rangle.$$

Then (W, S) is a Coxeter system and $W^{\{s\}}$ is quasi-dense in W. On the other hand, for any $\alpha \in \partial \Sigma(W, S)$, $W\alpha$ is a finite-points set and not dense in $\partial \Sigma(W, S)$ which is a circle. Thus we can not omit the assumption " $m(s_0, t_0) = \infty$ " in Theorem 1.

We showed the following lemma in [10].

Lemma 3. Let (W, S) be a Coxeter system. Suppose that there exist a maximal spherical subset T of S and $s_0 \in S$ such that $m(s_0, t) \geq 3$ for each $t \in T$ and $m(s_0, t_0) = \infty$ for some $t_0 \in T$. Then $W^{\{s_0\}}$ is quasi-dense in W.

As an application of Theorems 1 and 2, we can obtain the following corollary from Lemma 3.

Corollary 4. Let (W, S) be a Coxeter system. Suppose that there exist a maximal spherical subset T of S and an element $s_0 \in S$ such that $m(s_0, t) \geq 3$ for each $t \in T$ and $m(s_0, t_0) = \infty$ for some $t_0 \in T$. Then

(1) $W\alpha$ is dense in $\partial \Sigma(W, S)$ for some $\alpha \in \partial \Sigma(W, S)$, and

(2) $\{w^{\infty} | w \in W \text{ such that } o(w) = \infty\}$ is dense in $\partial \Sigma(W, S)$.

Example. The Coxeter system defined by the diagram in Figure 1 is not hyperbolic in Gromov sense, since it contains a copy of \mathbb{Z}^2 , and it satisfies the condition of Corollary 4.

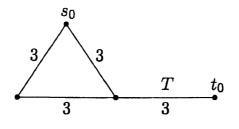


FIGURE 1

REFERENCES

- [1] N. Bourbaki, Groupes et Algebrès de Lie, Chapters IV-VI, Masson, Paris, 1981.
- [2] P. L. Bowers and K. Ruane, *Fixed points in boundaries of negatively curved groups*, Proc. Amer. Math. Soc. **124** (no.4) (1996), 1311–1313.
- [3] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
- [4] K. S. Brown, *Buildings*, Springer-Verlag, 1980.
- [5] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983), 293-324.
- [6] _____, Nonpositive curvature and reflection groups, in Handbook of geometric topology (Edited by R. J. Daverman and R. B. Sher), pp. 373–422, North-Holland, Amsterdam, 2002.
- [7] _____, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (no.2) (1998), 297-314.
- [8] E. Ghys and P. de la Harpe (ed), Sur les Groups Hyperboliques d'apres Mikhael Gromov, Progr. Math. vol. 83, Birkhäuser, Boston MA, 1990.
- [9] T. Hosaka, Parabolic subgroups of finite index in Coxeter groups, J. Pure Appl. Algebra 169 (2002), 215–227.
- [10] _____, Dense subsets of the boundary of a Coxeter system, to appear in Proc. Amer. Math. Soc.
- [11] J. E. Humphreys, *Reflection groups and Coxeter groups*, Cambridge University Press, 1990.
- [12] G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, The Ohio State University, 1988.
- [13] J. Tits, Le problème des mots dans les groupes de Coxeter, Symposia Mathematica, vol. 1, pp. 175–185, Academic Press, London, 1969.

DEPARTMENT OF MATHEMATICS, UTSUNOMIYA UNIVERSITY, UTSUNOMIYA, 321-8505, JAPAN

E-mail address: hosaka@cc.utsunomiya-u.ac.jp