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abstract

The paper is concerned with the Massera criterion for periodic mild solutions of the
equations of the form $\dot{u}(t)$ $=Au(t)+ \int_{-\infty}^{\infty}dB(\eta)u(t+\eta)+f(t)$ , where $A$ generates an
analytic semigroup on a Banach space $\mathrm{X}$ , $B$ is an $L(\mathrm{X})$ valued function of bounded
variation and $f$ is a continuous 1-periodic function. The obtained results extend
recent ones on the subject.

1. INTRODUCTION

This paper is concerned with the existence of 1-periodic mild solutions to the
equation of the form

(1) $\frac{du(t)}{dt}=Au(t)+\int_{-\infty}^{\infty}dB(\eta)u(t+\eta)+f(t)$, $t\in \mathbb{R}$ ,

where $A$ is the infinitesimal generator of an analytic semigroup $(T(t))_{t\geq 0}$ of bounded
linear operators on a given Banach space $\mathrm{X}$ , $B:\mathbb{R}arrow L(\mathrm{X})$ is of bounded variation,
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and $f$ is an $\mathrm{X}$-valued continuous 1-periodic function with Fourier coefficients

$\tilde{f}_{k}=\int_{0}^{1}e^{-2ik\pi t}f(t)$ dt, $k=0,$ $\pm 1,$ $\pm 2$ , $\cdots$

Moreover by setting $T_{B}$ as

$T_{B}( \theta):=\lim_{\sigmaarrow-\infty}Var(B, [\sigma, \eta])$ ,

we impose the following conditions for $B$ :

(2) $\exists\epsilon_{1}\in(0,1)$ : $\int_{0}^{\infty}dT_{B}(\eta)e^{\epsilon_{1}\eta}<$ oo

and

(3) $\exists\epsilon_{2}\in(0,1)$ : $\int_{-\infty}^{0}dT_{B}(\eta)e^{-\epsilon_{2}\eta}<\infty$.

It has been known for decades (see [11]) that a linear ordinary differential equation

$\dot{x}(t)=A(t)x(t)+$ f(t),

where $A(t)$ and $f(t)$ are continuous and periodic with the same period $\tau$ , has a
$\tau$-periodic solution if and only if it has a solution bounded on the positive half line.
As shown in [5], for a larger class of equations, the assumption on the existence of
a solution bounded on the positive half line yields a solution bounded on the whole
line.

Recently, there have been many works devoted on the extension of the above
Massera criterion to various classes of differential equations. For example, in [2] the
Massera criterion has been proved for functional differential equations. It has been
shown that this result holds for equations with delay and advance (see [9, 10]), for
abstract functional differential equations in Banach spaces [6, 12, 15] with infinite
delay, and for almost periodic solutions [13],

In this paper [14] we first extend a result in $[4, 7]$ to equations of the form (1) which
characterizes the existence of a periodic mild solutions in terms of the solvability of a
finitely many algebraic equations in the phase space $\mathrm{X}$ (see Theorem 3.1 below). Our
method of study in this paper is to find such conditions that the characterization
of the existence of periodic solutions in Theorem 3.1 holds. The main result of
this paper is stated in Theorem 3.6. The novelty of our result is that by using a
new method of study, we do not need to impose any conditions on the inter-relation
between Fourier exponents of $f$ and the spectrum of the corresponding homogeneous
equation. And thus, our result extends and complements recent results on the
subject (see e.g. [2, 6, 12, 13, 15]). Finally, we given an example showing that our
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result can apply to an abstract functional differential equation with advance which
has not been covered by other works so far.

2. PRELIMINARIES

2.1. Notation and Definitions. In this paper we use the following notations:
N, $\mathbb{Z}$ , $\mathbb{R}$ , $\mathbb{C}$ stand for the set of natural, integer, real, complex numbers, respectively;
X will denote a given complex Banach space. If T is a linear operator on X, then
$D(T)$ stands for its domain. Given two Banach spaces Y, $\mathbb{Z}$ by L(Y, $\mathbb{Z}$) we will
denote the space of all bounded linear operators from Y to ZS and L(X, X) $:=L(\mathrm{X})$ .
As usual, $\sigma(T)$ , $\rho(T)$ , $R(\mathrm{A},$T) are the notations of the spectrum, resolvent set and
resolvent of the operator T.

2.2. Functional differential equations. For the sake of simplicity we denote

(4) $[Bu](t):=7\infty\infty$ $dB(\eta)u(t+\eta)$ , t $\in \mathbb{R}$ .

Definition 2.1. Let $A$ be a closed operator on X. An $\mathrm{X}$-valued continuous function
$u$ on $\mathbb{R}$ is said to be a mild solution of Eq.(l) on $\mathbb{R}$ if for every $s$ , $t$: $u(\xi)d\xi\in D(A)$

and

$u(t)=u(s)+A4^{t}u(\xi)d\xi+$ $4t[[B\mathrm{t}\mathrm{t}](\xi)+f(\xi)]d\xi$, it $\geq s.$

If $A$ is the generator of a $C_{0}$-semigroup, by [6, Lemma 2.11] this condition is
equivalent to the condition that, for every $s\in \mathbb{R}$,

$u(t)=T(t-s)u(s)+ \int_{s}^{t}T(t-\xi)[[Bu](\xi)+f(\xi)]d\xi\forall t\geq s.$

Consider the homogeneous equation of Eq.(l)

(5) $\frac{du(t)}{dt}=Au(t)+[Bu](t)$ .

3. MASSERA THEOREM FOR EQUATIONS WITH ADVANCE AND Delay

We begin this section by presenting a necessary and sufficient condition for the
existence of 1-periodic solutions to the inhomogeneous equation (1) which was es-
sentially established in our previous work [14].

Theorem 3.1. Let A be the generator of an analytic semigroup. Then, Eq. (1) has
$a$ 1-periodic mild solution if and only if for every $k\in \mathbb{Z}$ , the equation

(6) $\triangle(2ik\mathrm{y})_{X}$ $=\tilde{f}_{k}$

has solutions $x\in$ X, where $\triangle(\mathrm{A})x$ $:=( \mathrm{A}I-A-\int_{-\infty}^{\infty}dB(\eta)e^{j\lambda\eta})$x, $x\in$ D(A).



If $x_{k}$ is a solution of Eq. (6) for k $\in \mathbb{Z}$ ,then $\sum_{k=-\infty}^{\infty}x_{k}e^{2ik\pi t}$ is the Fourier series
of a 1-periodic mild sol ution of Eq. (1).

We will use the above result to prove the Massera Theorem for Eq. (1). To this
end, we first estimate the spectrum of a bounded mild solution of Eq. (1).

Lemma 3.2. Assume that (2) and (3) hold. Then the set $\rho(\triangle)$ , the set of A such
that $\triangle^{-1}(\mathrm{A})\in L(\mathrm{X})$ exists, is open in $H:=$ { $\mathrm{A}\in \mathbb{C}$ : - $\mathrm{g}_{2}$ $<$ RA $<\epsilon_{1}$ } and $\triangle^{-1}(\lambda)$

is analytic in $\rho(\triangle)\cap H.$

By Lemma3.2 and [6, Lemma 2.21], we have the following Lemma.

Lemma 3.3. Let $u$ be a bounded mild solution of Eq. (1). Then, the following esti-
mate holds:

(7) $sp(u)\subset\sigma_{i}(\triangle)\cup sp(f)$ ,

where, $sp(u):=$ { $\xi\in \mathbb{R}$ : $\forall\epsilon>0\exists f\in L^{1}(\mathbb{R})$ , suppff $\subset(\xi-\epsilon,$ $\xi+\epsilon)$ , $f*u$ $)!0$ } and
$\sigma_{i}(\triangle):=\{\xi \mathrm{E}\mathbb{R}:i\xi /\rho(\triangle)\}$

Definition 3.4. A complex Banach space $\mathrm{X}$ is said to contain $c_{0}$ if there is a closed
linear subspace of $\mathrm{X}$ which is isomorphic to $c_{0}$ .

From [1, Theorem 4.8.7], if $sp(u)$ is discrete, then $u$ is almost periodic; or from
[8, Theorem 4, p.92], a uniformly continuous function $u$ is almost periodic provided
one of the following conditions holds:

i) $sp(u)$ is countable and $\mathrm{X}$ does not contain any subspaces isomorphic to Co,
$\mathrm{i}\mathrm{i})sp(u)$ is countable and the range of $u(t)$ is relatively weekly compact in X.

Combining the above results with Lemma 3.3, we have the following Corollary.

Corollary 3.5. Let $u$ be a uniformly continuous and bounded mild solution on $\mathbb{R}$

of Eq.(l). Then, $u$ is almost periodic provided one of the following conditions holds:

i) $\sigma_{i}(\triangle)$ is discrete,
$\mathrm{i}\mathrm{i})\sigma_{i}(\triangle)$ is countable and $\mathrm{X}$ does not contain any subspaces isomorphic to Co,

$\mathrm{i}\mathrm{i}\mathrm{i})\sigma_{t}(\triangle)$ is countable and the range of $u(t)$ is relatively weekly compact in X.

Consequently, using TheOrem3.1 and COrOllary3.5, we get the Massera Theorem.

Theorem 3.6. Let Eq. (1) have a bounded and uniformly continuous mild solution
on $\mathbb{R}$ and let one of the conditions listed in Corollar$ry3.5$ holds. Then there eists $a$

$\mathit{1}$ -periodic mild solution to Eq. (1).



4. EXAMPLES

4.1. Ordinary Functional Differential Equations. In this case we assume that
$A=0$ and $\mathrm{X}=$ Cn. Obviously, every bounded solution on $\mathbb{R}$ has relatively compact
range and the spectrum of equation coincides with the set of zeros of function

$\det\triangle(\mathrm{A})$ $=0,$

which is countable thanks to the analyticity of the function $\det\triangle(\mathrm{A})$ . Thus, Condi-
tion (iii) in Corollary 3.5 is satisfied. By Theorem 3.6, Eq. (8) has a 1-periodic mild
solution if and only if it has a bounded, uniformly continuous mild solution on the
real line. And we get the Massera Theorem for equations with advance and delay
(see also [9]).

4.2. Abstract Functional Differential Equations.

Example 4.1. Let $\mathrm{X}=L^{2}[0, \pi]$ . Consider the abstract functional differential equa-
tion with advance

(8) $\dot{x}(t)=Ax(t)+bx(t+1)+f(t)$ , t $\in[0,\pi]$ ,

where $b\in \mathbb{R}$ and $A$ is defined as $Ax=i$ $+x$ for $x\in \mathrm{X}$ such that $x$ is continuously
differentiable, the derivative $\dot{x}$ is absolutely continuous, $\mathrm{i}\in$ X, and that $x(0)=$
$x(\pi)=0.$ Then

$\sigma(A)=\{1-n^{2}$:$\mathrm{z}=1,2,\cdots\}$ ,

and A generates a compact and analytic semigroup $T(t)$ on X. The characteristic
operator $\triangle(\mathrm{A})$ becomes

$\triangle(\mathrm{A})x$ $=(\mathrm{A}I-A-be^{\lambda})x$ , x $\in D(A)$ .

Therefore the set $\sigma_{i}(\triangle)$ is determined from the set of imaginary solutions of the
equations

(9) $\mathrm{A}+be^{\lambda}=1-n_{:}^{2}n=1,2,\cdots$

In (9) if we let A $=i\tau$ , $\tau\in \mathbb{R}$, then

$1-n^{2}=i\tau+be^{j_{\mathcal{T}}}=i\tau+6(\cos\tau+i\sin\tau)$ .

Now we consider the equation

(10) $b\cos\tau=1-n_{:}^{2}$ $\tau+b\sin\tau=0.$

A simple computation shows that

(11) $\tau=JZ\sqrt{b^{2}-(n^{2}-1)^{2}}$.
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Hence $\tau$ has at most two points. Therefore, $\sigma_{i}(\triangle)$ is a finite set. Thus, Condition (ii)
in Corollary 3.5 is satisfied. By Theorem 3.6, Eq.(8) has a 1-periodic mild solution
if and only if it has a bounded, uniformly continuous mild solution on the real line.
We also note that in [3] abstract functional differential equations with delay are
treated. So, our example complements the one considered in [3, Examples].
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