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MULTISTAGE THREE-PERSON GAME WITH ARBITRATION

| ﬁi = ’3—? ( MINORU SAKAGUCHI® )

ABSTRACT. By introducing a specified definition of the equilibrium value of three-
person two-choice games, a multistage three-person game with arbitration is formulated
and solved. Random offers {X:}-, are presented one-by-one sequentially, and as each
offer X; comes up, each player chooses either to accept (A) or to reject (R) it, with
the aim of receiving the most favorable partition of the offer they can get. When
the players’ choices are different, arbitration comes in and forces the “odd-man” (the
“even-men”) to receive pX;(pX;/2 each), where 0 < p = 1 —~5 < 1 and the game
terminates. It is shown that, in the equilibrium, each player chooses R for small offers
(A for large offers), and randomizes between R and A for other offers, if arbitration
favors the odd-man side, i.e. p € (%,1] (the even-men side, i.e. p€ [0, é))

1 Problem. Let X;,i =1,2,--,n, be i.i.d. random variables each with uniform distri-
bution on [0,1]. As each X; comes up, each player I, IT and ITI must choose simultaneously
and independently of other players’ choices, either to accept (A) or to reject (R) it. If all
players choose A they get X, each, and the game terminates. If all players choose R,
then X; is rejected and the next X;, is presented and the game continues. If players’
choices are different, arbitration comes in and forces the “odd-man” (the “even-men”) to
get pX;(pX;/2 each), where 0 < p = 1 —p < 1, and the game terminates. Arbitration
is fair if p = }, and favors the odd-man (even-men) side, if p > (<) If all of the first
n — 1 random variables are rejected, all players must accept the n-th. Each player aims to
maximize the expected reward he can get, and the problem is to find a reasonable solution
to this three-person n-stage game.

At each stage, each player must think about : (1) He wants to become the odd-man if
p> 1, and an even-man if p < §, especially when he faces large X, and (2) Since each X;:
is a random variable, he can expect a larger one may come up in the future. : o

Let (¥, ¥n, Un) be the eq.values for the game (c.f., the game is symmetric for the players).
The Optimality Equation is

(11) " (¥n, U, ¥n) = Eleq.val M (X)] (n>1,0 = -;-)

where the payoff matrix Mp(X) is such that
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R by III A by III
R by MRR(-’E) = R by II vn-—lavn—lavn—l *J *l px
AbyII| %, pxr, * | pz, *, *
(12) N | R by 1T Aby I
Y Mpa(z)=Rby II|px, =, * X, pxT, *
AbyIl| * *  pz |z/3, z/3, z/3
(* stands for (p/2)z )

Ifp= %, players will evidently coordinate to choose R-R-R repeatedly and switch to
A-A-A as soon as X; > un—; appears, where {un} is the Moser’s sequence

1 -1
pn = E(XV pn_) = 5(1 + 1) (n>Lm= 5)-

So, the CES (common eq.value) is §/n.

Therefore we are interested in solving the n-stage game for p # 3.

The game(1.1)~(1.2) is solved for p € (3,1] and [0, §) in Sections 2 and 3, respectively.
We need a specified definition of the eq.valin the optimality equation, as in Assumption A
stated in Section 2, since the equilibrium is often undetermined in Nash theory of compet-
itive games. 4

Two-person best-choice games where arbitration comes in are investigated in Ref.[I, 3,
4]. The present paper is a direct extention to three-person game from the two-person game
version Ref.[4]. The game (1.1)-(1.2) reduces to Odd-Man-Wins if p = 1, and Odd-Man-
Out if p = 0, both of which are discussed in Ref.[5]. One of the fundamental and elaborate
literature in game theory (including cooperative theory of games) is Petrosjan and Zenkevic]:
[2]. There are a few mathematical literature which discuss three-person competitive games,
and two of which are Vorobjev [6] and Sakaguchi [5]. The present paper owes much on
Vorobjev’s work. ’

2 Solution to the Game where § < p < 1. We can rewrite (1.2) as

(2.1) M,.z(z) = (p/2)7E + (p — §/2)MER(C)|e=(z~10,._1~5/2) /(p—5/2)>
(22) M, a(z) = (p/2)zE + (p — p/2)zM4
" where
I, 1, 111, 1, 1
E= I, 1, 11, 1, 1
c, ¢, ¢{0 0, 1
(2.3) Mr() =51 5711, 0 o

and

- _[1,70, 070, 1, O
(24) My = 0, 0, 1]1/3, 1/3, 1/3

Note that M, 4(z) doesn’t involve n. The game continutes to the next stage if and only if
R-R-R is chosen. As soon as some one among the players chooses A, the game terminates.
Let V(c) be CEV (common eq.value) of the one-stage game

' Rbyl - —Mg(c)
(2.5) <
Abyl M,

Then CEV of the n-stage game (2.1)-(2.2) is




(2.6) Vo = (9/2)Ez + (p — $/2)E [2V(C)le=(z1vn_1~5/2)/(p—5/2)] -

As is well known in the Nash theory of competitive games the equilibrium is often
undetermined, even in three-person two-choice games, which we investigate in the present
paper. We prepare the following assumption that is held throughout this paper.

Assumption A If the equilibrium consists of some corner and or edge and a unigue inner
point, the latter is adopted for the equilibrium. If equilibrium consists of a single point,
either a corner or inner point, this is adopted for the equilibrium.

Lemma 1.1 The solution to the three-person game (2.5) is : If ¢ < 1, the mized-strategy

triple (ao, ap, o), with ap = ﬁ__c+‘°2/3 is in eq. If ¢ > 1, the pure-sirategy triple R-R-R
is in eq. The CEV is
B0 v DI T g

V(c) is convex and increasing with values

c= 173 0 1/3 1/2 1
V{e)= 5(1-2v2/3)~0.2859 3(5—2v6)~0.3031 1/3 5(7—-4v/3)=~0.3590 1

For the proof, see Sakaguchi [5 ; Theorem 1].
Now recalling that ¢ = (z"tv,—, — p/2)/(p — 5/2) in (2.1), and rewriting v,_, simply
by v we find that
c=(2z7'v—p)/(3p — 1), l1-c=2(p-2z""v)/(3p—1),

l_c/3=3‘4p—1—a:_11}a= vi-e  _ N ]
37 -1 T l-ct+v2/3 vm-9+/@-13)z

and hence, by Lemma 1.1, we obtain

V(e)le=(z-10-5/2) /p—5/2)

c=(2z"v-p5)/(3p— 1), ifz<plv
= 1-¢3)/ (\/‘—1—':+\/?7§)2 -2
/ ifz>pto
= H{p-Vz— o} {vEE=v+ V- 73} -
Thus the CEV of the n-stage game is, by (2.6),
_ 1
(2.8) v,=FE [(p/2):c + 5(31) - 1)zV(c) lc—'-‘.(h'lv—ﬁ)/@p—l)]
p 1 2v—pz -1 z{(4p — 1)z — v} -1
= ~+-(3p-1)E I(z <p~lv) + : I(z >p~"v)
v T A 0
§ Hp-—-1 -1 1 z{(4p — 1)z — v}
— -

"o {veE=v+ /- 13k}

ifplu,_1 < 1;and v, = vp-y, if p~lop_) > 1.
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Before we state Theorem 1, we give two more lemmas. Consider the function

Vo =13z +\/—'—-_v}
for0<v<p;andv,ifp<v <1 (:?\‘ﬂ%)

Theorem 1 The solution to the three-person game (1.1)- (1 2) for § <p < 1, is as follows;

The CES in state (n,z) is
Choose R, if £ < p~lvp_y,
Emgploy the mized strategy (Go(z), ao(z)), where

_ PL — Up—1
(@) = = = 13
The CEV v, satisfies the recursion
=T(vn-1), (n2>2,v,=1/6)
where T('u) T'(v|p) is given by (2 8). And asn — 00,7, 1 ve0(p) = sup{v € (0,p)|T(v'|p) >
v, W' € (0,v)}, for Vp € (3,1].

ifz > P—l'vn—l-

Remark 1 Some special case ; For p = 1 (i.e., Odd-Man-Wins), Eq.(2.8)-(2.9) becomes
vp = T'(Un—1), where
z(z — v/3)

(Ve=5+vEr3)

See Sakagucm [5 ; Theorem 2], in which vnva(l)ns02057as n—-)oo is proven.
For p=} +0, Eq(29)g1vesT('v|§+0)—3+ v and v, = 3 + 302_;(n > 2,0 = §),
andltlseasﬂyshownthatvﬂ‘l‘aasnam

T('v)='uz—!-‘/”1

3 Solution to the Game where 0 < p < %. For0<p< %, we can rewrite (1.2) as

(31) Mnr(z) = pzE + (1 - 3p)2Qr(M)|h=(-1va-1~5)/(1-3p)>
(3.2) M,4(z) =pzE+ (1 - 3p)zQa4,
where
1, 1, 1]1, 1, 1
E= 1, 1, 1|1, 1, 1
h, h, hn |1/2, 172, 0
3.3 =l d )
(33) Q=(h) 172, 0, 1/2| 0, 1/2, 12
and
0, 1/2, 1/2[1/2, 0, 1/2
34 =l 2 r
. (39 - Q4 172, 172, 0 |1/3, 1/3, 1/3
where h is a given constant. Note that M, 4(z) doesn’t involve n by the same reason as in
Section 2.

Let W(h) be the CEV of the one-stage game

Rbyl Qr(h)
(3.5) <
Abyl Q.
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Then the CEV of the n-stage game (3.1)-(3.2) is

(3.6) w, = pE.'Z) + F [(l - 3p).’27W(h)ih=(z—1,",”_‘_?)/(1_3?)]

‘We refer to a result in Sakaguchi [5 ; Theorem 3.
Lemma 2.1 The solution to the three-person game (3.5) is as follows : For h < 0, the
pure-sirategy triple A-A-A is in eq. For h > 0, the mized-strategy triple (ap, o, ap), with
YR i .
ag = T e is in eq. The CEV is

1/3, . #hZ0,
(3.7 W(h) = { y/h/3+h/3 ifh>0.
v
The function is increasing and convez-concave for 0 < h < 3, attains mazimum at h = 3,
and decreasing and concave-convez for h > 3. The two points of inflezion are h = %(9 +
44/5)(r 0.018,5.981). Computation gives
h= 0 1/3 1/2 1 2 3 12 00
W)= 0 1/3 3+/6-7~0.3485 (v3-1)/2~0.3660 0.3739 3/8 18/49 1/3

Hereafter we sometimes write w,—; simply by w, omitting the subscript.
Since h = (z~'w — p)/(1 — 3p), we obtain, from (3.7),

w—pz-++/3(1-3p)z(w—px)

, ifz<ptw
W (W)hmterampyiron = | (/o morr/ Gt}
1/3, ifz > p~lw,
and Vi
h VW —pT . -1
ag(z) = = (ifz>ptw
d)\mhﬂh;ﬁﬁﬁ+dm%ﬂz )
Then the CEV of the n-stage game is, by (3.6),
(38) wo, = E[pz+(1—3p)zW(h)lh=(z-1w-p)/(1-35)]
= % +(1-3p)E [J(:c, w)l(z < p~lw) + -z—I(z > p'lw)]
1 1-3p , Pl ,
= — ——w*+ (1 - 3p) J(z,w)dz, f0<w<p,
_ i e T 0
g+(l—3p)/ J(z,w)dz, ifp<w<li,
0

:t{w—-pm+1 /3(1—3p)n:(w-—pm)}

where J(z,w) = { ﬁ(w_pz)ﬂ/(l——sr’)zr .

So we arrive at

Theorem 2 The solution to the three-person game (1.1)-(1.2), for 0 < p < 3, is as follows; -
The CES in state (n,z) is
Employ the mized-strategy triple {@o(z), ao(z)), with

VWn-1—pT
Vo7 + AT

Choose A, if £ > p twp_1
The CEV satisfies the recursion

if £ <p'Wn-1, and

ao(m) =
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(3.9) Wy =U(wn-1) (n>2,w; =1/6)
where U(w) = U(w|p) 13 given by the r.h.s.of (3.8).

Remark 2 Some special cases ; For p =0 (i.e., Odd-Man-Out), we obtain from (3.8) and

(3.10) that .
U(wl0) = / e/t 7 de.
0 (,/w/z+ \/]7—3)
And |

0 1t >3/‘m/w - /1/3
—U(w|0) = = dz.
Ow 6 L (\/w/a; + \/173)75

These are identical to the result in Sakaguchi [5 ; Theorem 4]. Furthermore it is shown that
Wy, converges to

wmsﬁnf{we (0,%) z Uw'0) < v',\Vu' e (w,%)} =~ 0.1601.

For p = 1/3~0, Eq.(3.6) gives U(w|§ - 0) = g and wn = ,Vn 2 1.
Remark 8 The game (1.1)-(1.2) has quite different solutions for the two cases § <p <1
and 0 < p < }, 88 observed in Theorems 1 and 2, although they seemingly look similar in
(1.1)(1.2). Furthermore the particular cases p = } = 0 give somewhet abnormal phase to
the solution of the problem, as is mentioned in Remarks 1 and 2.

Remark 4 Theorems 1 and 2 show that, in the equilibrium, each player chooses R for
small offers (A for large offers), and randomize R and A, for other offers, if arbitration
favors the odd-man side (even-men side). This optimal behavior is almost the same as in
the two-player game version investigated in Ref.[4].
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