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An Optimal Employment Problem
with Multiple-Choice and Partial Recall

E{B ) F] (Mitsushi Tamaki)
Department of Business Administration, Aichi University

1 Introduction

We consider an employment problem where a company wants to employ m workers through the
coming n periods and a sufficiently large number of persons apply for this employment. These
applicants are assumed to be rankable in the order of desirability (1 being the best, 2 the second
best and so forth) and appear in random order over these periods. At the end of each period,
the company is allowed a partial recall, that is, it chooses any applicant that have arrived in that
period. When the company employs an applicant, a loss is incurred depending on the rank of the
applicant (we consider loss instead of profit only for ease of description). The applicants not chosen
are lost immediately and unavailable later. The problem of the company is to determine, at the
end of each period, how many topmost applicants to choose from among those that have arrived
in that period based on the full memory of the relative ranks of the applicants that have arrived
by that time, in order to minimize the expected total loss.

To make this problem more precise and avoid unnecessary complication, we consider. this in
the framework of the infinite formulation, i.e., infinite secretary problem as defined and originélly
studied by Gianini and Samuels(1976) (see also Gianini(1977) and Sec.5 of Samuels(1991)). Let
U;,i=1,2,..., denote the arrival time of the i-th best of an infinite countable sequence of rankable
applicants. The basic assumption of the infinite formulation is that Uy, Us, - - - are independent and
uniformly distributed on the unit interval I = (0,1]. We introduce a discretization that allows a
partial recall by dividing I into n equal subintervals

L= (.’“_:_11?] . k=12--,n.
n’'n
_This implies that, at the end of each subinterval, we can choose any applicant that have arrived
in that subinterval. We also introduce a loss function ¢(z),i = 1,2,..., which denotes a loss for
choosing the i-th best. g(i) is naturally assumed to be non-decreasing in i. Since we have to employ
m workers, if the number of applicants employed in the first n — 1 subintervals amounts to k&, then
we choose exactly the top m — k applicants in the last subinterval. '
The loss functions of special interest are as follows:

Ezample 1: For 8> 1,
1, if i=1
9(i) =9 BB+1)---(B+i—2)
G—1)! ’
It should be noted that g(i) = i for 8 = 2, so that in this case the loss is just the rank of the
applicant, and so the objective of the problem can be interpreted as minimizing the expected total

if 12>2.
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ranks of the applicants chosen. Since g(i) is concave, linear or convex depending on 8 < 2, 8 =2
or # > 2, B can be considered as a parameter that reflects our attitude toward the risk.
Ezample 2: For some positive integer N,

‘ 0, if 1<i<N
q(i) =
1, if i>N+1

The objective for this loss function can be interpreted as minimizing the expected number of the
chosen applicants whose ranks exceed N. N also reflects our attitude toward the risk. That is, we
are easy-going if N is large, but severe if N is small.

In Section 2, we derive the optimality equation of the problem and obtain the structure of the
optimal policy. In Section 3, we derive an important formula which makes it easy to calculate the
optimal values and the related decision numbers recursively.

When m is a multiple of n, say m = cn, there exists an easily practicable employment policy called
a deterministic rule, which chooses exactly the top ¢ applicants in each subinterval(independent of
the previous applicants that appeared in the preceeding subintervals). Numerical results show that
this policy works well when m is large and n is small.

2 Formulation and optimal policy

Suppose that we have to choose k more applicants in the remaining r subintervals (in other words,
we have already chosen m—k applicants in the first n—r subintervals). Then the next decision epoch
takes place at the end of subinterval I,_,.; after having observed the infinite ordered sequence
(41,92, ), 41 < iz <+, where i;,j > 1, represents the relative rank of j-th best in I _r41 among
all the applicants that have arrived by time k/n. At most top k can be candidates for choice, so
that the finite sequence (41, -,%) is a sufficient information for our decision. We thus denote the
state of this decision epoch by (r, k; 1, -, ix). Let vj(i1, - - -,4;) denote the minimum expected loss
starting from state (r, k;41,- -+, 4,). We first introduce the joint probability mass function and the
loss function.

p" (41, +,ix) : The joint probability mass function that the ranks of best, 2nd best, .- -,
k-th best in I, _,4; among all the applicants that have arrived by time k/n are
11,12, +, ik respectively, where i; < 9 < -+ < .

R;(t): The expected loss incurred by choosing an applicant at time ¢ whose rank relative
to all its predecessorsis j (1< j, 0 <t <1).

These quantities are given as follows.

Lemma 1.
Fori1<r<nandi <ig<-- <,
1 k 1 ix—k
(4,00 = | —— 1l — . 1
p("’l) ,‘lk) (n——r—{—l) ( n——r-{-l) ()
Lemma 2.

Forl<jand0<t<1,

Ri(t) = Y q) (J i i)t"u — . (@)

=4



If g(i) is increasing in %, then
(i) R;(t) is decreasing in t.
(if) Rj+1(t) > R;(2).

(ill) imjye0 R;(t) =00 for all t € (0,1].

Proof. See Mucci(1973).

Remark: In some cases, closed form of R;(t) can be obtained;
Ezample I:

Ezample 2:

N—j /. .
i+5—1\.. ; ) )
1- T, i 1<i<N
By(t) = ;( i )( )

1, if j>N+1,

We now have the following optimality equations

. —r+1 -1
’U;(zl,"',ik “012112’6 {ZR‘M ( ) +v;;_j}’
where

=Y Y Y v, i) (g, yik), 1Sk<m, 2<r<m

11 <ig <<ty

with the boundary condition

v,% is increasing convex in k, because, from Lemma 2,

vk — v = Ria (1) >0
vk+1+vk 1——2vk—Rk+1() Rk()>0

As the following lemma shows, vf, in effect inherits this property for all r.

Lemma 3
v}, is increasing convex in k for each r.
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Proof. See the Appendix.

Now define, for 0 < j <k,

rre . 4 n—r+1 r—
A% (g, -, 15) = ZR‘it (T) +'Uk_;- ‘ (7

t=1

Then we have

Lemma 4
For fixed r and k, and a given sequence (¢, *,%), —A;(z'l, -++,1%;) is unimodal with respect to

j.
Proof. Let, for 1<j <k
B} (i1, +,15) = Af (i1, -+, %5) — AG_q (b1, -+, 45-1)-

Then, it suffices to show that Bj(i1,---,1;) is increasing in j. From (7), we can write

. , n—-r+1 — —
Bj(i++vis) = Ry, () = (v — i) ®

n

1 T

Since R;; (IL—;_H) is increasing in j from Lemma 2 (ii), whereas vi7;_; — vkjjl. is non-increasing in

j from Lemma 3, the result follows.
Let
62(7'17',Zk)=ma'x{1s.7skB;("’l)'alj) SO}) ) (9)
with max{¢} = 0(tjis convention is used throughout this paper). Then, from Lemma 4, we imme-

diately have

Lemma 5
In state (r,k;i1,---,%), it is optimal to choose exactly the top cf(i1,---,ix) applicants at the
end of I, _rt1.

Remark: When B (i1, ,i;) = 0 for some j, i.e., A% (i1,--+,1;) attains its minimum at j — 1 and
j, we assume to choose exactly the top j applicants.
Define -
$j(k) = viii_; — vy 1<i<k (10)

It is easy to see from (8) and (9) that, in state (r, k; 1, -+, %), we never choose j-th best applicant
if B (2=2%1) > ¢7(k), while we possibly choose j-th best if R; (2=zt) < ¢5(k) and the value of
i; is sufficiently small. More specifically if we define, for 1 < j <k,

00 =max {5 <i: R (B2 ) < g} (1)

We can give, from Lemma 5, another way of describing the optimal choice as follows.

Lemma 6
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There exists a sequence of decision numbers {zg(lc)};;l such that the optimal decision in state
(r,k;i1,- -, i) chooses j-th best applicant provided i; < 4}(k), irrespective of the values of
il:" ' 7ij~1)7:j+1)' ' ‘aik)l SJ < k.

The sequence {'L;(k)}f:l satisfies the following monotonicity properties.

Lemma 7
(i) 45(k) > 47,1 (k).
(ii) i;(k) <if(k+ 1).
(iii) zg(k) > i;_,_l(k +1). In particular, if i§+1(k + 1) # 0, then z;(k) = i§+1 (k+ 1).

Proof.
(i) and (ii) are immediate since R;,(-) is increasing in j, whereas ¢§'1(k) is non-increasing in j.
(iii) is immediate since ¢}~ '(j) depends on k and j only through k — j.

It should be noted that, if we define
K = K(r,k) = max{j : i5(k) # 0}, (12)

K denotes the maximum possible number of applicants that can be chosen in subinterval I —rt1
when k more applicants must be chosen.

We now have

Lemma 8

If it is optimal to choose exactly the top ¢ applicants in state (r, k;41,- - ,ik), then it is optimal
to choose exactly the top c or top (¢ + 1) applicants in state (r,k + 1541, -, ik,tk+1) for any dey1.
Or equivalently

C::-&—l(il’ Ty ik+1) = Cz(il, e )ik) or C;(’l:]_, e 17;k) + 1.

Proof. _
Write ¢ instead of cf (i1, - -, k) for simplicity. First assume ¢ < k. Then, from the definition of
¢, we have

Get1 > toyy(K)- (13)
Since Gc41 < Gcs2, We have from (13) and Lemma 7 (iii)
igya(k +1) < ity (k) < deq1 <iet2,

which implies that it is not optimal to choose (c + 2)-nd best in state (r,k + 1341, -+ ,%k41). On
the other hand, from the definition of ¢ and Lemma 7 (ii)

ie < if(k) < ib(k+1), (14)

which implies that the optimal policy chooses c-th best applicant in state (r,k + 1341, yiks1)
when ¢ = k, the result is trivial since (14) still holds. '
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Appendix

Proof of Lemma 3

(a) v}, is increasing in k.

Though increasing nature of v}, with respect to k is intuitively clear, we formally can explain this
as follows: Let fi and fx4; denote the optimal policies that can be used when D-M starts from
states (r, k) and (r,k + 1) respectively. Then, if we denote by uj}, the expected loss incurred when
D-M uses fi+1, starting from (r, k), (he stops choosing as soon as the number of applicants chosen
reaches k), then obviously u}, < vj,,. On the other hand, v} < u by definition. Thus the proof is
complete.

(b) convexity of v,

It suffices to show that, for any realization (i1, -, %k, tk+1),

'Ul:+1(i1a v aik-f-l) + v;—l(ila e ,ik-—l) - 2'0;(?;1, tee 1ik) > 0. (Al)

We show (A.1) by induction on r. For r = 1, (A.1) obviously holds from (6°).

Assume that (A.1) holds for r—1. Then Lemmas 4-8 in fact hold because these lemmas are based on
this induction hypothesis. Write now simply ¢, ¢’ and ¢” instead of ¢}, (41, - -, k), ch_q (81, * * , Gk—1)
and ¢}, (41, -+, %k+1) respectively. Then we have from (3)

U;+1(7;11 e 77:k+1) + vz_l(ih e Jik—l) - 2”2(7;17 e aik)
-r+1 a n—r+1 < n—r+1
() o () oS () g
t=1
+ (viTdoe + viaioe — 20010

Let A represent the right hand side of (A.2). When 1 < ¢ < k — 1, we can show A > 0 by
distinguishing four possible cases depending on the values of ¢’ and ¢” from Lemma 8.

Case 1 ({ =c—1land " =c+1):
We have, from Lemma 2 (ii),

A=Ri, (uﬂ)_&c(n_—il)ww
n .

n

Case 2 (¢ =cand ¢’ =¢):
We have from the induction hypothesis,
A=0+(vii_ +vp 1. —2vi;) > 0.

(]

Case 3 (=c—1land ¢’ =¢):
We have i < i%(k) from the definition of ¢ and Ry (2=5£L) < ¢7(k) from the definition of ¢Z(k).

Thus
n—r+1 o fn—r+1 ,
i (2720 < gy (222 < 0
n n
which from (10) implies

n—r+i _
b = o (S g e
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Case4 (=cand " =c+1):
We have R, (""'H) > ¢, 1(k) from the definition of ¢, and R;,, (”—‘Tﬂ) > Royq ("'T“) due

n n n

t0 ic+1 > ¢ + 1. Therefore, from (10)

n—r+1 — —
A= Ric+1 (T) - (vk*i - 'UZ—}:—I) > 0.

For ¢ = 0 (¢ = k), two cases can be distinguished; (i) ¢ =0,¢" =1 (¢ =k —1,¢" = k+1) and (ii)
d=0,"=0(d =k—1,¢" = k). The proof is omitted since we can prove similarly.

3 Algorithm for calculating {i}(k)} and v}

Let pg(i) be the probability that the rank of j-th best in I,_,1; relative to all its predecessors is
i.
Then

i—1 1 J 1 =J
(i) = - - P> g
P; (@) (j—l)(n—r-i—l) (1 n—r+1) =
Algorithm

: 1
(i) Initialize vl =Y R; (;1-) . 1<i<m.
j=1

ii) Assume {v]"1}™, are given. Also assume that we are in state (r, k).
i =1

First calculate
of =~ — oL, 1<i<m,

t 2

and define, for fixed r and k,
95 (k) = Pry1-js 1<j<k,
and

K.__K(k,r)_—_max{15jgk:Rj( Sd’;(k)},

n—r+ 1)
n
with max{¢} = 0.
Then the decision number is calculated as
L n—r+1 :
and the probability that exactly the top j applicants are chosen is expressed as

1—Q1) 1fJ=0
=4 Qi —Qj+1, if 1<j<K-1
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where

n—-r+1 . K _
S R (2 50 |+ Yice

j=1 \ i=j §=0

When K = 0,v}, = vZ‘l.
We present some numerical results of Example 1(Example 2) in Table 1(Table 2).

Table 1
m\n 5 10 20
f=1.5 71.999 73.805 75.478
(1.0191) (1.0712) (1.1850)
=2 238.35 253.54 267.99
(1.0489) (1.1833) (1.4926)
20 p=3 2195.4 2595.0 2979.7
(1.1387) (1.5414) (2.6849)
=4 17269 23049 28768
(1.2667) (2.1693) (5.5617)
B=5 1.2222x 105 1.8453x10° 2.5234x10°
(1.4319) (3.2516) (12.6815)
f=1.5 357.88 361.14 364.33
(1.0071) (1.0272) (1.0741)
B=2 1914.5 1960.1 2005.2
(1.0186) (1.0714) (1.1969)
60 B=3 43151 46174 49141
(1.0544) (1.2128) (1.6280)
(=4 7.7062x 10° 8.7444x10° 9.7975x10°
(1.1071) (1.4409) (2.4496)
B=5 1.1602x 107 1.4128x107 1.6894x 107
(1.1765) (1.7837) (3.9779)
B=1.5 762.95 767.19 771.38
(1.0043) (1.0168) (1.0463)
B=2 5190.6 5266.6 5342.3
(1.0114) (1.0443). (1.1231)
100 B=3 1.8620x10° 1.9427x10° 2.0226x 10°
(1.0339) (1.1324) (1.3844)
f=4 5.1868x 108 5.6256 x 108 6.0699 x 108
(1.0670) (1.2710) (1.8452)
B=5 1.1956x 108 1.3611x 10° 1.5380x 108
(1.1110) (1.4709) (2.6217)

The values of V* for given triplet (m,n,). The value in the parenthsis is the ratio of V2 /VR,

where V7 is the value by the corresponding deterministic rule.
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Table 2
m\n 5 10 20

N=10 10.0672 10.1670 10.2706
(1.0132) (1.0670) (1.1660)

20 N=20 2.7641 3.2272 3.5282
(1.2630) (1.5906) (2.0321)

N=30 . 0.4335 0.6888 0.8921
(2.0604) (3.2822) (4.8122)

N=30 30.0016 30.0127 30.0340
(1.0007) (1.0116) (1.0524)

N=50 11.1748 11.7461 12.1752
(1.0796) (1.2330) (1.4733)

N=60 4.8185 5.6392 6.1886

60 (1.2733) (1.6211) (2.1170)

N=T70 1.6007 2.2454 2.7095
(1.6817) (2.4386) (3.4732)

N=80 0.4065 0.7420 1.0061
(2.5423) (4.2219) (6.6233)

N=90 0.0845 0.2089 0.3348
(4.1788) (8.2448) (13.9215)

N=50 50.0000 50.0011 50.0046
(1.0000) (1.0028) (1.0214)

N=90 12.2822 13.1478 13.7705
(1.1117) (1.3024) (1.5955)

N=100 6.2286 7.2923 8.0092
(1.2754) (1.6275) (2.1354)

N=110 2.6594 3.5736 4.2170

100 (1.5730) (2.2166) (3.1138)

N=120 0.9442 1.5405 1.9894
(2.1183) (3.3124) (5.0040)

N=130 0.2862 0.5879 0.8559
(2.7960) (5.4103) (8.7161)

N=140 0.0732 0.2020 0.3305
(4.7934) (9.5177) (16.7344)

The values of V,? for given triplet (m,n,N). The value in the parenthsis is the ratio of ve/ve,
where V™ is the value by the corresponding deterministic rule.
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