EVERSION OF A FOLD MAP OF S^{2} TO \mathbf{R}^{2} WITH ONE SINGULAR SET

MINORU YAMAMOTO（山本 稔；（前）九州大学，（現）北海道大学）
（OLD ADDRESS）GRADUATE SCHOOL OF MATHEMATICS，KYUSHU UNIVERSITY （CURRENT ADDRESS）DEPARTMENT OF MATHEMATICS，HOKKADO UNIVERSITY

1．Introduction

In the following，all manifolds and maps are differentiable of class C^{∞} ．
Let M be an n－dimensional closed manifold，N an n－dimensional manifold and $f: M \rightarrow N$ a map of M into N ．We denote by $S(f)$ the set of the points in M where the rank of the differential of f is strictly less than n ．We call $S(f)$ the singular set of f and $f(S(f))$ the singular value set of f ．We say that a $\operatorname{map} f: M \rightarrow N$ is a fold map if there exist local coordinate systems （ $x_{1}, x_{2}, \ldots, x_{n}$ ）around $q \in M$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ around $f(q) \in N$ such that f has one of the following forms：

$$
\left(y_{1} \circ f, y_{2} \circ f, \ldots, y_{n-1} \circ f, y_{n} \circ f\right)=\left\{\begin{array}{l}
\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right), q: \text { regular point } \\
\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}^{2}\right), q: \text { fold point. }
\end{array}\right.
$$

Note that for a fold map $f: M \rightarrow N, S(f)$ is an（ $n-1$ ）－dimensional submanifold of M ．If the restricted map $f \mid S(f): S(f) \leftrightarrow \sim N$ is an immersion with normal crossings，we call f a stable fold map．

Let V be an $(n-1)$－dimensional submanifold of M and $f: M \rightarrow N$ a fold map such that $S(f)=V$ ．We denote by $\mathcal{F}(M, N ; V)$ the set of such fold maps．Note that $\mathcal{F}(M, N ; V)$ is the subspace of $C^{\infty}(M, N)$ having the Whitney C^{∞}－topology．Let T be a tubular neighborhood of V in M such that there exists a fiber involution of it，$h: T \rightarrow T$ ，whose fixed points set is V and the composition $(f \mid T) \circ h$ coincides with $f \mid T$ ．Note that for any $f \in \mathcal{F}(M, N ; V)$ ，we may assume that T does not depend on f but depends on M and V ．For $\widetilde{M}=\operatorname{cl}(M \backslash T)$ ，the closure of $M \backslash T, f \mid \widetilde{M}: \widetilde{M} \rightarrow N$ is an immersion．

In［1，2］，Eliashberg studied the existence of a fold map $f: M \rightarrow N$ ．In the appendix of［2］， he proved that the number of the connected components of $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$ is strictly four，where S^{2} is an oriented 2－dimensional sphere， \mathbf{R}^{2} is the oriented plane and S_{0}^{1} is the equator of S^{2} ．We denote by $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{E}_{1}$ and \mathcal{E}_{2} the connected components of $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$ ．We call a fold map f in \mathcal{S}_{i} a standard fold map and in \mathcal{E}_{i} an exotic fold map $(i=1,2)$ ．In the same paper，he showed the representative elements of each connected components of $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$ ．Let $e: S^{2} \rightarrow \mathbf{R}^{2}$ be the representative element of \mathcal{E}_{1} such that Eliashberg gave this map in［2］（［1］）．This fold map is constructed by using two immersed disks called Milnor＇s examples．We can construct

[^0]another exotic fold map $\widetilde{e} \in \mathcal{E}_{1}$ by using these two Milnor's examples. Then, there exists a homotopy $E: S^{2} \times[-1,1] \rightarrow \mathbf{R}^{2}$ such that $e_{-1}=e, e_{1}=\tilde{e}$ and $e_{t} \in \mathcal{E}_{1}$, where e_{t} is defined by $e_{t}(x)=E(x, t)\left(x \in S^{2}, t \in[-1,1]\right)$. We call such a homotopy a fold eversion between e and \tilde{e}.

In [2], Eliashberg only stated the existence of a fold eversion. As the theorem of sphere eversion [7], it is difficult to give a fold eversion at first glance. In this report, we construct a fold eversion between e and \tilde{e} concretely as Morin and Petit constructed a sphere eversion concretely (see [6]).

The report is organized as follows.
In Section 2, we characterize each connected component of $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$ and construct fold maps e and \widetilde{e}. We observe local behaviors of a homotopy of fold maps.

In Section 3, we give a fold eversion between e and \tilde{e} concretely.
The author would like to express his sincere gratitude to Prof. Goo Ishikawa, Prof. Syuichi Izumiya, Prof. Toru Ohmoto and Prof. Osamu Saeki for invaluable comments and encouragement.

2. Preliminaries

In this section, we state each connected component of $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$ precisely. We also see local behaviors of a homotopy of fold maps.
Let S^{2} be an oriented 2-dimensional sphere, \mathbf{R}^{2} the oriented plane and S_{0}^{1} the equator of S^{2}. Let T be a tubular neighborhood of S_{0}^{1} in S^{2} and we fix a trivialization $T \cong S_{0}^{1} \times[-1,1]$ such that $S_{0}^{1}=S_{0}^{1} \times\{0\}$. We have a fiber involution $h: S_{0}^{1} \times[-1,1] \rightarrow S_{0}^{1} \times[-1,1]$ such that $h(x, t)=(x,-t)$. Then we may assume that for any $f \in \mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$, we have

$$
\begin{equation*}
\left(f \mid S_{0}^{1} \times[-1,1]\right)(x, t)=\left(f \mid S_{0}^{1} \times[-1,1]\right)(x,-t) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f \mid S_{0}^{1} \times\{t\} \text { is sufficiently close to } f \mid S_{0}^{1} \times\{1\} \tag{2.2}
\end{equation*}
$$

Here, \mathbf{R}^{2} has the Euclidean metric. We denote by D_{N}^{2} and D_{S}^{2} each connected component of $\operatorname{cl}\left(S^{2} \backslash T\right)$.

Definition 2.1. Let $f: S^{2} \rightarrow \mathbf{R}^{2}$ be a fold map in $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$. We say that $f \mid D_{N}^{2}$ and $f \mid D_{S}^{2}$ are the same extensions of $f \mid \partial T$ if there exists an orientation reversing diffeomorphism $k: D_{N}^{2} \rightarrow D_{S}^{2}$ such that $k \mid \partial D_{N}^{2}=h$ and $f\left|D_{S}^{2} \circ k=f\right| D_{N}^{2}$. Otherwise, we say that $f \mid D_{N}^{2}$ and $f \mid D_{S}^{2}$ are the different extensions of $f \mid \partial T$.

Then, Eliashberg's theorem is stated as follows.
Theorem 2.2 (Eliashberg [2]). Each connected component of $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)=\mathcal{S}_{1} \cup \mathcal{S}_{2} \cup \mathcal{E}_{1} \cup \mathcal{E}_{2}$ consists of all fold maps satisfying the following properties.
(1) The connected component \mathcal{S}_{1} (resp. \mathcal{S}_{2}) consists of all fold maps $f: S^{2} \rightarrow \mathbf{R}^{2}$ in $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$ such that $f \mid D_{N}^{2}$ and $f \mid D_{S}^{2}$ are the same extensions of $f \mid \partial T$. We set the
orientation of S^{2} so that $f \mid D_{N}^{2}$ is the orientation preserving (resp. reversing) immersion and $f \mid D_{S}^{2}$ is the orientation reversing (resp. preserving) immersion.
(2) The connected component \mathcal{E}_{1} (resp. \mathcal{E}_{2}) consists of all fold maps $f: S^{2} \rightarrow \mathbf{R}^{2}$ in $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$ such that $f \mid D_{N}^{2}$ and $f \mid D_{S}^{2}$ are the different extensions of $f \mid \partial T$. We set the orientation of S^{2} so that $f \mid D_{N}^{2}$ is the orientation preserving (resp. reversing) immersion and $f \mid D_{S}^{2}$ is the orientation reversing (resp. preserving) immersion.

Let $\pi: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be the canonical projection defined by $\pi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}\right)$ and i : $S^{2} \rightarrow \mathbf{R}^{3}$ the inclusion defined by $i\left(S^{2}\right)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ and $i\left(S_{0}^{1}\right)=$ $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in i\left(S^{2}\right) \mid x_{3}=0\right\}$. If we choose a suitable orientation on $S^{2}, s=\pi \circ i$ is a stable fold map in \mathcal{S}_{1}. The images of $s\left(D_{N}^{2}\right)$ and $s\left(D_{S}^{2}\right)$ are depicted as in FIGURE 1.

FIGURE 1

In [2] ([1]), Eliashberg gave a representative element, $e: S^{2} \rightarrow \mathbf{R}^{2}$, of \mathcal{E}_{1}. Let D^{2} be an oriented 2-dimensional disk. Let m_{1} and $m_{2}: D^{2} \rightarrow \mathbf{R}^{2}$ be two orientation preserving immersions called Milnor's examples (see FIGURE 2). Note that m_{1} and m_{2} are the different extensions of $m_{1}\left|\partial D^{2}=m_{2}\right| \partial D^{2}$.

FIGURE 2

Let $g_{N}: D_{N}^{2} \rightarrow D^{2}$ be an orientation preserving diffeomorphism and $g_{S}: D_{S}^{2} \rightarrow D^{2}$ an orientation reversing diffeomorphism such that $g_{S} \circ h\left|\partial D_{N}^{2}=g_{N}\right| \partial D_{N}^{2}$ holds. Then, we have the desired fold map $e \in \mathcal{E}_{1}$ such that $e\left|D_{N}^{2}=m_{1} \circ g_{N}, e\right| D_{S}^{2}=m_{2} \circ g_{S}$ and $e \mid T$ satisfies the conditions (2.1) and (2.2). The image of $e\left(D_{N}^{2}\right)$ is depicted as in FIGURE 3 (a) and $e\left(D_{S}^{2}\right)$ is depicted as in FIGURE 3 (b).

FIGURE 3

If we exchange these two Milnor's examples on D_{N}^{2} and D_{S}^{2}, we have another exotic fold map $\widetilde{e} \in \mathcal{E}_{1}$ such that $\widetilde{e}\left|D_{N}^{2}=m_{2} \circ g_{N}, \widetilde{e}\right| D_{S}^{2}=m_{1} \circ g_{S}$ and $\widetilde{e} \mid T$ satisfies the conditions (2.1) and (2,2). The image of $\widetilde{e}\left(D_{N}^{2}\right)$ is depicted as in FIGURE 4 (a) and $\widetilde{e}\left(D_{S}^{2}\right)$ is depicted as in FIGURE 4 (b).

FIGURE 4

Note that e and \tilde{e} are stable fold maps. In FIGURES 3 and 4, gray strips are the image of rectangles properly embedded in D_{N}^{2} and D_{S}^{2}, respectively. We draw these gray strips so that they help the readers to understand how to extend e|∂T (resp. $\tilde{e} \mid \partial T$) to $e \mid D_{N}^{2}$ and $e \mid D_{S}^{2}$ (resp. $\tilde{e} \mid D_{N}^{2}$ and $\tilde{e} \mid D_{S}^{2}$). They also help the readers to understand $e \mid D_{N}^{2}$ and $e \mid D_{S}^{2}$ (resp. $\tilde{e} \mid D_{N}^{2}$ and $\tilde{e} \mid D_{S}^{2}$) are the different extensions of $e \mid \partial T$ (resp. $\tilde{e} \mid \partial T$).

Let f and g be fold maps in $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$ such that f is a stable fold map. Let $y_{g} \in g(S(g))$ be a singular value of g. Suppose that there exists a singular value $y_{f} \in f(S(f))$ such that a map $\operatorname{germ} g:\left(S^{2}, g^{-1}\left(y_{g}\right) \cap S(g)\right) \rightarrow\left(\mathbf{R}^{2}, y_{g}\right)$ is \mathcal{A}-equivalent to a map germ $f:\left(S^{2}, f^{-1}\left(y_{f}\right) \cap S(f)\right) \rightarrow$ (\mathbf{R}^{2}, y_{f}). Then, we call y_{g} a stable fold singular value of g.

Let f and $g: S^{2} \rightarrow \mathbf{R}^{2}$ be two stable fold maps such that they are in the same connected component of $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$. By the relative version of the parameterized multi-transversality
theorem, there exists a homotopy $F: S^{2} \times[-1,1] \rightarrow \mathbf{R}^{2}$ such that F satisfies the following properties.
(1) For any $t \in[-1,1], f_{t}: S^{2} \rightarrow \mathbf{R}^{2}$ is a fold map such that $f_{-1}=f, f_{1}=g$ and f_{t} and f are in the same connected component of $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$. Here, f_{t} is defined by $f_{t}(x)=F(x, t)$.
(2) There is a finite set of parameter values $-1<t_{1}<t_{2}<\cdots<t_{l}<1$ (possibly empty) in the open interval $(-1,1)$ such that the following conditions hold.
(2-1) For any $t \in[-1,1] \backslash\left\{t_{1}, \ldots, t_{l}\right\}, f_{t}: M \rightarrow \mathbf{R}^{2}$ is a stable fold map.
(2-2) For each $t_{i}(i=1, \ldots, l), f_{t_{i}}$ has the unique singular value $y_{i} \in f_{t_{i}}\left(S\left(f_{t_{i}}\right)\right)$ which is not stable fold singular value of $f_{t_{i}}(i=1, \ldots, l)$. The map germ

$$
F:\left(S^{2} \times\left(t_{i}-\varepsilon, t_{i}+\varepsilon\right),\left(f_{t_{i}}^{-1}\left(y_{i}\right) \cap S_{0}^{1}\right) \times\left\{t_{i}\right\}\right) \rightarrow\left(\mathbf{R}^{2}, y_{i}\right)
$$

is \mathcal{A}-equivalent to one of the 1 -parameter unfoldings in TABLE 1 , where ε is a sufficiently small positive real number.
We call such an F a generic fold homotopy between f and g. We say that each t_{i} a codimension 1 bifurcation value of F and each $f_{t_{i}}$ a codimension 1 fold map in $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)(i=1, \ldots, l)$. We say that f is the initial stable fold map of F and g is the terminal stable fold map of F. We denote by Γ_{1} the set of all codimension 1 fold maps in $\mathcal{F}\left(S^{2}, \mathbf{R}^{2} ; S_{0}^{1}\right)$. By using local normal forms in TABLE 1, Γ_{1} is classified into five strata, J_{*}^{\star} and T_{*} ($\star=+,-$ and $*=1,2$). Note that each stratum may not necessarily be connected.

Remark 2.3. The relative multi-transversality theorem is stated and proved in [4] and the parameterized relative multi-transversality theorem is stated in $[8]$. The \mathcal{A}-equivalence classification of map germs $g:\left(\mathbf{R}^{2}, S\right) \rightarrow\left(\mathbf{R}^{2}, 0\right)$ and their 1-parameter unfoldings has been studied by Gibson and Hobbs [3]. Here, S consists of finitely many isolated points of $g^{-1}(0)$.

type	normal form $G(x, y, t)$
J^{+}	$\left(x_{1}, y_{1}^{2}+t\right),\left(x_{2}, x_{2}^{2}+y_{2}^{2}\right)$
J_{1}^{-}	$\left(x_{1},-y_{1}^{2}+t\right),\left(x_{2}, x_{2}^{2}+y_{2}^{2}\right)$
J_{2}^{-}	$\left(x_{1}, y_{1}^{2}+t\right),\left(x_{2}, x_{2}^{2}-y_{2}^{2}\right)$
T_{1}	$\left(x_{1}+y_{1}^{2}, x_{1}-y_{1}^{2}+t\right),\left(x_{2}, y_{2}^{2}\right),\left(-y_{3}^{2}, x_{3}\right)$
T_{2}	$\left(x_{1}+y_{1}^{2}, x_{1}-y_{1}^{2}+t\right),\left(x_{2}, y_{2}^{2}\right),\left(y_{3}^{2}, x_{3}\right)$

Table 1. 1-parameter unfoldings

Let $G:\left(\mathbf{R}^{2} \times \mathbf{R}, S \times\{0\}\right) \rightarrow\left(\mathbf{R}^{2}, 0\right)$ be a 1-parameter unfolding in TABLE 1. We define $g_{t}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $g_{t}(x)=G(x, t)$ and suppose that $S \subset S\left(g_{0}\right)$. Using the local normal forms in TABLE 1 , we see that the deformations of set germs $g_{t}\left(\mathbf{R}^{2}\right)$ around $0 \in \mathbf{R}^{2}$ are as depicted in FIGURE 5.

Let $F: S^{2} \times[-1,1] \rightarrow \mathbf{R}^{2}$ be a generic fold homotopy such that $0 \in[-1,1]$ is the unique codimension 1 bifurcation value of F. Then we say that F crosses Γ_{1} positively at f_{0} if one of the following holds.
(1) When $f_{0} \in J^{+}, J_{1}^{-}$and J_{2}^{-}, the number of normal crossing points of $f_{1}\left(S\left(f_{1}\right)\right)$ is greater than that of $f_{-1}\left(S\left(f_{-1}\right)\right)$.
(2) When $f_{0} \in T_{1}$ and T_{2}, the number of preimage over a point in the new-born triangle of $f_{1}\left(S\left(f_{1}\right)\right)$ is greater than that over a point in the vanishing triangle of $f_{-1}\left(S\left(f_{-1}\right)\right)$.
If a generic fold homotopy F does not satisfy the above property, then we say that F crosses Γ_{1} negatively at f_{0}.

3. Fold eversion between e and \tilde{e}

In this section, we concretely construct a fold eversion $E: S^{2} \times[-1,1] \rightarrow \mathbf{R}^{2}$ between e and \tilde{e} such that E is a generic fold homotopy.

To describe a variant of such a fold eversion E, we describe a finite series of images of stable fold map, $e_{t}\left(D_{N}^{2}\right)$ and $e_{t}\left(D_{S}^{2}\right)$, through which the reader can imagine the smooth fold eversion. Note that for any $t \in[-1,1], e_{t} \mid T$ satisfies the conditions (2.1) and (2.2) and e_{t} is defined by $e_{t}(x)=E(x, t)$.

The initial stable fold map of E is $e=e_{-1}$ and see FIGURE 6.

FIGURE 6

The stable fold map $e_{s_{1}}$, FIGURE 7, is obtained from e by crossing J^{+}positively four times.

FIGURE 7

The stable fold map $e_{s_{2}}$, FIGURE 8 , is obtained from $e_{s_{1}}$ by crossing J^{+}, J_{1}^{-}and T_{1} positively twice, T_{2} positively four times and J_{2}^{-}negatively twice.

FIGURE 8

The stable fold map $e_{s_{3}}$, FIGURE 9 , is obtained from $e_{s_{2}}$ by crossing J^{+}and T_{1} positively twice and J_{2}^{-}negatively once.

FIGURE 9

The stable fold map $e_{s_{4}}$, FIGURE 10, is obtained from $e_{s_{3}}$ by crossing T_{2} positively twice.

FIGURE 10

The stable fold map $e_{s_{5}}$, FIGURE 11, is obtained from $e_{s_{4}}$ by crossing J^{+}positively twice, T_{2} positively four times and J_{2}^{-}negatively twice.

FIGURE 11

The stable fold map $e_{s_{6}}$, FIGURE 12, is obtained from $e_{s_{5}}$ with the rotation of $\pi / 2$. We see that $e_{s_{5}}\left(D_{N}^{2}\right)=e_{s_{6}}\left(D_{S}^{2}\right)$ and $e_{s_{5}}\left(D_{S}^{2}\right)=e_{s_{6}}\left(D_{N}^{2}\right)$ hold if we ignore the orientations on D_{N}^{2} and D_{S}^{2}.

FIGURE 12

We obtain the terminal stable fold map, $e_{1}=\tilde{e}$, of E (FIGURE 13) from $e_{s_{6}}$ by reversing the generic fold homotopy between e and $e_{s_{5}}$ constructed in FIGURES 6-11

FIGURE 13

Then, we have the desired fold eversion $E: S^{2} \times[-1,1] \rightarrow \mathbf{R}^{2}$ between e and \tilde{e}. In FIGURES 6-13, we omit the orientations on $e_{t}\left(D_{N}^{2}\right), e_{t}\left(D_{S}^{2}\right)$ and \mathbf{R}^{2}. Gray strips are the image of rectangles properly embedded in D_{N}^{2} and D_{S}^{2}, respectively. We draw the gray strips so that they help the readers to understand how to extend $e_{t} \mid \partial T$ to $e_{t} \mid D_{N}^{2}$ and $e_{t} \mid D_{S}^{2}(t=$ $\left.\left\{-1, s_{1}, s_{2}, \ldots, s_{6}, 1\right\}\right)$.

References

[1] Y. Eliashberg, On singularities of folding type, Math. USSR Izv., 4 (1970), 1119-1134.
[2] , Surgery of singularities of smooth mappings, Math. USSR Izv., 6 (1972), 1302-1326.
[3] C. G. Gibson and C. A. Hobbs, Singularity and bifurcation for general two-dimensional planar motions, New Zealand J. Math. 25 (1996), 141-163.
[4] G. Ishikawa, A relative transversality theorem and its applications, Real analytic and algebraic singularities, pp. 84-93, Pitman Res. Notes Math. Ser., 381, Longman, Harlow, 1998.
[5] J. N. Mather, Stability of C^{∞} mappings. VI. The nice dimensions, Proc. Liverpool Singularities Symposium, I (1969/70), pp. 207-253, Lecture Notes in Math., 192, Springer-Verlag, Berlin, 1971.
[6] B. Morin and J-P. Petit, Le retournement de la sphere, (in French) C. R. Acad. Sci. Paris Ser. A-B 287 (1978), A791-A794.
[7] S. Smale, A classification of immersions of the two-sphere, Trans. Amer. Math. Soc. 90 (1958), 281-290.
[8] M. Yamamoto, First order semi-local invariants of stable maps of 3 -manifolds into the plane, Ph.D. Thesis (2004).
E-mail address: (old) minomotocmath.kyushu-u.ac.jp, (current) minomotoemath.sci.hokudai.ac.jp

Figure 1. The stable fold map s

Figure 2. Milnor's examples m_{1} and m_{2}

(a) $e\left(D_{N}^{2}\right)$

(b) $e\left(D_{S}^{2}\right)$

Figure 3. The stable fold map e

Figure 4. The stable fold map \tilde{e}

g_{-1}

g_{0}

g_{1}
(1) if 0 corresponds to J^{+}

g_{-1}

g_{0}

g_{1}
(2) if 0 corresponds to J_{1}^{-}

g-1

$g 0$
(3) if 0 corresponds to J_{2}^{-}

g-1

$g 0$

g_{1}
(4) if 0 corresponds to T_{1}

g_{0}

g_{1}
(5) if 0 corresponds to T_{2}

Figure 5

Figure 6. The stable fold map e

Figure 7. The stable fold map $\boldsymbol{e}_{s_{1}}$

Figure 8. The stable fold map $e_{s_{2}}$

Figure 9. The stable fold map $e_{s_{3}}$

Figure 10. The stable fold map $e_{s_{4}}$

FIGURE 11. The stable fold map $e_{s_{s}}$

Figure 12. The stable fold map $e_{s_{6}}$

Figure 13. The stable fold map \tilde{e}

[^0]: The author has been supported by JSPS Research Fellowships for Young Scientists．

