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Abstract: In the paper we prove that

$(*)$ $\log_{q}|$ $(G\rangle$ $|=|\mathrm{V}(\mathrm{G})$ $|$ ,

where $G$ is any subset of a polynomial ring $Q[X]$ over a finite field $Q=GF(q)$

modulo $(X^{q}-X)$ , (G) is the subring of $Q[X]$ generated by $G$ and $V(G)$ is the
set of values of G. $|$ $4|$ means the cardinalty (size) of a set $A$ . This research has
its origin and gives another result in our study on the information dynamics
of cellular automata where the cell state is a polynomial over a finite field. At
the same time, it should be noticed that the equation $(^{*})$ itself may serve as a
powerful tool in the computer algebra–subring generation.
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1 Preliminaries

This paper addresses an algebraic problem which arose in our study of the infor-
mation dynamics of cellular automata, see the concluding remarks of [4]. How-
ever, its presentation here is self-contained and can be read without knowledge
of the literature.

The problem is to investigate the structure of subrings of a polynomial ring
$Q[X]$ modulo $(X^{q}-X)$ over $Q=GF(q)$ , $q=p^{n}$ , where $p$ is a prime number
and $n$ is a positive integer. Evidently $|Q|=q.$ $Q[X]$ is considered to be the
set of polynomial functions $\{g : Qarrow Q\}$ , which axe uniquely expressed by the
following polynomial form.

$\mathrm{g}(\mathrm{X})=a_{0}+a_{1}X+\cdots+a:X^{:}+\cdots+a_{q-1}X^{q-1}$ , $a:\in Q$ , $0\leq i\leq q-1$ . (1)

It is easily seen that $|Q[X]|=q^{q}$ . For any element $\alpha\in Q[X]$ , we note that
$\alpha^{q}-\alpha=0$ and $p\alpha=0.$ As for the literature of finite fields and polynomials over
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them, we refer to the encyclopedia by Lidl and Niederreiter [3].

Notation :For a subset $G\subseteq$ Q[X], by (G) we mean the subring of $Q[X]$ which
is generated by G. $G$ is called a generator set of $\langle$ G$\rangle$ . Every element of $G$ is called
a generator of $\langle$G$\rangle$ . For a ring, there may exist more than one generator sets. See
Supplements below, where the general case of universal algebra is written, since
the ring $R$ with identity element 1 is an algebra ($\mathrm{R},$ $+$ , -, 0, $\cdot,$

$1\rangle$ .

It is an interesting topics to investigate the lattice structure (set inclusion) of
subrings of $Q[X]$ . Since we consider nontrivial subrings, the smallest subring is
$Q$ , while the largest one is $Q[X]$ . In this paper we focus on the cardinalty of
subrings. The cardinality $|B|$ of an arbitrary subring $B\subseteq Q[X]$ is a power of $q$ .
For any $1\leq i\leq q,$ there exists a subring $B$ such that $|B|=q^{:}$ , see Theorem (4)
below. There can be more than one subrings having the same cardinality, see
Example 3 below.

Now we are going to enter the main topics. First, we need to define the following
two notions.

2 ${\rm Log}$-ring size of $G$

Taking into account the fact that the cardinality of any subring of $Q[X]$ is a
power of $q$ , we define the $log$-ring size of $G$ by the following equation.

Definition 1. For any subset $G\subseteq$ Q[X], the $log$-ring size $\mathrm{A}(G)$ is defined by the
following equation.

$\lambda(G)=\log_{q}|\langle G\rangle$ $|$ (2)

Note that $1\leq\lambda(G)\leq q.$

3 Value size of $G$

Definition 2. Suppose that a subset $G\subseteq Q[X]$ consists of $r$ polynomials: $G=$

$\{g_{1},g_{2}, \ldots, g_{r} : \mathit{9}\dot{*}\in Q[X], 1\leq i\leq \mathrm{r}\}$. Then an $r$-tuple of values $(g_{1}(a),g_{2}(a)$ , $\ldots$ , $g_{r}(a))$

for $a\in Q$ is called the value vector of $G$ for $a$ and denoted by $G(a)$ . Note that
$G(a)\in Q^{r}$ . The value set $V(G)$ of $G$ is defined by

$V(G)=\{G(a)|a\in Q\}$ . (3)

Finally we define the value size of $G$ by $|V(G)|$ . Note that $1\leq|V(G)\leq q.$

When $G$ consists of one polynomial, say $G=\{g\}$ , we simply denote (g) and
$V(g)$ in stead of $\langle$ {g} $)$ and $V(\{g\})$ , respectively.
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4 Theorems

We state and prove the main theorem and one of its derivatives. The main
theorem appeared without proof in the concluding remarks of our paper [4],
page 416. It also gives another (much simpler) proof of Theorem 5.3 of the
same paper as the special case of $|V(G)=\lambda\acute{\iota}G)=q,$ which corresponds to the
nondegeneracy and the completeness of a configuration.

TheOrem3. For any subset $G\subseteq Q[X]$ , the $log$-ring size is equal to the value
size.

$\mathrm{A}(\mathrm{G})$ $=\log_{q}|\langle G\rangle|=|V(G)|$ . (4)

Proof. For given $G$ we assume that $m=q-|\mathrm{V}(\mathrm{G})|>01$ . Then there axe $m$

elements ci, $c_{2}$ , .., $c_{m}\in Q$ and a value vector $7\in V(G)$ such that
$G(\mathrm{q}.)=\gamma$ , $1\leq i\leq m.$ (5)

and
77 $\mathrm{G}(\mathrm{a})\neq G(a’)7$

$\gamma$ for any $a\neq c_{i}$ , $a’\neq c_{i}$ , $1\leq i\leq m.$ (6)

Such a $G$ is called $(c_{1},c_{2}, \ldots c_{m})$ -degenerate. Prom the commutativity property of
the substitution and the ring operations [4], it is seen that any polynomial func-
tion which is obtained from $(c_{1}, c_{2}, \ldots c_{m})$-degenerate functions by ring operations
is also $(c_{1}$ , $c_{2}$ , ..., $c_{m})$-degenerate. Therefore,

$(G)=$ {$h\in Q[X]|h$ is $(c_{1},$ $c_{2}$ , ..., $c_{m})-$ de enerate}. (7)

On the other hand, from Equations (5) and (6), the number of 11 $(c_{1},c_{2}, \ldots, c_{m})-$

degenerate polynomials turns out to be $q^{q-m}=q^{|V(g)|}$ . Therefore we see,
On the other hand, from Equations (5) and (6), the number of aU $(c_{1}, c_{2}, \ldots, c_{m})-$

degenerate polynomials turns out to be $q^{q-m}=q^{|V(g)|}$ . Therefore we see,
$|\langle$ $G)$ $|=q^{|V(G)|}$ . (8)

Taking $\log_{q}$ of both sides, we have the theorem. When $m=0,$ every values of
$G$ are different, $G$ generates $Q[X]$ and therefore $|$ ( $\mathrm{C}$ $\rangle|=q^{q}$ . So, taking $\log_{q}$ we
have the theorem.

Using Theorem (3) we have the following result.

TheOrem4. For any $1\leq i\leq q,$ there eits a subring $B$ such that $|7|$? $|=q^{:}$ .
Proof. Consider a function $h$ such that $|\mathrm{j}/(h)|=i.$ For example, take a function
$h$ such that

$h(a_{0})=a_{0}$ , $\mathrm{h}(\mathrm{a}\mathrm{i})=a_{1}$ , $\mathrm{h}(\mathrm{a}0)=a_{2}$ , $\cdot$ .
$h(a:-1)$ $=a_{i-1}=$ h(a0) $=h(a_{\dot{|}+1})=\cdot\cdot\iota$ $=h(a_{q-1})$ . (9)

Then by the interpolation formula given in Supplement below, we obtain a poly-
nomial $g$ such that $g(c)=h(c)$ , for any $c\in Q.$ Therefore we see $|V(g)|=|V(h]$ .
Then by Theorem (3) we have $|$ (g$\rangle$ $|=|V(g)|=|V(h\mathrm{l}=q^{\dot{1}}$ .
1 In the information dynamics, $m$ is called the degree of degeneracy [4].



5 Polynomials in several indeterminates

Theorems (3) and (4) proved above can be generalized to the polynomial ring
in several indeterminates $X_{1}$ , $X_{2}$ , $\ldots$ , $X_{n}$ .

Let $Q[X_{1}, X_{2}, \ldots, X_{n}]$ be the polynomial ring modulo $(X_{1}^{q}-X_{1})(X_{2}^{q}-X_{2})\cdots(X_{n}^{q}-$

$X_{n})$ over $Q$ . The $\log$-ring size and the value size of $G\subseteq Q[X_{1},X_{2}, \ldots, X_{n}]$ are
defined in the same manner as the one indeterminate case. Note, however, that
$1\leq$ A(G) $\leq q^{n}$ and $1\leq|\mathrm{A}(\mathrm{G})|\leq q^{n}$ . Then we have the following theorems
which can be proved in the same manner as the one variable case.

Theorem 5. For any subset $G\subseteq Q[X_{1}, X_{2}, \ldots, X_{n}]$ ,

$\mathrm{A}(\mathrm{G})$ $=\log_{q}|\langle G\rangle|=|\mathrm{A}(\mathrm{G})|$. (10)

TheOrem6. For any $1\leq i\leq q^{n}$ , there exits a subring $B$ such that $|B|=q^{:}$ .

6 Examples

Example 1: $Q=GF(3)=\{0,1,2\}$

$G_{1}=\{a+bX\}$ , where $b\neq 0$ . $\langle$$G_{1})=$ Q[X].
Since $|\mathrm{Q}[\mathrm{X}]|=q^{q}$ , $\lambda(G_{1})=q$

Generally, for an arbitrary $Q$ , any polynomial of degree 1 generates $Q[X]$ and
is called a permutation of $Q$ . Note that $|V(a+bX)|=q,$ since $Q$ is a field and
$a+bc=a+bd$ implies $c=d.$

$G_{2}=\{X^{2}\}$ . We see that

$\langle G_{2}\rangle=\{0,1,2, X^{2},2X^{2},1+X^{2},2+X^{2},1+2X^{2},2+2X^{2}\}\neq Q[X]$.

So, $|$ { $G_{2})$ $|=9=3^{2}$ a $\mathrm{d}$ $\lambda(G_{2})$ $=2.$ It is the only nontrivial subring of polynO-
mials over $\mathrm{G}\mathrm{F}(3)$ . On the other hand we see $|V(X^{2}]=2.$

Example 2: $Q=\mathrm{G}\mathrm{F}(4)=\mathrm{G}\mathrm{F}(2^{2})=\{0,1,\omega, 1+\omega\}$ . Note that $\omega^{2}=1+\omega$ , $(1+$

$\omega)^{2}=\omega$ and $\omega(1+\omega)=1.2a=0$ for any $a\in Q.$

$\mathrm{X}^{2}$ : $\langle X2\rangle$ $=Q[X]$
$\lambda(X^{2})=4.$ $|V(X^{2}]=4.$

So, $|\{G_{2}\rangle$ $|=9=3^{2}$ and $\lambda(G_{2})=2.$ It is the only nontrivial subring of polynO-
mials over $\mathrm{G}\mathrm{F}(3)$ . On the other hand we see $|V(X^{2})|=2.$

Example2: $Q=\mathrm{G}\mathrm{F}(4)=\mathrm{G}\mathrm{F}(2^{2})=\{0,1, \omega, 1+\omega\}$ . Note that $\omega^{2}=1+\omega$ , $(1+$

$\omega)^{2}=\omega$ and $\omega(1+\omega)=1.2a=0$ for any $a\in Q.$

$X^{2}$ : $\langle X^{2}\rangle=Q[X]$

$\lambda(X^{2})=4.$ $|V(X^{2})|=4.$

$X^{3}:\langle X^{3}\rangle=\{a+bX^{3} : a, b\in Q\}$ .
$|\langle X3\rangle|=4^{2}(\lambda(X^{3})=2)$ . $|V(X^{3})|=2.$
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$X+X^{3}$ : $\langle X+X^{3})$ $=\{a+bX+cX’ : a, b,c\in Q\}$ .
$|(X+X^{3})|=4^{3}$ (A ($X+\mathrm{E}^{3})=3$). $|V(X+X^{3})|=3.$

Example 3: $Q=\mathrm{G}\mathrm{F}(5)=\{0,1, 2, 3, 4\}$

We consider the following singleton subsets; $G_{3}=\{X^{4}\}$ , $G_{4}=\{X^{2}\}$ , $G_{6}=$

$\{X+ \mathrm{X}" +X^{4}\}$ and $G_{6}=\{X^{3}\}$ .
Then we have the following results on value size and $\log$ ring size.

$G_{3}=X^{4}$ : $\langle X^{4})=\{a+bX^{4} : a,b\in Q\}$ .
$|\langle$X$4\rangle$ $|=5^{2}(\lambda(X^{4})=2)$ . On the other hand $|V(\mathrm{A}")|=2.$

$G_{4}=X^{2}$ :
($X^{2}\rangle=\{a+bX^{2}+cX^{4} : a, b,c\in Q\}$ . (11)

$|$ ($X2\rangle$ $|=5^{3}(\lambda(X^{2})=3)$ . On the other hand $|V(\mathrm{A}2)|=3.$

Problem: Show $|$ $(X+X^{3}+X^{4}\rangle|=5^{4}$ .
Also, show $|\langle$4$X+4X^{2}+2X^{3}+X^{4}$ ) $|=5^{4}$ .
Are they the same subring of cardinality $5^{4}$ ?
On the other hand $|V(X+X^{3}+ \mathrm{X} 4)|=4.$

$G_{6}=X^{3}$ : $\langle$$X3)$ $=Q[X]$ , since $(X^{3})^{2}=X2$ a $\mathrm{d}$ $X3$ . $X^{2}=X$

$\lambda(X^{3})=5.$ It is seen that $|V(X’ \mathrm{l}=5.$

$G_{7}=X+X^{2}$ : $|V(X+X^{2})$ $|=3.$ $|\langle G7\rangle$ $|=3$ ?

$G_{8}=G_{4}\cup G_{7}=\{X^{2},X+X^{2}\}:\mathrm{V}(\mathrm{G}\mathrm{S})=\{(0,0), (1,2), (4,1), (4,2), (1,0)\}$.
So, $|V$(G8) $=5.$ On the other hand $(G8)=Q[X]$ . So, (G8) $=5.$

It is clear that the subrings of a polynomial ring constitutes a lattice (set inclu-
sion) structure. In order to calculate the complete diagram, even for small $q$ , we
need a computer software. However, as far as we know, there does not exist such
a program that generates every subring of a polynomial ring over a finite field
modulo $X^{q}-X.$

Here are shown partial inclusion relations of the above Example 3, $q=5.$

$Q\subset(X^{4}\rangle\subset\langle X^{2}\}\subset Q[X]$ .
$Q\subset(X+X^{2}\rangle\subset Q[X]$ .

Note that ($X^{2}\rangle\neq$ $(X+X^{2})$ and $\langle X4\rangle$ is not included by $(X+X^{2}\rangle$ .
$Q\subset(X+X^{2}\rangle\subset Q[X]$ .

Note that ($X^{2}\rangle\neq(X+X^{2})$ and $\langle X^{4}\rangle$ is not included by $(X+X^{2}\rangle$ .



13

In fact, from (11) we see that in any polynomial in { $X^{2}\rangle$ the coefficient of the term
$X^{3}$ is zero, while in $\langle X+X^{2}\rangle$ we see for example $(X+X^{2})^{2}=X^{2}+2X^{3}+X^{4}$ .

7 Supplements

7.1 Interpolation formula

Given a function $\mathrm{h}\{\mathrm{x}$ ) : $Qarrow Q,$ the following interpolation formula gives a
unique polynomial function $f(x)$ over $Q$ such that $f(c)=h(c),\forall c\in Q.$ In
Chapter 5, page 369 of the encyclopedia by Lidl and Niederreiter [3], Equation
(7.20) gives the interpolation formula for several indeterminates. Here we cite
its one indeterminate version.

$f(x)= \sum_{\mathrm{c}\in Q}h(c)(1-(x-c)^{q-1})$
(12)

By this formula we can compute the coefficients $a:$ , $0\leq i\leq q-1$ in formula (1)
from the value set of $h$ , though inefficient.

7.2 Generators

A (universal) algebra 2 is a pair A $=(A, O)$ , where $A$ is a nonempty set called a
universe and $O$ is a set of operations $f_{1}$ , $f_{2}$ , $\ldots$ on $A$ . For a nonnegative integer $n$,
an n-ary operation on $A$ is a function $f$ : $A^{n}arrow A.$ A subuniverse of an algebra
A is a subset of $A$ closed under all of the operations of A. The collection of
subuniverses of A is denoted by Sub$(\mathrm{A})$ . For any subset $B$ of $A$, we define

$\langle B\rangle^{\mathrm{A}}=\cap\{S\in Sub(\mathrm{A})|B\subseteq S\}$

called the subuniverse of A generated by $B$ . If $\langle$ $B)^{\mathrm{A}}=A,$ then we say that $B$ is
a generating set for A.

Classification: According to Schmid [5], the elements of A is classified into
three categories:

(1) irreducibles: elements that must be included in every generating set.
(2) nongenerators: elements that can be omitted ffom every generating set.
(3) relative generators: elements that play an essential role in at least one
generating set.

This classification is closely related to the information contained by a polynomial
in a configuration.

2 For the universal algebra, the reader is referred to [2]
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Decision problems: Bergman and Slutzki asked and answered the following
questions [1] :

(1): Does a given subset generate a given algebra ?Answer: P-complete.

(2): What is the size of the smallest generating set of a given (finite) algebra ?
Answer: NP-complete.

These results give an answer to the computational complexity problem whether
a configuration is complete or not.
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