Log－ring size and value size of generators of subrings of polynomials over a finite field

Hidenosuke Nishio
西尾英之助（元•京大理）
Iwakura Miyake－cho 204，
Sakyo－ku，Kyoto，606－0022 Japan．
email：YRA05762＠nifty．ne．jp

Abstract

In the paper we prove that （＊）$\quad \log _{q}|\langle G\rangle|=|V(G)|$, where G is any subset of a polynomial ring $Q[X]$ over a finite field $Q=G F(q)$ modulo（ $X^{q}-X$ ），$\langle G\rangle$ is the subring of $Q[X]$ generated by G and $V(G)$ is the set of values of $G .|A|$ means the cardinality（size）of a set A ．This research has its origin and gives another result in our study on the information dynamics of cellular automata where the cell state is a polynomial over a finite field．At the same time，it should be noticed that the equation $\left(^{*}\right)$ itself may serve as a powerful tool in the computer algebra－subring generation．

Keywords：polynomials over finite fields，subring，generator，cellular automaton

1 Preliminaries

This paper addresses an algebraic problem which arose in our study of the infor－ mation dynamics of cellular automata，see the concluding remarks of［4］．How－ ever，its presentation here is self－contained and can be read without knowledge of the literature．

The problem is to investigate the structure of subrings of a polynomial ring $Q[X]$ modulo（ $X^{q}-X$ ）over $Q=G F(q), q=p^{n}$ ，where p is a prime number and n is a positive integer．Evidently $|Q|=q . Q[X]$ is considered to be the set of polynomial functions $\{g: Q \rightarrow Q\}$ ，which are uniquely expressed by the following polynomial form．

$$
\begin{equation*}
g(X)=a_{0}+a_{1} X+\cdots+a_{i} X^{i}+\cdots+a_{q-1} X^{q-1}, a_{i} \in Q, 0 \leq i \leq q-1 \tag{1}
\end{equation*}
$$

It is easily seen that $|Q[X]|=q^{q}$ ．For any element $\alpha \in Q[X]$ ，we note that $\alpha^{q}-\alpha=0$ and $p \alpha=0$ ．As for the literature of finite fields and polynomials over
them, we refer to the encyclopedia by Lidl and Niederreiter [3].
Notation : For a subset $G \subseteq Q[X]$, by $\langle G\rangle$ we mean the subring of $Q[X]$ which is generated by G. G is called a generator set of $\langle G\rangle$. Every element of G is called a generator of $\langle G\rangle$. For a ring, there may exist more than one generator sets. See Supplements below, where the general case of universal algebra is written, since the ring R with identity element 1 is an algebra $\langle R,+,-, 0, \cdot, 1\rangle$.

It is an interesting topics to investigate the lattice structure (set inclusion) of subrings of $Q[X]$. Since we consider nontrivial subrings, the smallest subring is Q, while the largest one is $Q[X]$. In this paper we focus on the cardinality of subrings. The cardinality $|B|$ of an arbitrary subring $B \subseteq Q[X]$ is a power of q. For any $1 \leq i \leq q$, there exists a subring B such that $|B|=q^{i}$, see Theorem (4) below. There can be more than one subrings having the same cardinality, see Example 3 below.

Now we are going to enter the main topics. First, we need to define the following two notions.

2 Log-ring size of G

Taking into account the fact that the cardinality of any subring of $Q[X]$ is a power of q, we define the log-ring size of G by the following equation.
Definition 1. For any subset $G \subseteq Q[X]$, the log-ring size $\lambda(G)$ is defined by the following equation.

$$
\begin{equation*}
\lambda(G)=\log _{q}|\langle G\rangle| \tag{2}
\end{equation*}
$$

Note that $1 \leq \lambda(G) \leq q$.

3 Value size of \boldsymbol{G}

Definition 2. Suppose that a subset $G \subseteq Q[X]$ consists of r polynomials: $G=$ $\left\{g_{1}, g_{2}, \ldots, g_{r}: g_{i} \in Q[X], 1 \leq i \leq r\right\}$. Then an r-tuple of values $\left(g_{1}(a), g_{2}(a), \ldots, g_{r}(a)\right)$ for $a \in Q$ is called the value vector of G for a and denoted by $G(a)$. Note that $G(a) \in Q^{r}$. The value set $V(G)$ of G is defined by

$$
\begin{equation*}
V(G)=\{G(a) \mid a \in Q\} \tag{3}
\end{equation*}
$$

Finally we define the value size of G by $|V(G)|$. Note that $1 \leq|V(G)| \leq q$.
When G consists of one polynomial, say $G=\{g\}$, we simply denote $\langle g\rangle$ and $V(g)$ in stead of $\langle\{g\}\rangle$ and $V(\{g\})$, respectively.

4 Theorems

We state and prove the main theorem and one of its derivatives. The main theorem appeared without proof in the concluding remarks of our paper [4], page 416. It also gives another (much simpler) proof of Theorem 5.3 of the same paper as the special case of $|V(G)|=\lambda(G)=q$, which corresponds to the nondegeneracy and the completeness of a configuration.
Theorem 3. For any subset $G \subseteq Q[X]$, the log-ring size is equal to the value size.

$$
\begin{equation*}
\lambda(G)=\log _{q}|\langle G\rangle|=|V(G)| . \tag{4}
\end{equation*}
$$

Proof. For given G we assume that $m=q-|V(G)|>0^{1}$. Then there are m elements $c_{1}, c_{2}, . ., c_{m} \in Q$ and a value vector $\gamma \in V(G)$ such that

$$
\begin{equation*}
G\left(c_{i}\right)=\gamma, 1 \leq i \leq m \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma \neq G(a) \neq G\left(a^{\prime}\right) \neq \gamma \text { for any } a \neq c_{i}, a^{\prime} \neq c_{i}, 1 \leq i \leq m . \tag{6}
\end{equation*}
$$

Such a G is called ($c_{1}, c_{2}, \ldots c_{m}$)-degenerate. From the commutativity property of the substitution and the ring operations [4], it is seen that any polynomial function which is obtained from ($c_{1}, c_{2}, \ldots c_{m}$)-degenerate functions by ring operations is also ($c_{1}, c_{2}, \ldots, c_{m}$)-degenerate. Therefore,

$$
\begin{equation*}
\langle G\rangle=\left\{h \in Q[X] \mid h \text { is }\left(c_{1}, c_{2}, \ldots, c_{m}\right)-\text { degenerate }\right\} \tag{7}
\end{equation*}
$$

On the other hand, from Equations (5) and (6), the number of all ($c_{1}, c_{2}, \ldots, c_{m}$)degenerate polynomials turns out to be $q^{q-m}=q^{|V(g)|}$. Therefore we see,

$$
\begin{equation*}
|\langle G\rangle|=q^{|V(G)|} \tag{8}
\end{equation*}
$$

Taking $\log _{q}$ of both sides, we have the theorem. When $m=0$, every values of G are different, G generates $Q[X]$ and therefore $|\langle G\rangle|=q^{q}$. So, taking $\log _{q}$ we have the theorem.

Using Theorem (3) we have the following result.
Theorem 4. For any $1 \leq i \leq q$, there exits a subring B such that $|B|=q^{i}$.
Proof. Consider a function h such that $|V(h)|=i$. For example, take a function h such that

$$
\begin{align*}
h\left(a_{0}\right) & =a_{0}, h\left(a_{1}\right)=a_{1}, h\left(a_{2}\right)=a_{2}, \cdots \\
h\left(a_{i-1}\right) & =a_{i-1}=h\left(a_{i}\right)=h\left(a_{i+1}\right)=\cdots=h\left(a_{q-1}\right) \tag{9}
\end{align*}
$$

Then by the interpolation formula given in Supplement below, we obtain a polynomial g such that $g(c)=h(c)$, for any $c \in Q$. Therefore we see $|V(g)|=|V(h)|$. Then by Theorem (3) we have $|\langle g\rangle|=|V(g)|=|V(h)|=q^{i}$.

[^0]
5 Polynomials in several indeterminates

Theorems (3) and (4) proved above can be generalized to the polynomial ring in several indeterminates $X_{1}, X_{2}, \ldots, X_{n}$.

Let $Q\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be the polynomial ring modulo $\left(X_{1}^{q}-X_{1}\right)\left(X_{2}^{q}-X_{2}\right) \cdots\left(X_{n}^{q}-\right.$ $\left.X_{n}\right)$ over Q. The log-ring size and the value size of $G \subseteq Q\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ are defined in the same manner as the one indeterminate case. Note, however, that $1 \leq \lambda(G) \leq q^{n}$ and $1 \leq|V(G)| \leq q^{n}$. Then we have the following theorems which can be proved in the same manner as the one variable case.

Theorem 5. For any subset $G \subseteq Q\left[X_{1}, X_{2}, \ldots, X_{n}\right]$,

$$
\begin{equation*}
\lambda(G)=\log _{q}|\langle G\rangle|=|V(G)| . \tag{10}
\end{equation*}
$$

Theorem 6. For any $1 \leq i \leq q^{n}$, there exits a subring B such that $|B|=q^{i}$.

6 Examples

Example 1: $Q=G F(3)=\{0,1,2\}$
$G_{1}=\{a+b X\}$, where $b \neq 0 .\left\langle G_{1}\right\rangle=Q[X]$.
Since $|Q[X]|=q^{q}, \lambda\left(G_{1}\right)=q$
Generally, for an arbitrary Q, any polynomial of degree 1 generates $Q[X]$ and is called a permutation of Q. Note that $|V(a+b X)|=q$, since Q is a field and $a+b c=a+b c^{\prime}$ implies $c=c^{\prime}$.
$G_{2}=\left\{X^{2}\right\}$. We see that

$$
\left\langle G_{2}\right\rangle=\left\{0,1,2, X^{2}, 2 X^{2}, 1+X^{2}, 2+X^{2}, 1+2 X^{2}, 2+2 X^{2}\right\} \neq Q[X] .
$$

So, $\left|\left\langle G_{2}\right\rangle\right|=9=3^{2}$ and $\lambda\left(G_{2}\right)=2$. It is the only nontrivial subring of polynomials over $\operatorname{GF}(3)$. On the other hand we see $\left|V\left(X^{2}\right)\right|=2$.

Example 2: $Q=\operatorname{GF}(4)=\mathrm{GF}\left(2^{2}\right)=\{0,1, \omega, 1+\omega\}$. Note that $\omega^{2}=1+\omega,(1+$ $\omega)^{2}=\omega$ and $\omega(1+\omega)=1.2 a=0$ for any $a \in Q$.

$$
\begin{aligned}
& X^{2}:\left\langle X^{2}\right\rangle=Q[X] \\
& \lambda\left(X^{2}\right)=4 .\left|V\left(X^{2}\right)\right|=4 . \\
& \\
& X^{3}:\left\langle X^{3}\right\rangle=\left\{a+b X^{3}: a, b \in Q\right\} . \\
& \left|\left\langle X^{3}\right\rangle\right|=4^{2}\left(\lambda\left(X^{3}\right)=2\right) \cdot\left|V\left(X^{3}\right)\right|=2 .
\end{aligned}
$$

$X+X^{3}:\left\langle X+X^{3}\right\rangle=\left\{a+b X+c X^{3}: a, b, c \in Q\right\}$.
$\left|\left\langle X+X^{3}\right\rangle\right|=4^{3}\left(\lambda\left(X+X^{3}\right)=3\right) .\left|V\left(X+X^{3}\right)\right|=3$.
Example 3: $Q=\mathrm{GF}(5)=\{0,1,2,3,4\}$
We consider the following singleton subsets; $G_{3}=\left\{X^{4}\right\}, G_{4}=\left\{X^{2}\right\}, G_{5}=$ $\left\{X+X^{3}+X^{4}\right\}$ and $G_{6}=\left\{X^{3}\right\}$.
Then we have the following results on value size and log-ring size.
$G_{3}=X^{4}:\left\langle X^{4}\right\rangle=\left\{a+b X^{4}: a, b \in Q\right\}$.
$\left|\left\langle X^{4}\right\rangle\right|=5^{2}\left(\lambda\left(X^{4}\right)=2\right)$. On the other hand $\left|V\left(X^{4}\right)\right|=2$.
$G_{4}=X^{2}:$

$$
\begin{equation*}
\left\langle X^{2}\right\rangle=\left\{a+b X^{2}+c X^{4}: a, b, c \in Q\right\} . \tag{11}
\end{equation*}
$$

$\left|\left\langle X^{2}\right\rangle\right|=5^{3}\left(\lambda\left(X^{2}\right)=3\right)$. On the other hand $\left|V\left(X^{2}\right)\right|=3$.
Problem: Show $\left|\left\langle X+X^{3}+X^{4}\right\rangle\right|=5^{4}$.
Also, show $\left|\left\langle 4 X+4 X^{2}+2 X^{3}+X^{4}\right\rangle\right|=5^{4}$.
Are they the same subring of cardinality 5^{4} ?
On the other hand $\left|V\left(X+X^{3}+X^{4}\right)\right|=4$.
$G_{6}=X^{3}:\left\langle X^{3}\right\rangle=Q[X]$, since $\left(X^{3}\right)^{2}=X^{2}$ and $X^{3} \cdot X^{2}=X$.
$\lambda\left(X^{3}\right)=5$. It is seen that $\left|V\left(X^{3}\right)\right|=5$.
$G_{7}=X+X^{2}:\left|V\left(X+X^{2}\right)\right|=3 .\left|\left\langle G_{7}\right\rangle\right|=3 ?$
$G_{8}=G_{4} \cup G_{7}=\left\{X^{2}, X+X^{2}\right\}: V\left(G_{8}\right)=\{(0,0),(1,2),(4,1),(4,2),(1,0)\}$.
So, $\left|V\left(G_{8}\right)\right|=5$. On the other hand $\left\langle G_{8}\right\rangle=Q[X]$. So, $\lambda\left(G_{8}\right)=5$.
It is clear that the subrings of a polynomial ring constitutes a lattice (set inclusion) structure. In order to calculate the complete diagram, even for small q, we need a computer software. However, as far as we know, there does not exist such a program that generates every subring of a polynomial ring over a finite field modulo $X^{q}-X$.

Here are shown partial inclusion relations of the above Example 3, $q=5$.

$$
\begin{gathered}
Q \subset\left\langle X^{4}\right\rangle \subset\left\langle X^{2}\right\rangle \subset Q[X] . \\
Q \subset\left\langle X+X^{2}\right\rangle \subset Q[X] .
\end{gathered}
$$

Note that $\left\langle X^{2}\right\rangle \neq\left\langle X+X^{2}\right\rangle$ and $\left\langle X^{4}\right\rangle$ is not included by $\left\langle X+X^{2}\right\rangle$.

In fact, from (11) we see that in any polynomial in $\left\langle X^{2}\right\rangle$ the coefficient of the term X^{3} is zero, while in $\left\langle X+X^{2}\right\rangle$ we see for example $\left(X+X^{2}\right)^{2}=X^{2}+2 X^{3}+X^{4}$.

7 Supplements

7.1 Interpolation formula

Given a function $h(x): Q \rightarrow Q$, the following interpolation formula gives a unique polynomial function $f(x)$ over Q such that $f(c)=h(c), \forall c \in Q$. In Chapter 5, page 369 of the encyclopedia by Lidl and Niederreiter [3], Equation (7.20) gives the interpolation formula for several indeterminates. Here we cite its one indeterminate version.

$$
\begin{equation*}
f(x)=\sum_{c \in Q} h(c)\left(1-(x-c)^{q-1}\right) \tag{12}
\end{equation*}
$$

By this formula we can compute the coefficients $a_{i}, 0 \leq i \leq q-1$ in formula (1) from the value set of h, though inefficient.

7.2 Generators

A (universal) algebra ${ }^{2}$ is a pair $\mathbf{A}=(A, O)$, where A is a nonempty set called a universe and O is a set of operations f_{1}, f_{2}, \ldots on A. For a nonnegative integer n, an n-ary operation on A is a function $f: A^{n} \rightarrow A$. A subuniverse of an algebra \mathbf{A} is a subset of A closed under all of the operations of \mathbf{A}. The collection of subuniverses of \mathbf{A} is denoted by $\operatorname{Sub}(\mathbf{A})$. For any subset B of A, we define

$$
\langle B\rangle^{\mathbf{A}}=\bigcap\{S \in S u b(\mathbf{A}) \mid B \subseteq S\}
$$

called the subuniverse of \mathbf{A} generated by B. If $\langle B\rangle^{\mathbf{A}}=A$, then we say that B is a generating set for \mathbf{A}.

Classification: According to Schmid [5], the elements of \mathbf{A} is classified into three categories:
(1) irreducibles: elements that must be included in every generating set.
(2) nongenerators: elements that can be omitted from every generating set.
(3) relative generators: elements that play an essential role in at least one generating set.

This classification is closely related to the information contained by a polynomial in a configuration.

[^1]Decision problems: Bergman and Slutzki asked and answered the following questions [1] :
(1): Does a given subset generate a given algebra? Answer: P-complete.
(2): What is the size of the smallest generating set of a given (finite) algebra?

Answer: NP-complete.
These results give an answer to the computational complexity problem whether a configuration is complete or not.

8 Acknowledgements

The main body of this research was carried out during my stay at Faculty of Informatics, University of Karlsruhe, September-October, 2003. The simulation program of $\mathrm{CA}[\mathrm{X}]$ made by T . Saito was helpful in calculating subrings of $Q[X]$ given in Examples. Many thanks are due to them.

References

1. Bergman, C., Slutzki, G.: Computational Complexity of Generators and Nongenerators in Algebra, International Journal of Algebra and Computation, 12, 2002, 719-735.
2. Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra, The millennium edition, Open website, 2000.
3. Lidl, R., Niederreiter, H.: Finite Fields, Second edition, Cambridge University Press, 1997.
4. Nishio, H., Saito, T.: Information Dynamics of Cellular Automata I: An Algebraic Study, Fundamenta Informaticae, 58, 2003, 399-420.
5. Schmid, J.: Nongenerators, genuine generators and irreducibles, Heuston Journal of Mathematics, 25, 1999, 405-416.

[^0]: ${ }^{1}$ In the information dynamics, m is called the degree of degeneracy [4].

[^1]: ${ }^{2}$ For the universal algebra, the reader is referred to [2]

