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Abstract– We improve on the Bresson-Stern-Szydlo threshold ring signature scheme which
uses Shamir secret sharing scheme [6] by showing that the security can be proved under a strictly
weaker assumption, that $1\mathrm{S}$ the random oracle model rather than the ideal cipher model. Then
$\mathrm{W}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{s}\mathrm{m}\mathrm{a}1\mathrm{f}_{\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}}^{\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}}$

$.(\begin{array}{ll}n -t \mathrm{O}\end{array})$

threshold ring signature scheme [2], which is infeasible when $t$ is small compared with $n$ . In

use
$\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$

,
$\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{d}^{\mathrm{i}\mathrm{f}\mathrm{y}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{a}}\mathrm{W}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{f}\mathrm{f}^{\mathrm{d}\mathrm{o}\mathrm{o}\mathrm{r}}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{a}\mathrm{d}fai\mathrm{o}^{\mathrm{n}\mathrm{e}};p\mathrm{a}\mathrm{a}\mathrm{y}\mathrm{o}\mathrm{p}^{\mathrm{e}}.\mathrm{r}\mathrm{m}\mathrm{u}^{\mathrm{t}\mathrm{a}}\mathrm{S}\mathrm{t}\mathrm{F}\mathrm{H}\mathrm{e}\mathrm{i}\mathrm{n}^{\mathrm{t}}\mathrm{S}\mathrm{h}_{\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{a}\mathrm{b}1\mathrm{s}\mathrm{i}}^{\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}}\mathrm{y}\mathrm{s}\mathrm{g}\mathrm{n}^{\mathrm{a}}\mathrm{u}\mathrm{t}\mathrm{u}$ $\mathrm{r}_{\mathrm{n}}^{\mathrm{S}}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{s}\mathrm{a}$;

oracle model.
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1 Introduction
Anonymity is required to ensure that information

about the user is not revealed in some multi-user
cryptographic applications. The notion of group
signature was introduced by Chaum and van Hei-
jst [3], allows a registered member of a predefined
group to produce anonymous signatures on behalf
of the group. However, this anonymity can be re-
voked by an authority if necessary. The distinct
but related concept of ring signature has been for-
malized by Rivest, Shamir, and Tauman [5]. This
concept is of particular interest when the members
do not agree to cooperate since the scheme requires
neither a group manager, nor a setup procedure,
nor the action of a non-signing member.

A ring signature specifies a set of possible signers
and a proof that is intended to convince any verifier
that the author of the signature belongs to this set,
while hiding her identity. The scheme is said to
be signer ambiguous in the sense that the verifier
cannot tell which user in this set actually produces
the signature.

Assume that in order to create a certain signa-
ture at least $t$ out of the $n$ parties need to combine
their knowledge. Co mbining the shares must not
reveal the actual secret key. The correctness of the
signature would be verifiable using the public keys.
Any $t$ out of the $n$ parties can perform some cryp
tographic operation jointly, whereas it is infeasible
for at most $t-1$ parties to do so.

Recently, Bresson, Stern, and Szydlo [2] and Kuwakado
and Tanaka [4] independently proposed similar schemes
which use Shamir secret sharing scheme [6] for thresh-
old ring signature, which is provably secure in the
ideal cipher model. While the original scheme that
proposed by Rivest, Shamir, and Tauman [5] ge
ometrically makes a ring of individual signatures,
both schemes make a curve of them.

In this paper, we improve on the Bresson-Stern-
Szydlo scheme by showing that it holds under a
strictly weaker assumption, that is the random or-
acle model rather than the ideal cipher model.

Bresson, Stern, and Szydlo [2] also proposed an
efficient scheme for threshold ring signature, which
is provably secure in the random oracle model. In
particular, their construction is very efficient when
threshold $t$ is small. However, it is very inefficient
when $t$ is $\omega(\log n)$ , and is infeasible when $t>n/2$
since the anonymity property does not hold in this
case. In their scheme, there is the solution that
the verifier adds the dummy members to the $n$ ring
members in a setup procedure in order to $t<$ n/2,
however, this solution losses the property of ring
signature that has no setup procedure.

Consider that a majority of members in some
section of a company wishes to claim something for
a director of the company. The previous scheme
does not work for this simple case.

In this paper, we also propose a solution for this
case, i.e., a threshold ring signature scheme which
is efficient when threshold $t$ is large compared with
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$n$ , i.e. $t=n-k$ ( $k$ is small compared with $n$ ). Our We denote by $\ell,\ell_{b}$ , $\ell_{0}$ three security parameters.
scheme has a kind of dual structure of the Bresson- We consider a hash function 7{ that maps arbi-
Stern-Szydlo threshold ring signature scheme. They trary strings on $\mathrm{A}_{6}$ -bit strings. We assume that
used a structure of sO-called super-ring, which has each user $P_{i}$ uses a regular signature scheme built
standard l-Out-Of-n ring signatures as nodes. In on a trapdoor one-way permutation $f_{i}$ on $\mathbb{Z}_{n}^{*}$

: :
our scheme, we use a set of ring signatures as a $f_{i}(x)=x^{e_{i}}$ mod $n_{i}$ where $|n_{i}|$ $=l_{b}<\ell$ .
$(n-t)-\mathrm{o}\mathrm{u}\mathrm{t}- \mathrm{o}\mathrm{f}- n$ signature. We still employ a simple
structure of ring (not super-ring), and modify the
trap door one-way permutations for it. $g_{i}(x)=\{$

$q_{i}n_{i}+$ fi(x) if $(q_{i}+1)n_{\dot{l}}\leq 2^{\ell}$

$x$ otherwise (1)

2 Preliminaries where $x=q_{i}n_{i}+r_{\dot{l}}$ , and $0\leq r_{i}<n_{i}$ .
In this paper, we follow the formalization pro Generating a ring signature

posed by Rivest, Shamir, and Tauman [5]. They
proposed the notion of ring signature, which allows Given the message $m$ to be signed, her secret key
a member of an $\mathrm{a}\mathrm{d}$-hoc collection of users $S$ to prove $SK_{s}$ , and the sequence of public keys $PK_{1}$ , $PK_{2}$ , $\ldots$ , $PK_{r}$

that a message is authenticated by a member of $S$ of all the ring members, the signer computes a ring
without revealing which member actually produced signature as follows.
the signature.

We $\mathrm{a}\mathrm{s}\mathrm{s}$ ume that each user has received a public 1. Choose a random seed: The signer picks

key $PK_{k}$ , for which the corresponding secret key is a random seed $\sigma$ in $\{0, 1\}^{l_{b}},\mathrm{a}\mathrm{n}\mathrm{d}$ computes
denoted by $SK_{k}$ . A ring signature scheme consists

$v_{\epsilon+1}=H(m, \sigma)$ .
of the following algorithms.. Ring-sign: A probabilistic algorithm out- 2. Pidc random $x_{i}$ ’s: The signer picks ran-

puts a ring signature $\sigma$ for the message $m$ , dom $x_{i}$ for all the other ring members $1\leq$

with input a message $m$ , the public keys $PK_{1}$ , . . . ’
$PK_{r}$

$i\leq$ r, $i\neq$ s uniformly and independently

of the $r$ ring members, together with the se- from $\{0, 1\}^{\ell_{b}}$ , and computes for $i=s+1$ , $s$ f-
cret key $SK_{s}$ of a signer. 2, . . . ’ $n$ , 1, 2, . . . ’

$s$ $-1,$. Ring-verify: A deterministic algorithm out- $v_{\mathrm{i}+1}=H(m,v_{i}\oplus g_{\dot{l}}(x_{i}))$ .
puts either “ACCEPT” or “REJECT” with input where
$(m, \sigma)$ (where a includes the public key of all
the possible signers).

$g_{i}(x)=\{$

A ring signature scheme must satisfy the cor-

$q_{i}n_{i}+f_{:}(r:)$ if $(q_{i}+1)n_{i}\leq 2^{\ell}$

$x$ otherwise

rectness (i.e. a correct ring signature should be ac- with $x=q_{i}n:+r$: and $0\leq r_{i}<n_{i}$ .
cepted as valid with overwhelming probability) and 3. Solve for $x_{s}$ : The signer solves the follow-
unforgeability (i.e. it must be infeasible for any ing equation for $x_{s}$ by using her knowledge of
non-ring member to generate a valid ring signa- trap door permutation:
ture, except with negligible probability). We also
require anonymity that nobody should be able to $\sigma=v_{\epsilon}$ $\oplus$ $g_{s}(x_{s})$ .
guess the actual signer’s identity with probability
greater than $1/n$ $+\epsilon$ , where $n$ is the number of the 4. Output the signature: The signer chooses
ring members, and $\epsilon$ is negligible. at random an index $i_{0}\in\{1,2, \ldots, r\}$ , then

the signature on the message $m$ is defined as
2.1 Ring Signature Schemes by Bresson, Stern, the $(2r12)$-tuple:

and Szydlo [2]
Bresson, Stern, and Szydlo proposed a modifi- $(PK_{1}, PK_{2}, \ldots, PK_{r};i0;v:_{0}; x_{1},x_{2}, \ldots, x_{\mathrm{r}})$ .

cation of the original Rivest-Shamir-Tauman ring
signature scheme. In this section, we briefly re- $\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{i}\Psi \mathrm{i}\mathrm{n}\mathrm{g}$ a ring signature
view this modification proposed by Bresson, Stern,
and Szydlo [2], based on the random oracle model, A verifier can verify an alleged signature

while the original Rivest-Shamir-Tauman scheme
$\mathrm{P}\mathrm{K}\mathrm{k},$

$\mathrm{P}\mathrm{K}\mathrm{k}$ , $\ldots$ , $PK_{r};i_{0j}<\mathit{1}_{i_{0}}$ ; $x_{1},$ $x_{2}$ , $\ldots$ , $x_{r}$ )
uses the ideal cipher model.

trap-door permutation:

on the message $m$ as follows.
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1. Apply the trapdoor permutations: For 2.3 The Previous Threshold Ring Signature
$i=i_{0}+1$ , $i_{0}+2,$ $\ldots$ , $n\mathrm{J}$ , 2, $\ldots$ , $i_{0}-$ 1, the Schemes
verifier computes 2.3.1 The Scheme using Secret Sharing by

Bresson, Stern, and Szydlo [2]
$v_{i}=H(m, v_{i-1} \% g_{i-1}(x_{i-1}))$ .

In this paper, we improve on the Bresson-Stern-
Szydlo threshold ring signature scheme which uses2. Verify the equation: The verifier checks Shamir secret sharing [6] by showing that it holdsthat the $v_{\mathrm{i}}$ ’s satisfy the equation: under a strictly weaker assumption, that is the ran-

$v_{i_{0}}=$ ?t $(m, v_{i_{\mathrm{O}}-1}\oplus gi_{\mathrm{O}}-1(x_{i_{\mathrm{O}}-1}))$ . dom oracle model rather than the ideal cipher model.
Here, we briefly review the Bresson-Stern-Szydlo

If this equation is satisfied, the verifier out- threshold ring signature scheme using secret shar-
puts “ACCEPT”, otherwise “REJECT”. $\mathrm{i}\mathrm{n}\mathrm{g}$. Their idea is to use Shamir secret sharing

scheme [6] to perform a threshold proof. In such
2.2 Formulation of Threshold Ring Signa- a proof, the “challenge” is shared in order to prove

ture knowledge of a minimum number of secrets. The
In [2], Bresson, Stern, and Szydlo introduced the challenge to share depends on the group on behalf

definition and the security requirements for thresh- of which the signature is produced.
old ring signature. Here, we briefly review them: Let $m$ be a message, and $t$ be the number of

A t-Out-Of-n threshold ring signature scheme con- sign-members. For simplicity, we index the sign-
sists of the following algorithms: members with numbers 1, . . . ’

$t$ . We denote $P_{1}$ , . . . , $P_{n}$

the public keys of all ring members. Here, we as-. T-ring-sign: A probabilistic algorithm out- sume that the existence of public collision-resistant
puts a t-Out-Of-n threshold ring signature $\sigma$ hash functions $?t$ which is mapping $\{0, 1\}^{*}$ to $\{0, 1\}^{\ell}$

on the message $m$ (where $\sigma$ includes the value and computed by random oracle. We consider an
of $t$ as well as the $n$ public keys of all ring encryption scheme $E$ using $\ell_{0}$-bit length keys as
members), with input a message $m$ , the pub well as an additional parameter $i\in$ $[1, n]$ . We pre
lic keys $PK_{1}$ , . . . , $PK_{n}$ of the $n$ ring members, fer to use the notation $E_{k,i}(\cdot)$ .
together with the $t$ secret keys $\mathrm{S}\mathrm{K}_{i_{1}}$ , . . . , SKit
of $t$ signers. Signing algorithm.. T-ring-verify: A deterministic algorithm out- The signature algorithm performs the following steps:
puts either “ACCEPT” or “REJECT” with input
$(m, \sigma)$ . . Compute the symmetric key for $E$ : The

signer computes $k=H$(m).
The adversary $A$ is given the public keys $PK_{1}$ , . . . , $PK_{n}$

of the $n$ ring members, and can access to the hash . Compute value at origin: The signer com-
function $H$ . Also, $A$ is given access to a signing ora- put $\mathrm{s}$ $v=H(P_{1}$ , . . . , $P_{n})$ .
$\mathrm{c}\mathrm{l}\mathrm{e}$. We define that $t$-forger against a threshold ring . Choose random seeds: For each $i=t+$
signature is a probabilistic polynomial-time Turing 1, . . . , $n$ , the signer chooses $x_{i}\in\{0,1\}^{\ell}$ and
machine $A$, that can sign a message on behalf of $t$ sets $y_{\mathrm{i}}$ $=g_{i}(x_{i})$ .
users, with up to $t-1$ corrupted users, under the
adaptive chosen message attack. $\cdot$ Compute a sharing polynomial: The signer

computes a polynomial $f$ over $GF(2^{\ell})\mathrm{s}.\mathrm{t}$.
Definition 1 We say a t-Out-Of-n threshold ring $\deg(f)=$

.
$n-t$, $/(0)=v$ and for each $i=$

signature scheme is t-CMA-secure if no $t$ -forger $A$ 1, . . . , $n$ : $f(i)=E_{k,:}(y_{\dot{c}})$ .
can succeed to forge a signature with non-negligible
probability. . Solve the remaining equations: For each

$i=1$ , . .. ’
$t$ , the signer computes

We require the signature to have anonymity (i.e. nO-

body should be able to guess the actual signer’s $x_{i}=g^{-1}(E_{k,i}^{-1}(f(i)))$ .
identity) and unforgeability (i.e. the scheme is t-
CMA-secure). $\cdot$ Output the signature:

$(m,P_{1}, \ldots,P_{n},v,x_{1}, \ldots,x_{n},f)$ .

Verification algorithm.
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On receiving atuple $(m, P_{1}, \ldots, P_{n}, v, x_{1}, \ldots, x_{n}, f)$ , $I$ . It is clear that defining a partition in $t$ sub-
the verifying algorithm performs the following steps: groups for each member of an $(n, t)$ -family makes

an $(n, t)$-complete partitioning system, In [1], Alon,. Recover the symmetric key: The verifier Yuster, and Zwick has been proved that there exists
computes $.k$ $=H$ (m). an $(n, t)$ -family of perfect hash function which has. Recover $ji$ ’s: For each $i=1$ , $\ldots$ , $n$ , the ver- size of $2^{O(t)}\log$n. Moreover each of these functions
ifier computes $y_{i}=g_{\mathrm{i}}(x_{i})$ . is efficiently computable.

Here, we briefly describe the idea of the threshold. Verify the equations: The verifier com- ring signature scheme proposed by Bresson, Stern,
putes $/(0)=$ (Pi, $\ldots$ , 7 $n$ ) and for each $i=$ and Szydlo [2]. Consider a ring of $n$ members, and
1, . . . , $n$ , checks the equations: among them $t$ users who want to sign for a mes-

sage. Let $I=\{i_{1}$ , .. . ’
$i_{t}\}$ a set of $t$ indices in $[1, n]$

$f(i)=E_{k,i}(y_{i})$ . such that $P_{i_{1}}$ , . . . , $P_{i_{\mathrm{t}}}$ are signers. The idea is to
split the group into $t$ disjoint sub-groups regard to

If the signature is correct, the verifier accepts a fair partition for $I$ , and to show that each of these
it as a t-Out-Of-n signature, where $t=n-$ sub groups contains one signer by producing sub
$\deg$ $(f)$ . rings. However doing so may compromise perfect

2.3.2 The Scheme using Fair Partitions by anonymity since such split restricts the anonymity

Bresson, Stern, and Szydlo [2] of each user to a sub ring To ensure anonymity,
their scheme needs to split the group regard to anIn this paper, we propose an $(n-t)- \mathrm{o}\mathrm{u}\mathrm{t}-\mathrm{o}\mathrm{f}- n$ ring
$(n, t)$ -complete partitioning system for which any $t$

signature scheme, where $t$ is small compared with users are in different sub-rings. Then all of these
$n$ . In our scheme, we use a kind of dual structure of splits are used as nodes in a super-ring. The super-
the Bresson-Stern-Szydlo threshold ring signature ring proves that at least one split has been solved.scheme, and employ a combinatorial notion called The size of the signature in this scheme is $O(\ell 2^{t}n$

fair partition that is used in the Bresson-Stern- log $n$), the cost is $t$ inversions of the signers’ one-Szydlo threshold ring signature scheme. Here, we way functions and $O(2^{t}n\log n)$ computations in thebriefly review its definition and $(n, t)$-complete par- easy direction.titioning systems introduced in [2] (see also [1]). It should be pointed out that when $t>n/2,$Let $\pi=$ $(\pi^{1}, \cdots, \pi^{t})$ a partition of $[1, n]$ in $t$ sub there exist some partitions which consist only onesets and $I=\{\mathrm{i}\mathrm{i}, \cdots, i_{t}\}$ a set of $t$ indices in $[1, n]$ . element in a fair partition for $I$ . Therefore, thisIf all integers in I belongs to $t$ different subsets, we scheme cannot be used for such $t$ since the anonymitysay that $\pi$ is a fair partition for $I$. property does not hold.

Definition 2 Let $\pi=$ $(\pi^{1}, \cdot. , \mathrm{r}")$ a partition of
$[1, n]$ in $t$ subsets and $I=\{\mathrm{i}\mathrm{i}, \cdots, i_{t}\}$ a set of $t$

3 Our scheme using Secret Sharing
indices in $[1, n]$ . We say that $\pi$ is a fair partition In this section, we explain how to significantly
for I if for all $j\in$ $[1, t]$ , improve the scheme using secret sharing by Bres-

son, Stern and Szydlo [2] by removing the assump
$ $(I\cap\pi^{j})=1$ . tion of an ideal-cipher. Here we use the random

permutation oracle over {0, 1}’ which assumes thatHere, f-(A) denotes the number of elements of $A$ . all the parties have access to oracles that provides

To ensure anonymity, we need to provide a set $\Pi$ truly random answers to new queries for $E$ , $E^{-1}$ ,
of partitions such that there exists a fair partition $F$ , and $F^{-1}$ . Here, we assume that the existence of
for any set I of $t$ indices in $[1, n]$ . public collision-resistant hash functions $H$ and $H’$

where $H$ which computed by random oracle is map
Definition 3 Let $t<n.$ We say that a set of $\mathrm{r}\mathrm{i}$ ring $\{0, 1\}^{*}$ to $\{0, 1\}^{l}$ a $\mathrm{d}H’$ is mapping $\{0, 1\}^{*}$ to
of partitions of $[1, n]$ is an $(n, t)$ -complete parties $\{0, 1\}^{\ell}$ .
tioning system if for any set I of cardinality $t$ , Signing algorithm.
there exists a fair partition in $\Pi$ for $I$ .

The signature algorithm performs the following steps:
A perfect hash function for a set I is a mapping . Compute value at origin: The signer com-

$h$ : $[1, n]arrow[1, t]$ which is 1-1 on $I$ . We say $H$ is putes
an $(n, t)$ -family of perfect hash functions if for any $k=\}\mathrm{i}(m)$ , and
I of size $t$ , there exists $h\in H$ which is perfect on $v=H’(P_{1}, \ldots , P_{n})$ .
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. Choose random seeds: For each $i=t$ $+$ 4 Our Scheme using Fair Partitions
1, . . . ’

$n$ , the signer chooses $x_{i}\in\{0,1\}^{l}$ and
sets $y_{i}=$ g%(xi). In this section, we propose an efficient $(n-t)-$

out-Of-n threshold ring signature scheme where the. Compute a sharing polynomial: The signer number of non-signer $t$ is small compared with the
computes a polynomial $f$ over $GF(2^{\ell})\mathrm{s}.\mathrm{t}$ . number of ring members $n$ . Let $\Pi_{n}^{t+1}=\{\pi_{1}, \ldots , \pi_{p}\}$

$\deg(f)=n-t$ , $f(0)$ $=v$ and for each $i=$ $(p=2^{t+1}\log n)$ to be an $(n, tf 1)$Inc0mplete parti-
1, $\ldots$ , $n$ : $f(i)=F(E(y_{i})\oplus k)$ . tioning system.

We describe formally our $(n-t)- \mathrm{o}\mathrm{u}\mathrm{t}- \mathrm{o}\mathrm{f}- n$ ring. Solve the remaining equations: For each signature scheme where $t$ is small.
$i=1$ , $\ldots$ , $t$ , the signer computes We denote by $\ell$ a security parameter. We denote

an $(n, t+1)$Inc0mplete partitioning system $\Pi_{n}^{t+1}=$

$x_{i}=g^{-1}$ $(E^{-1}(F^{-1}(f(i))\oplus k))$ .
$\{\pi_{1}, \ldots, \pi_{p}\}$ where $p=2^{t+1}\log$n, and each parti-
tion $\pi_{i}=$ $(\pi_{i}^{1}, \ldots, \pi_{i}^{t+1})$ , where each $\pi_{i}^{j}$ is a set of. Output the signature: indices. Let { $P_{1}$ , $\ldots$ , Pn} be a set of $n$ ring mem-
bers for a message $m$ .

$(m, P_{1}, \ldots, P_{n}, v, x_{1}, \ldots, x_{n}, f)$ . For each $i,$ :), we denote by $q_{i}^{j}$ the number of ele
se ts of $\mathrm{r}\mathrm{j}$ , and by $Q$ the maximum number of $q_{i}^{j}$ .Verification algorithm.
Let $\pi_{1}^{j}$. $=\{p_{i}^{j,1}$ , . . . , $p_{i}^{j,q_{\mathrm{i}}^{\dot{f}}}$

$\}$ .
On receiving a tuple $(m, P_{1}, \ldots, P_{n}, v, x_{1}, \ldots, x_{n}, f)$ , We assume that for all integer $n$ and $t\leq n,$ an
the verifying algorithm performs the following steps: $(n, t+1)$Inc0mplete partitioning system is publicly

available, and that each user $P_{i}$ uses a regular sig-. Recover value at origin: The verifier com- nature scheme built on atrapdoor one-way permu-
putes $k=H$(m). tation $g_{\dot{1}}$ over $\{0, 1\}^{\ell}$ . We say $\pi_{i}^{j}$ is legal if for all. Recover $y_{i}$ ’s: For each $\mathrm{i}$ $=1$ , $\ldots$ , $n$ , the ver- $k\in\pi_{i}^{j}$ , $P_{k}$ is a signer.
ifier computes $y_{i}=$ 9i{xi). We consider that a hash function $\mathcal{H}$ that maps

$(Q\mathrm{x}l)$-bit strings. For each partition $\pi_{\dot{l}}^{j}$ , we define. Verify the equations: The verifier com- a trapdoor one-way permutation $G_{\dot{\iota}}^{j}$ :
putes $/(0)=$ (Pi, $\ldots$ , $Pn$ ) and for each $i=$ If $q_{i}^{i}=Q,$ then let $s_{\dot{l}}j=\pi_{\dot{\iota}}j$ , else let $5^{j}.\cdot=$

$1$ , . . . , $n$ , checks the equations:
$\{\pi_{\dot{l}}^{j}\cup\{p_{\dot{l}}^{j,q\mathrm{S}+1},p_{i}^{j,q^{\mathrm{j}}+2}.\cdot, \ldots, ;).,Q\}\}$ where $p_{i}^{j,q_{\iota}^{\mathrm{j}}+1}=$

$f(i)=F(E(y_{i})\oplus k)$ . $p_{i}^{j,q}$e $+2$
$=$ . . . $=p_{i}^{j,Q}=p_{*}^{j,q^{\mathrm{j}}}.\cdot$

. .

If the signature is correct, the verifier accepts
it as a i-Out-Of-n signature, where $t=n-$
$\deg(f)$ .

3.1 Security Analysis

We prove that the above sche me has the required
property of threshold ring signature in random or-
acle model. The proofs are in the full version of
this paper.

3.2 Efficiency
We discuss the efficiency of our scheme. Let $n$ to

be the number of members and $t$ to be the number
of sign-members. The size of threshold ring signa-
ture is $(2n-t+2)\mathrm{x}\ell$-bit. Here, the public key $P_{\mathrm{i}}$

is ignored because it is public. The time complex-
ity of signing is $t$ inversions of the $g$ ’s functions,
$n-t$ computations in the easy direction, and $n$

polynomial evaluations. Verifying such a signature
requires $n$ computations of $g$ ’s and $n$ polynomial
evaluations.

$G_{\dot{l}}^{J}(x_{1}, \ldots,x_{Q})=g_{p_{\mathrm{i}}^{j,1}}(x_{1})||\cdots||g_{p}y^{q}$, $(x_{Q})$ .
Thus, each $G_{\dot{\iota}}^{J}$ has a $Q$ tuple of $\ell$-bit strings as in-
put and outputs a $(\mathrm{Q}\mathrm{x}\ell)$ -bit string, since each
$g_{\mathrm{p}^{j,k}}\dot{.}$ $(k=1,2, . . . , Q)$ is a trapdoor one-way per-
mutation of $P_{p^{\mathrm{j}}}.\cdot$ ’

$k$ over $\{0, 1\}^{\ell}$ . The trapdoor of $G_{\dot{\iota}}^{j}$

is a set of all $g_{p_{}^{f}}$ , $k$ ’s trapdoors. It is clearly that $G^{j}.\cdot$

is a trapdoor one way permutation since if one can
invert $G_{i}^{j}$ , then he do invert all $\dot{d}_{\dot{1}}^{k}’$ ’s. For exam-
ple, we assume that each $g_{p}$i , $k$ is an extended RSA
permutation (1) in Section 2.1, and let $(n_{p_{i}^{\mathrm{j}.k}}, e_{p\mathit{3}},k)$

to be the public key of $P_{p^{j,k}}.\cdot$ and $d_{\mathrm{p}^{\dot{g},k}}$. to be the
secret key of $P_{p^{j,k}}\dot{.}$ . Then, the trapdoor of $G_{1}^{j}$. is
$(d_{d\prime}.\cdot 1, ..., d_{p^{\mathrm{j},Q}}.\cdot)$ .
Signing algorithm.

The signer executes the following steps for each $\pi$:
$(i=1,2, \ldots,p)$ . Here, we assume that $s_{i}^{j}$ is legal.
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. Choose random seeds: The signer chooses 4.2 Efficiency
random seeds $s^{1}$ , . . . ’

$sQ$ $\in$ $\{0,1\}^{\ell}$ randomly We discuss the efficiency of our scheme. The
and computes size of an $(n-t)- \mathrm{o}\mathrm{u}\mathrm{t}- \mathrm{o}\mathrm{f}- n$ threshold ring signa-

$v_{j+1}=\mathcal{H}(m, s^{1}, . . . , sQ)$ . ture is $2^{t}\log n\mathrm{x}\{2((t+1)\mathrm{x}Q\mathrm{x}\ell)+l! \mathrm{x}Q\}=$

$O(\ell 2^{t}n\log n)$ . The time complexity of singing is
$Q\cross 2^{t}\log n$ inversions of the $p$ ’s functions and $Q\mathrm{x}$. Pick random $x$ ’s: For each $k=j+1$ , . . . ’

$t+$
$(t+1)\mathrm{x}2^{t}\log n=\mathcal{O}(2^{t}n\log n)$ computations in the

1, 1, 2, . . . ’ $j-1$ , the signer chooses $x_{k}^{1}$ , $\ldots$ , $x_{k}^{Q}\in$

easy direction. Our scheme is clearly more efficient
$\{0, 1\}^{\ell}$ at random, and computes than generic solution such that making ring signa

$v_{k+1}=$ $11(m, v_{k}\oplus G_{i}^{k}(x_{k}^{1}, \ldots, x_{k}^{Q}))$ . tures for all subgroups cardinality $n-t+1$ since
this would lead to $(\begin{array}{l}nt-1\end{array})=\mathcal{O}(n^{t-1})$ size.. Invert the legal $S_{i}^{J}$
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4.1 Security Analysis
We prove that the above scheme has the required

property of threshold ring signature. The proofs
are in the full version of this paper.


