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Abstract
A graph $G$ is 1-planar if it can be embedded in the plane in such a way that each edge

crosses at most one other edge. Borodin showed that 1-planar graphs are 6-colorable, but his
proof does not lead to an efficient algorithm. This paper presents a linear-time algorithm for
7-coloring 1-planar graphs. The main difficulty in the design of our algorithm comes ffom the
fact that the class of 1-planar graphs is not closed under the operation of edge contraction. This
difficulty is overco me by a structure lemma that may find useful in other problems on l-planar
graphs.

1 Introduction
The problem of coloring the vertices of a graph using few colors has been a central problem in

graph theory. It has also been intensively studied in algorithm theory due to its applications in
many practical fields such as scheduling, resource allocation, and VLSI design. Of special interest
is the case where the graph is planar. Appel and Haken $[1, 2]$ showed that every planar graph
is 4-colorable, but their proof does not lead to an efficient algorithm. Since then, a number of
linear-time algorithms for 5-coloring planar graphs have appeared [8, 11, 10, 15, 9].

An interesting generalization of planar graphs is the class of 1-planar graphs. The problem of
coloring the vertices of a 1-planar graph using few colors has also attracted very much attention
[13, 12, 3, 4, 5]. Indeed, the problem has been formulated in another different way: It is equivalent
to the problem of coloring the vertices of a plane graph so that the bouixdary vertices of every
face of size at most 4 receive different colors [12]. Ringel [13] proved that every 1-planar graph is
7-colorable and conjectured that every 1-planar graph is 6-colorable. Ringel [13] and Archdeacon [3]
confirmed the conjecture for two special cases. Borodin [4] settled the conjecture in the affirmative
with a lengthy proof. He [5] later came up with a relatively shorter proof. However, his proof does
not lead to an efficient algorithm for 6-coloring 1-planar graphs.

Chen, Grigni, and Papadimitriou [6] studied a modified notion of planarity, in which two nations
of a (political) map are considered adjacent when they share any point of their boundaries (not
necessarily an edge, as planarity requires). Such adjacencies define a map graph (see [7] for a
comprehensive survey of known results on map graphs). The map graph is called a $k$ -map graph if
no more than $k$ nations on the map meet at a point. As observed in [6], the adjacency graph of the
United States is nonplanar but is a 4-map graph $\vee$ Obviously, every 4-map graph is planar. In
Section 4, we will observe that every 1-planar graph can be modified to a 4-map graph by adding
some edges (see Corollary 4.3 below). By these facts, the problem of coloring 1-planar graphs is
essentially equivalent to the problem of coloring 4-map graphs.

Recall that in the case of planar graphs, an efficient 4-coloring algorithm seems to be difficult
to design and hence it is of interest to look for an efficient 5-coloring algorithm. Similarly, in the
case of 1-planar graphs, an efficient 6-coloring algorithm seems to be difficult to design and hence
it is of interest to look for an efficient 7-coloring algorithm. In this paper, we present the first
linear-time algorithm for 7-coloring 1-planar graphs. Our algorithm is much more complicated
than all 5-coloring algorithms for planar graphs. The main reason is that unlike planar graphs,
the class of 1-planar graphs is not closed under the operation of edge contraction (recall that
contracting an edge $\{u,v\}$ in a graph $G$ is made by replacing $u$ and $v$ by a single new vertex $z$

and adding an edge between $z$ and each original neighbor of tz $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ $v$ ). It is worth noting that

Agraph $G$ is 1-planar if it can be embedded in the plane in such a way that each edge
crosses at most one other edge. Borodin showed that 1-planar graphs are 6-colorable, but his
proof does not lead to an efficient algorithm. This paper presents a linear-time algorithm for
7-coloring1-planar graphs. The main difficulty in the design of our algorithm comes&Om the
fact that the class of 1-planar graphs is not closed under the operation of edge contraction. This
difficulty is overcome by astructure lemma that may find useful in other problems on l-planar
graphs.
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graph theory. It has also been intensively studied in algorithm theory due to its applications in
many practical fields such as scheduling, resource allocation, and VLSI design. Of special interest
is the case where the graph is planar. Appel and Haken $[1, 2]$ showed that every planar graph
is 4-colorable, but their proof does not lead to an efficient algorithm. Since then, anumber of
linear-time algorithms for 5-coloring planar graphs have appeared [8, 11, 10, 15, 9].

An interesting generalization of planar graphs is the class of 1-planar graphs. The problem of
coloring the vertices of a1-planar graph using few colors has also attracted very much attention
[13, 12, 3, 4, 5]. Indeed, the problem has been formulated in another different way: It is equivalent
to the problem of coloring the vertices of a plane graph so that the boundary vertices of every
face of size at most 4receive different colors [12]. Ringel [13] proved that every 1-planar graph is
7-colorable md conjectured that every 1-planar graph is 6-colorable. Ringel [13] and Archdeacon [3]
confirmed the conjecture for two special cases. Borodin [4] settled the conjecture in the affirmative
with a lengthy proofi He [5] later came up with a relatively shorter proofi However, his proof does
not lead to an efficient algorithm for 6-coloring1-planar graphs.

Chen, Grigni, and Papadimitriou [6] studied a modified notion of planarity, in which two nations
of a(political) map are considered adjacent when they share any point of their boundaries (not
necessarily an edge, as planarity requires). Such adjacencies define a map graph (see [7] for a
comprehensive survey of known results on map graphs). The map graph is called a $k$ map gmph if
no more than $k$ nations on the map meet at apoint. As observed in [6], the adjacency graph of the
United States is nonplanar but is a4-map graph $\vee$ Obviously, every 4-map graph is 1-planar. In
Section 4, we will observe that every 1-planar graph can be modified to a4-map graph by adding
some edges (see Corollary 4.3 below). By these facts, the problem of coloring 1-planar graphs is
essentially equivalent to the problem of coloring 4-map graphs.

Recall that in the case of planar graphs, an efficient 4-coloring algorithm seems to be difficult
to design and hence it is of interest to look for an efficient 5-coloring algorithm. Similarly, in the
case of 1-planar graphs, an efficient 6-coloring algorithm seems to be difficult to design and hence
it is of interest to look for an efficient 7-coloring algorithm. In this paper, we present the first
linear-time algorithm for 7-coloring1-planar graphs. Our algorithm is much more complicated
than all 5-coloring algorithms for planar graphs. The main reason is that unlike planar graphs,
the class of 1-planar graphs is not closed under the operation of edge contmction (recall that
contracting an edge $\{u,v\}$ in agraph $G$ is made by replacing $u$ and $v$ by a single new vertex $z$

and adding an edge between $z$ and each original neighbor of $u\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ $v$ ). It is worth noting that
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many coloring algorithms (e.g., those for planar graphs) are crucially based on the property that
the class of their input graphs is closed under the operation of edge contraction. In the case of
1-planar graphs, this property is not available and it becomes difficult to find suitable vertices to
merge so that the resulting graph is still 1-planar. We overcome this difficulty with a structure
lemma which essentially says that every 1-planar graph either has a constant fraction of vertices
of degree at most 7 or has a constant fraction of vertices each of which is of degree 8 and has at
least 5 neighbors of degree at most 8. We believe that this lemma will find useful in the design of
algorithms for other problems on 1-planar graphs.

2 Preliminaries
Throughout this paper, a graph is always simple (i.e., has neither multiple edges nor self-loops)

unless stated explicitly otherwise.
Let $G=(V,E)$ be a graph. The neighborhood of a vertex $v$ in $G$, denoted $N_{G}(v)$ , is the

set of vertices in $G$ adjacent to $v$ ;do(v) $=|Nq(U)|$ is the degree of $v$ in $G$. For $U\subseteq V,$ let
$Nc(U)= \bigcup_{u\in U}N_{G}(u)$ . For $U\subseteq V,$ the subgraph of $G$ induced by $U$ is the graph $(U, F)$ with
$F=\{\{\mathrm{u}, \in E:u,v \in U\}$ and is denoted by $G[U]$ . For $U\subseteq V,$ we denote by $G-U$ the subgraph
induced by $V-U.$ If $u\in V,$ we write $G-u$ instead of $G$ - $\{u\}$ . A cut set of $G$ is a subset $U$ of $V$

such that $G-U$ is disconnected. A $k$-cut set is a cut set consisting of $k$ vertices. $G$ is k-connected
if it has at least $k$ vertices but has no $i$-cut set with $i\leq k-1.$ An independent set in $G$ is a set
of pairwise nonadjacent vertices in $G$ . A maximal independent set in $G$ is an independent set in $G$

that is not a proper subset of another independent set in $G$ .
A 1-plane embedding of $G$ is an embedding of $G$ in the plane in such a way that each edge

crosses at most one other edge. $G$ has a 1-plane embedding only when $G$ is a 1-planar graph. An
edge-crossing list of $G$ is a list $L$ of disjoint (unordered) pairs of edges of $G$ such that $G$ has a
1-plane embedding in which the two edges in each pair in $L$ cross while no two other edges of $G$

cross.
For a sequence $\langle u_{1}, \ldots, u_{k}\rangle$ of two or more distinct pairwise nonadjacent vertices in $G$ , merging

$\langle \mathrm{t}\mathrm{j}\mathrm{l}, . .., u_{k}\rangle$ is the operation of modifying $G$ by adding an edge between $u_{k}$ and every vertex in
$\bigcup_{1<:\leq k-1}N_{G}(u:)$ - $N_{G}(u_{k})$ and further removing vertices $u_{1}$ , . . . , $u_{k-1}$ . Note that the sequence is
ordered and u7 is the last vertex in the sequence.

Let $k$ be a natural number. A $k$-coloring of $G$ is a coloring of the vertices of $G$ with at most
$k$ colors such that no two adjacent vertices get the same color. The color classes of a coloring $\mathrm{C}$

of the vertices of $G$ are the sets Vi, $V_{2}$ , $\ldots$ , $V_{k}$ , where $k$ is the number of colors used by $\mathrm{C}$ and $V_{\dot{\iota}}$ ,
$1\leq i\leq k,$ is the set of all vertices with the ith color.

3 Simple Reductions
In this section, we show how to reduce the problem to its 3-connected case. Throughout this

section, $G$ denotes the input 1-planar graph.
Since it is still unknown whether 1-planar graphs can be recognized in polynomial time, we

assume that $G$ is given by its adjacency list together with an edge crossing list $L$ of $G$ . We may
further assume that for each pair $(e, e’)\in L$ , $e$ and $e’$ share no endpoint (otherwise, the pair $(e, \text{\’{e}})$

can be removed from $L$ , and $L$ remains an edge crossing list of $G$ after the removal).
In the initialization step of the algorithm, we augment $G$ as follows: For each pair $(e, e’)\in L,$

each endpoint $u$ of $e$, and each endpoint $v$ of \’e, if $(u,v)$ is not an edge of $G$, then add a new edge
between $u$ and $v$ in $G$ . Obviously, this augmentation can be done in linear time. Moreover, after
the augmentation, it is clear that (1) $G$ remains 1-planar and (2) for each pair $(e, e’)\in L,$ the
endpoints of $e$ and $e$

’ induce a clique of size 4 in $G$.
We may assume that $G$ is connected, since otherwise the problem of 7-coloring $G$ is easily

reduced to the problems of 7-coloring the connected components of $G$. A block of $G$ is a maximal
-connected subgraph of $G$. The following fact is widely known.
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Fact 3.1 Suppose that $G$ is connected but not 2-connected. Let $B$ be the set of all blocks of $G$ .
Let $C$ be the class of all 1-cut sets of G. Consider the bipartite graph $T=(B\cup C, E_{T})$ where $E_{T}$

consists of all edges $\{$ &, $c\}$ such that $b\in B$ , $c\in C,$ and the vertex in $c$ is a vertex in B. Then, $T$ is
a tree.

Corollary 3.2 Suppose that $G$ is 1-planar and connected but not 2-connected. Then, given the
blocks of $G$ and a 7-coloring of each block of $G$, we can compute a 7-coloring of $G$ in linear time.

Next, suppose that $G$ is 2-connected but not 3-connected. Let $U$ be a 2-cut set of $G$ , and $V_{1}$ ,
..., $V_{p}$ be the vertex sets of the connected components of $G-U.$ For $1\leq i\leq p,$ let $G_{i}$ be the
graph $G[V_{i}\cup U]$ if the two vertices in $U$ are adjacent in $G$ , while let $G_{i}$ be the graph obtained ffom
$G[V_{\dot{1}} \cup U]$ by adding an edge between the two vertices in $U$ otherwise. The graphs $G_{1}$ , $G_{2}$ , $\ldots$ , $G_{p}$

are called the augmented components of $G$ induced by $U$ . Obviously, all the augmented components
of $G$ induced by $U$ are also 2-c0nnected.

Lemma 3.3 Suppose that $G$ is 1-planar. Then, each augmented component of $G$ induced by $a$

$\mathit{2}$-cut set $U$ is also 1-planar. Moreover, for each augmented component $G_{i}$ of $G$, we can obtain an
edge-crossing list of $G_{\dot{l}}$ from $L$ by removing all pairs $(e, e’)$ such that $e$ or $e$

’ is not an edge of $G_{:}$ .

Replacing $G$ by the augmented components induced by a 2-cut set is called splitting $G$ . Suppose
$G$ is split, the augmented components are split, and so on, until no more splits are possible. The
graphs constructed in this way are 3-connected and the set of the graphs are called a 2-dec0mp0siti0n
of G. for an example.) Each element of a 2-decomposition of $G$ is called a split component of $G$ . It
is possible for $G$ to have two or more 2-decompositions. A split component of $G$ must be either a
triangle or a 3-connected graph with at least four vertices.

The following fact is widely known [14].

Eact 3.4 Suppose that $G$ is 2-connected but not 3-connected. Let $D$ be a 2-decomposition of $G$ .
Let $C$ be the family of all 2-cut sets of $G$ used to split $G$ into the split components in D. Consider
the bipartite graph $T=(D\cup C,E_{T})$ where $\dot{R}$ consists of all edges $\{$ &, $c\}$ such that $d\in D$ , $c\in C,$

and the two vertices in $c$ are vertices in $d$ . Then, $T$ is a tree.

Corollary 3.5 Suppose that $G$ is 1-planar and connected but not 2-connected. Then, given a 2-
decomposition $D$ and a 7-coloring of each split component in $D$ , we can compute a 7-coloring of $G$

in linear time.

4 The Algorithm for the 3-Connected Case
Throughout this section, $G$ denotes the input 3-connected 1-planar graph and $L$ denotes the

input edge-crossing list of $G$ . By our discussion in Section 3, we may assume that for each pair
$(e, e’)\in L$ , (1) $e$ and $e’$ share no endpoint, (2) the endpoints of $e$ and $e’$ induce a clique $C$ of size 4
in $G$ , and (3) no edge of $C$ other than $e$ and $d$ is contained in a pair in $L$ .

Given $G$ and $L$ , we first construct a graph $H$ as follows. $H$ contains all vertices of $G$ and aU
those edges of $G$ that are contained in no pair in $L$ . Moreover, for each (unordered) pair $\{e, e’\}\in L,$

$H$ contains a new vertex $v_{\mathrm{e},e’}$ , and contains an edge between $v_{e,\mathrm{e}’}$ and each endpoint of $e\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

$e’$ . $H$ does not contain other vertices or edges. Since $L$ is an edg -crossing list of $G$, $H$ is a planar
graph. We then compute a plane embedding of $H$ in linear time. For convenience, we identify $H$

with its plane embedding. Hereafter, for a vertex $v$ of $H$ , we say that two neighbors $u$ and ru of $v$

in $H$ are consecutive if $u$ and $\mathrm{l}\mathrm{j}\mathrm{j}$ appear around $v_{e,e}$’ consecutively (clodcwise or counterclockwise)
in $H$.
Fact 4.1 Let $v_{e,d}$ be a vertex in $H$ but not in G. Suppose that $x$ and $y$ are two consecutive neighbors
of $v_{e,d}$ in $H$ (note that $\{x,y\}$ is an edge in $H$ by our assumptions on $L$). Then, the cycle $C$ form $ed$

by the three edges $\{v_{\mathrm{e},d},x\}$ , $\{x, y\}$ , and $\{y,v_{e,e}’\}$ together is the boundary of some face of $H$ .
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Lemma 4.2 We can modify $H$ in linear time so that $H$ satisfies the following conditions:
1. $H$ has the same vertices as $G$ , and contains all edges of $G$ .
2. For each vertex $v$ of $H$ and for every two consecutive neighbors $u$ and $w$ of $v$ in $H$ , $\{u, w\}$ is

an edge in $H$ and crosses no edge in $H$ .
3. For each pair of edges of $H$ that cross in $H$, the endpoints of the two edges induce a clique of

size 4 in $H$ .

Corollary 4.3 Every 1-planar graph has a supergraph that is a 4-map graph.

Assumption 4.4 $H$ satisfies the conditions in Lemma 4.2.
Corollary 4.5 The following two statements hold:

1. Let $v$ be a vertex in H. Suppose that $u$ is a neighbor of $v$ in $H$ such that edge $\{v, u\}$ crosses
another edge $\{x,y\}$ in H. Then, $\{x, y\}\subseteq N_{H}(v)$ , and $x$ , $u$ , $y$ appear around $v$ consecutively
in $H$ in this order (clockwise or counterclockise).

2. Let $u$ and ru be two consecutive neighbors of $v$ in H. Then, at least one of edges $\{v, u\}$ and
$\{v, w\}$ crosses no edge in $H$ .

4.1 A Structure Lemma
Fix two constants $\alpha$ and $K$ with $1<\alpha<2$ and $K>7+$ 9/(a - 1). Let $v$ be a vertex of $H$. If

$|dH\{v$) $|\leq K,$ we say that $v$ is small; otherwise, we say that $v$ is large. We say that $v$ is reducible if
one of the following holds:

1. $d_{H}(v)\leq 6.$

2. $d_{H}(v)=7$ and $Nh(v)$ contains at most one large vertex.
3. $d_{H}(v)=8$ , $N_{H}(v)$ contains no large vertex, and one of the following holds:

(a) There are at most two vertices $u\in N_{H}(v)$ with $dH\{v)\geq 9$ .
(b) There are exactly three vertices $u$ $\in$ dH{v) with $dH\{v$) $\geq 9$ and there are distinct

vertices $u_{1},u_{2}$ , $u_{3}$ in $N_{H}(v)$ such that $d_{H}(u_{1})\geq 9$ , $\mathrm{d}\mathrm{H}\{\mathrm{v}$ ) $\geq 9$ , $d_{H}(u_{3})\leq 8,$ and { $v$ , W2}
and $\{\mathrm{w}, u_{3}\}$ are edges of $H$ and they cross in $H$ .

Lemma 4.6 Let $R$ be the set of reducible vertices in H. Then, $R$ contains a constant fraction of
vertices of $H$ .

Corollary 4.7 We can compute a set I of reducible vertices of $H$ in linear time such that the
following conditions are satisfied:

1. I contains a constant fraction of vertices of $H$ .
2. For every trno vertices $u$ and $v$ in $I$ , there is no path $P$ betw $oen$ $u$ and $v$ in $H$ such that $P$

has at most three edges and has no large vertex.

4.2 Outline of the Algorithm
We first give an outline of the algorithm. It first computes a set I of reducible vertices of $H$

satisfying the conditions in Corollary 4.7. It then uses I and $H$ to construct a new 1-planar graph
$G’$ in linear time such that the number of vertices in $G$’ is a constant fraction of the number of
vertices in $H$ and a 7-coloring of $H$ can be constructed in linear time from an arbitrarily given
7-coloring of $G’$ . It further recurses on $G’$ to obtain a 7-coloring of $G$’ which is then used to obtain
a 7-coloring of $H$ in linear time. Since each recursion takes linear time and reduces the size of
the graph by a constant fraction, the overall time is linear. The core of the algorithm is in the
construction of Gf.
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4.3 Constructing Graph $G$’ for Recursion
To construct $G’$ , we may simply remove all $v\in I$ with $ds(v)\leq 6$ from $H$ because each 7-

coloring of $H$ - $v$ extends to a 7-coloring of $H$ . Similarly, for each $v\in I$ such that $Nh(v)$ contains a
vertex $u$ with $dn(u)\leq 6$ , we may remove $u$ ffom $H$ . However, these are not enough because I may
contain very few such vertices $v$ . So, we need to do something about those vertices $v\in I$ such that
$7\leq d_{H}(v)\leq 8$ and $Nh(v)$ contains no vertex $u$ with $dff(u)\leq 6$ . We call such vertices $v$ critical
vertices. The idea is to explore the neighborhood structure of critical vertices. First, we need the
following definitions:

Definition 4.1 A vertex $x$ in $H$ is dangerous for a critical vertex $v$ if one of the following holds:. $d_{H}(v)=7$ and $x$ is a large neighbor of $v$ in $H$ .. $d_{H}(v)=8$ , $x\not\in$ Nh(v) $\cup\{v\}$ , and $x$ is adjacent to some vertex $u\in N_{H}(v)$ in $H$ .

Definition 4.2 Let $v$ be a critical vertex with $djj(v)=7$. $A$ mergable pair for $v$ is a pair $(u, w)$

of two nonadjacent neighbors of $v$ in $H$ such that $u$ is small and the graph $G_{1}$ obtained ffom $H-v$
by merging ($\mathrm{u},$

$w\rangle$ is $a$ 1-planar graph.

Definition 4.3 Let $v$ be a critical vertex with $djj(v)=8$ .
1. $A$ mergable triple for $v$ is a set $\{u_{1}, u_{2},u_{3}\}$ of three paimise nonadjacent neighbors of $v$ in

$H$ such that the graph $G_{2}$ obtained from $H-v$ by merging $\langle u_{\mathrm{b}} u_{2}, u_{3}\rangle$ is $a$ 1-planar graph.
2. Ttoo simultaneously mergable pairs for $v$ are tuto pairs $\{\mathrm{v}\},$ $u_{2})$ and $\{\mathrm{v}\},$ $w_{2})$ such that $u_{1}$ , $u_{2}$ ,

$w_{1}$ , and $w_{2}$ are distinct neighbors of $v$ in $H$, neither $\{u_{1}, u_{2}\}$ nor $\{w_{1}, w_{2}\}$ is an edge of $H$,
and the graph $G_{3}$ obtained from $H-v$ by merging $\langle \mathrm{v}" \mathrm{b} \mathrm{J}_{2}\rangle$ and merging $\langle$

$w_{1}$ , $\mathrm{z}_{2})$ is a l-planar
graph.

3. $A$ desired quadruple for $v$ is an ordered list $(\mathrm{u},\mathrm{w}\mathrm{i}, w_{2}, w_{3})$ of four distinct neighbors in $H$

such that. $d_{H}(u)<8,$.$\cdot$ $\mathrm{I}_{w_{1}^{1},w_{2}^{2},w_{3}\}isa}^{w,w]\subseteq N_{H}(}$;?b,$independentand$ set in $H$, and the graph $G_{4}$ obtained from $H-\{v,u\}$ by
merging $\langle w_{1}$ , $w_{2}$ , $\mathrm{w})$ is $a$ 1-planar graph.

4. $A$ favorite quintuple for $v$ is an ordered list $(u, w_{1}, w_{2}, ’ 3, w4)$ of five distinct neighbors of $v$

in $H$ such that. $d_{H}(u)<8,$. { $w_{1}$ , $w_{2}]\subseteq N_{H}(u)$ , and. neither $\{w_{1}, w_{2}\}$ nor $\{\mathrm{v}\},$ $w_{4}\}$ is an edge $in$ $H$, and the graph $G_{5}$ obtain$ed$ from $H-\{v, u\}$

by merging $\langle w_{\mathrm{b}} w_{2}\rangle$ and merging $\langle$ 103, $w_{4}$ ) is $a$ 1-planar graph.
5. $A$ desired quintuple for $v$ is an ordered list $(u_{1}, u_{2}, w_{1},w_{2},w_{3})$ of five distinct neighbors of $v$

in $H$ such that

$.\cdot$

.
$d\mathrm{f}\mathrm{u})$

,’
$u_{1,w_{2}},$

)
$<8andd_{F};_{and\mathrm{T}}(u_{2})<8w_{2},w_{3}\}isan^{1}independe’ ntsetinH,a\mathrm{r}^{-}\subseteq N_{H}(uw_{2},$$w_{3}$ } $\subseteq N_{H}(u$2n!$d’ thegraphand$

$G_{6}$ obtained from $H-\{v,u_{1}, u_{2}\}$

by merging $\langle$

$w_{1}$ , $w_{2}$ , $\mathrm{w})$ is $a$ 1-planar graph.
6. $A$ desired sextuple for $v$ is an ordered list $(u_{1},u_{2},w_{1}, \mathrm{u}_{2}, w_{3},w_{4})$ of six distinct neighbors of

$v$ en $H$ such that

$.\cdot$

.
$d_{H}(u_{1})<8n_{2}nei^{1}ther\{w_{1\mathrm{N}^{H}(\mathrm{j}}\{w,w_{2}\mathrm{f}^{-}\subseteq$$u_{1}d7(u_{2})<8nor\{w_{3},w_{4}’\}\mathrm{t}\mathit{8}and\mathrm{I}w_{3},w_{4}\subseteq anedgeinHN_{H}(u_{2}),$

$an,d$ and the graph $G_{7}$ obtain$ed$ ffom $H-$
$\{v,u_{1},u_{2}\}$ by merging $\langle w_{1}, w_{2}\rangle$ and merging $\langle 1’ 3, m_{\mathit{4}}\rangle$ is $a$ 1-planar graph.

7. $A$ useful sextuple for $v$ is an ordered list $(u_{1}, u_{2}, w_{1}, x_{1}, w_{2},x_{2})$ of six distinct vertices in $H$

such that.$\cdot$ $w_{1}^{H}\in l_{v}d(u_{1}<\tau\cup N_{H}(v)andw_{2}\in 8,d_{H}(u_{2})\leq 8,an$”$u_{1_{\cup}4_{H}^{\}\subseteq\{v\}\cup N_{H}(v)}}\}’(v)$,
’
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.$\cdot$ $nei^{1}ther$ {
$\{w,x_{1}$ ,lJ)1’,$x_{2}\}\subseteq N_{H\{^{u)}}x_{1}$

} $norw_{2}^{1}$ , $x_{2}\}isanand\{u_{1},we’ geinx_{1}\}$ $H,anVN_{H}(u$
,
$thegraphandG_{8}$ obtain$ed$ from $H-$

$\{u_{1}, u_{2}\}$ by merging $\langle w_{1},x_{1}\rangle$ and merging $\langle w_{2}, x_{2}\rangle$ is $a$ 1-planar graph.

8. $A$ useful triple for $v$ is an ordered list $(u, w, x)$ of three distinct vertices in $H$ such that

$.\cdot$

.
$w\in\{w,x\}isnotad_{H(u}k_{H(v)an}^{\leq 7and}$n {$w,xedgeinH’ a\in N\mathrm{f}(v)\subseteq N_{H}nu!$

’$thegaphand$
$G_{9}$ obtained from $H-\{u\}$ by merging $\langle w,x\rangle$

is $a$ 1-planar graph.

Theorem 4.8 For a critical vertex $v$ , call an edge $e$ in $H$ $a$ basic critical edge for $v$ if at least one
endpoint of $e$ is $v$ or a small neighbor of $v$ in $H$ , Moreover, for a critical vertex $v$ , call an edge $e$

in $H$ $a$ critical edge for $v$ if $e$ is a basic critical edge for $v$ or $e$ crosses a basic critical edge for $v$ in
H. Then, for every critical vertex $v$ , the following hold:

1. If $dn(v)=7$, then we can use the sub-embedding of $H$ induced by the set of critical edges for
$v$ to find a mergable pair for $v$ in $O(1)$ time such that the graph $G_{1}$ defined in Definition 4.2
has $a$ 1-plane embedding $H’$ satisfying the following three conditions:
(C1) For every pair of edges $e_{1}$ and $e_{2}$ in $H’$ , $e_{1}$ and $e_{2}$ cross each other in embedding $H$’if

and only if they cross each other in embedding $H$ .
(C2) For every vertex $x$ in $H^{l}$ that is neither $v$ nor a small neighbor of $v$ in $H$ , and for

every sequence $\langle$

$e_{1}$ , $\ldots$ , \^e$\cdot$ ) of edges in $H$ that are incident to $x$ but incident to neither
$v$ nor a small neighbor of $v$ , if edges $e_{1}$ , $\ldots$ , $e_{k}$ appear around $x$ consecutively in this
order in embedding $H$, then edges $e_{1}$ , $\ldots$ , $e_{k}$ appear around $x$ consecutively in this order

$(\mathrm{C}3)Saine;ea:bedin;(\mathit{2})\dot{b}H’ut$

with both $occ$urrences of the word $‘\ell co$nsecutively” deleted.
2. If $dn(v)=8$, then we can use the sub-embedding of $H$ induced by the set of critical edges for

$v$ to compute one of the foll owing for $v$ in $O(1)$ time:

Now, we are ready to explain how to construct $G’$ . The construction of $G$’ffom $H$ is done as
follows.

1. For each critical vertex $v$ with $dn(v)=7$, find a mergable pair for $v$ as guaranteed in
Theorem 4.8.

2. For each critical vertex $v$ with $d_{H}(v)=8,$ find a mergable triple, two simultaneously mergable
pairs, a desired quadruple, a favorite quintuple, a desired quintuple, a desired sextuple, a
useful sextuple, or a useful triple for $v$ as guaranteed in Theorem 4.8.

3. For each critical vertex $v$ with $d_{H}(v)=7$ and the $.\mathrm{m}$ergable pair $(u, w)$ found for $v$ in Step 1,
remove $v$ ffom $H$ and further merge $\langle u, w\rangle$ .
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4. For each critical vertex $v$ with $dn(v)=8$ , perform the following:
(a) If a mergable triple $\{u_{1},u_{2}, u_{3}\}$ was found for $v$ in Step 2, then remove $v$ ffom $H$ and

(b)
$\mathrm{I}\mathrm{r}\mathrm{f}\mathrm{t}\mathrm{w}\mathrm{o}^{\mathrm{r}}\mathrm{s}\mathrm{H}\mathrm{U}\mathrm{W}\mathrm{n}\mathrm{e}\mathrm{o}’ \mathrm{u}\mathrm{s}\mathrm{r}\mathrm{y}^{u_{3}\rangle}\mathrm{m}\mathrm{e}.\mathrm{r}\mathrm{g}\mathrm{a}\mathrm{b}1\mathrm{e}$

pairs $(\mathrm{u}, u_{2})$ and $(\mathrm{u}, w_{2})$ were found for $v$ i $\mathrm{n}$ Step 2,

(c)
$\mathrm{I}\mathrm{f}\mathrm{a}\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{r}\mathrm{e}_{\mathrm{d}}^{\mathrm{V}\mathrm{e}}$qvuadrmupH, $(u,w_{1},w_{2},w_{3})\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\langle u_{1},u_{2}\rangle \mathrm{w}_{\mathrm{a}\mathrm{s}}^{\mathrm{n}\mathrm{d}}[\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{r}^{\mathrm{r}}\mathrm{o}\mathrm{r}$ $v\mathrm{i}\mathrm{n}4_{\mathrm{t}\mathrm{e}^{1}\mathrm{p}2,\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}}^{w,w_{2}\rangle}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}$

.
remove $v$ and tz

from $H$, and further merge $\langle w_{1)}w_{2}, w_{3}\rangle$ .
(d) If a favorite quintuple $(u,w_{1},w_{2}, w_{3}, w_{4})$ was found for $v$ in Step 2, then remove $v$ and

tz from $H$, merge $\langle w_{1}, w_{2}\rangle$ , and further merge $\langle w_{3}, w_{4}\rangle$ .
vspace-. $15\mathrm{c}\mathrm{m}$

(e) If a desired quintuple $(u_{1}, u_{2},w_{1}, w_{2}, w_{3})$ was found for $v$ in Step 2, then remove $v$ , $u_{1}$ ,

(f)
$\mathrm{I}\mathrm{f}\mathrm{a}\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{d}u_{2}\mathrm{f}\mathrm{f}\mathrm{f}\mathrm{o}\mathrm{m}\mathrm{x}\mathrm{t}\mathrm{u}\mathrm{p}\mathrm{L}^{\mathrm{f}}\mathrm{E}^{\mathrm{h}\mathrm{e}\mathrm{r}},u_{2}$

, $\mathrm{S}_{1}^{\mathrm{e}\mathrm{r}},\mathrm{u}_{2}$ ,
$\langle$:13’, $ww_{3}\rangle w_{4}^{2}$) $\mathrm{w}\mathrm{a}.\mathrm{s}$ found for $v$ in Step 2, then remove $v$ ,

(g)
$\mathrm{I}\mathrm{f}u$

’$\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{e}\mathrm{f}\mathrm{u}1\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{d}u_{2}\mathrm{x}^{\mathrm{m}}\mathrm{t}\mathrm{u}\mathrm{p}1\mathrm{e}$’ $(u_{1},u_{2},w_{1},x_{1},w_{2,\mathit{2}^{\mathrm{f}\mathrm{u}\Gamma \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{e}\mathrm{r}}\mathrm{o}\mathrm{r}v\mathrm{i}\mathrm{n}\mathrm{S}}x\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\langle w_{1},w_{2}\rangle,\mathrm{a}\mathrm{n})\mathrm{w}\mathrm{a}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{f}^{\mathrm{e}\langle w_{3},w}$te$\mathrm{p}$

.
$2$ , then remove $u_{1}$ and

(h)
$\mathrm{I}\mathrm{f}\mathrm{a}u_{2}$fru?ful ’$\mathrm{t}\mathrm{r}\mathrm{i}^{\mathrm{e}}\mathrm{P}1\mathrm{e}^{\mathrm{g}\mathrm{e}\langle w,x_{1}\rangle,\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{u}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}}(u,w^{1},x)\mathrm{w}\mathrm{a}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{r}\mathrm{n}_{\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{p}2}^{\mathrm{g}\mathrm{e}\langle w_{2},x}$

,
$\mathrm{t}\mathrm{A}.\mathrm{e}\mathrm{n}$

remove $u$ from $H$ and further
merge $\langle w,x\rangle$ .

5. Remove all $v\in I$ with $d_{H}(v)\leq 6$ $\mathrm{f}$ or $H$.
6. For each $v\in I$ such that $Nh(v)$ contains a vertex tt with $dn(v)\leq 6$ , remove all such vertices

$u$ from $H$ .
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