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1 Introduction
The lecture reported on joint work with T. Pukaya, K. Kato, R. Sujatha,
and O. Venjakob [1] on the formulation of the main conjectures of non-
commutative Iwasawa theory. The general methods developed in [1] were
inspired by the Heidelberg Hab itation Thesis of Venjakob [2].

Let $G$ be a compact -adic Lie gorup. We assume throughout that $G$

has no element of order $p$ , so that $G$ has finite -homological dimension. Let
$\Lambda(G)$ denote the Iwasawa algebra of $G$ . Let $M$ be a finitely generated torsion
$\Lambda(G)$ -module. How can we define a characteristic element for $M$ , and relate
it to the Euler characteristic of $M$ and its twists? In the classical case, when
$G=\mathbb{Z}_{p}^{d}$ for some integer $d\geq 1,$ such characteristic elements are defined via
the structure theory of such modules up to pseudO-isomorphism. In fact, an
analogue of the structure theorem is proven in [3] for all non-commutative
$G$ which are $p$-valued. However, in the non-commutative theory this does
not seem to yield characteristic elements, both because reflexive ideals of
$\Lambda(G)$ are not, in general, principal, and because pseudO-null modules with
finite $G$-Euler characteristic do not, in general, have Euler characteristic
1[4]. The goal of [1] is to use localization techniques to find a way out of this
dilemma for an important class of $p$-adic Lie roups $G$ and a class of finitely
generated torsion $L(G)$-modules which we optimistically hope includes all
modules which occur in arithmetic at ordinary primes.
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2 Algebraic theory
Prom now on, we assume that $G$ satisfies the following:

Hypothesis on $G$ There is no element of order $p$ in $G$, and $G$ has a closed
normal subgroup $H$ such that $\Gamma=G/H$ is isomorphic to $\mathbb{Z}_{p}$ .

For example, if $G$ is the Galois group of a padic Lie extension of a number
field $F$ which contains the cyclotomic $\mathbb{Z}_{p}$-extension of $F$ , then $G$ satisfies the
second part of our hypotheses. We do not consider the category of all finitely
generated torsion $\Lambda(G)$ -modules, but rather the full subcategory $\mathfrak{M}_{H}(G)$

consisting of all finitely generated $\Lambda(G)$-modules $M$ such that $M/M(p)$ is
finitely generated over $\Lambda(H)$ ; here $M(p)$ denotes the $p$-primary submodule
of $M$ . In the special case when $H=1$ , $\mathrm{W}\mathrm{I}\mathrm{h}\{\mathrm{G}$) is indeed the category of all
finitely generated torsion $\Lambda(G)$-modules. We define $S$ to be the set of all $f$ in
$\Lambda(G)$ such that $\mathrm{A}(\mathrm{G})/\mathrm{A}(\mathrm{G})\mathrm{f}$ is a finitely generated $\Lambda(H)$ -module, and put

$S^{*}= \bigcup_{n>_{arrow}0}p^{n}$S.

Theorem 2.1 The set $S^{*}is$ a multiplicativ\^e $ly$ closed left and right Ore set in
A(G), all of whose elements $a\dot{r}e$ non-zero divisors. A finitely generated $\Lambda(G)-$

module $M$ is $S$’ torsion if and only if it belongs to the category JJlA (G).

Thus $S^{*}$ is a canonical Ore set in $\Lambda(G)$ , and we write $\Lambda(G)s*$ for the
localization of $\Lambda(G)$ at $S^{*}$ . If $R$ is any ring with unit, we write $KmR(m=$
$0$ , 1) for the $m$-th $K$-group of $R$ , and $R^{\mathrm{x}}$ for the group of units of $R$ .

Theorem 2.2 The natural map

$\Lambda(G)s*\crossarrow K_{1}(\Lambda(G)_{S^{\mathrm{r}}})$

is surjective.

Let $\mathrm{K}\mathrm{O}(3\mathrm{R}\mathrm{H}(\mathrm{G}))$ denote the Grothendieck group of the category $\mathfrak{M}_{H}(G)$ .
We recall that $\Lambda(G)$ has finite global dimension because $G$ has no element of
order $p$ .

Theorem 2.3 We have an exact sequence of localization

$K_{1}(\Lambda(G))arrow K_{1}(\Lambda(G)_{S}*)\sigma_{G}arrow K_{0}(\mathfrak{M}_{H}(G))arrow 0.$



If $M\in \mathfrak{M}_{H}(G)$ , we write $[M]$ for the class of $M$ in $K_{0}(\mathfrak{M}_{H}(G))$ . We then
define a characteristic element of $M$ to be any element $\xi_{M}$ of $K_{1}(\Lambda(G)_{S^{*}})$

such that
$\partial_{G}(\xi_{M})=[M]$ .

It is shown in [1] that $\xi_{M}$ has all the good properties we would expect
of characteristic elements. Most important amongst these for arithmetic
applications is its behaviour under twisting. Let

$\rho:G-GL_{n}(O)$

be any continuous homomorphism, where $O$ denotes the ring of integers of a
finite extension of $\mathbb{Q}_{p}$ . Of course, $\rho$ induces a ring homomorphism

$\rho$ : $\Lambda(G)arrow M_{\mathrm{n}}(O)$ ,

where $M_{n}(O)$ denotes the ring of $\mathit{7}?\cross n$ matrices with entries in $O$ . If $f$ is any
element of $\Lambda(G)$ , we define $\mathrm{f}(\mathrm{p})$ to be the determinant of $\rho(f)$ . Although
it is far from obvious, it is shown in [1] that one can extend this notion to
define $\xi_{M}(\rho)$ to be either $\infty$ or $a$ . If $M$ is any module in $\mathrm{T}\mathrm{J}\mathrm{i}_{H}(G)$ , we can also
define

$tw_{\rho}(M)=M \bigotimes_{\mathbb{Z}_{p}}O^{n}$

where $G$ acts on the second factor via $\rho$ , and on the whole tensor product via
the diagonal action. Again we have $twp(M)$ belongs to $\mathfrak{M}_{H}(G)$ . We define

$\chi(G, tw_{\rho}(M))$
$= \prod_{i>\mathit{0},\nearrow},$

$\#(H_{i}(G, tw_{\rho}(M)))^{(-1)}$
.

saying that the Euler characteristic is finite if all the homology groups $H_{i}(G, tw_{\rho}(M))$

are finite. We write $\hat{\rho}$ for the contragredient representation of $\rho$ , i.e. $ji(g)$ $=$

$\rho(g^{-1})$ t, where the ’
$t$
’ denotes the transpose matrix.

Theorem 2.4 Let $M\in \mathrm{J}\mathrm{J}\mathrm{I}_{H}(G)$ , and let $\xi_{M}$ denote a characteristic ele-
ment of M. For each continuous representation $\rho$ : $Garrow GL_{n}(\sigma)$ such that
$\chi(G, tw_{\hat{\rho}}(M))$ is finite, cite have $\mathrm{f}(\mathrm{p})\neq 0$ , oo and

$\mathrm{x}(G_{:}tw_{\hat{\rho}}(M))=|4_{M}(G)|_{p}^{-m_{\rho}}$ ,

where $m_{\rho}$ denotes the degree over $\mathbb{Q}_{p}$ of the quotient field of $O$ .



3 Connexion with L-values
We only briefly discuss the main conjecture when $E$ is an elliptic curve defined
over $\mathbb{Q}$ , $p\geq 5$ is a prime of good ordinary reduction, $F_{\infty}=\mathbb{Q}(E_{p^{\infty}})$ , and $G$

is the Galois group of $F_{\infty}$ over Q. Thus $G$ has dimension 2 or 4 according as
$E$ does or does not have complex multiplication. Let $X(E/F_{\infty})$ be the dual
of the Selmer group of $E$ over $F_{\infty}$ . Taking $H$ to be the subgroup of $G$ which
fixes the cyclotomic $\mathbb{Z}_{p}$-extension of $\mathbb{Q}$ , the following conjecture (which can
be proven in some cases) is made in [1].

Conjecture 3.1 $X(E/F_{\infty})$ belongs to $\mathfrak{M}_{H}(G)$ .

Now let $\rho$ be a variable Artin representation of $G$ , i.e. a representation
which factors through a finite quotient of $G$ . Let $\mathrm{L}(\mathrm{p}, s)$ denote the complex
$L$-function of $\rho$ , and $\mathrm{L}(\mathrm{E}, \rho, s)$ the complex $L$-function of $E$ twisted by $\rho$ .
The $L$-functions $L(E, \rho, s)$ appear to have many interesting properties, but
they appear to have been somewhat neglected by the experts on automor-
phic forms. The point $s=1$ is critical for $L(E, \rho, s)$ , and we assume in what
follows the analytic continuation is known at $s=1.$ We fix a minimal Weier-
strass equation for $E$ over $\mathbb{Q}$ , and let $\Omega_{+}(E)$ and $\Omega_{-}(E)$ denote generators of
the groups of real and purely imaginary periods of the Neron differential of
$E$ . Let $d^{+}(\rho)$ (resp. $d^{-}(\rho)$ ) denote the dimension of the subspace of the real-
ization of $\rho$ which is fixed by complex multiplication (resp. on which complex
conjugation acts like -1). A special case of Deligne’s conjecture asserts that

$\frac{L(E,\rho,1)}{\Omega_{+}(E)^{d(\rho)}+\Omega_{-}(E)^{d^{-}(\rho)}}\in$ Q.

Let $p^{f_{\mathrm{P}}}$ denote the $p$-part of the conductor of $\rho$ . For each prime $\mathrm{g}$ , we
let $P_{q}(\rho, X)$ be the polynomial such that the Euler factor of $\mathrm{L}(\mathrm{p}, s)$ at $q$ is
$P_{q}(\rho, q^{-s})$

$-1$ . Also, since $E$ is ordinary at $p$ , we have

$1-a_{p}X+pX^{2}=(1-uX)(1-wX)$ ,

where $u\in \mathbb{Z}_{p}^{x}$ and, as usual, $p+1-a_{p}$ is the number of points over $\mathrm{F}_{p}$ on the
reduction of $E$ module $p$ . Let $R$ be the finite set consisting of $p$ and all primes
$q$ such that $\mathrm{o}\mathrm{r}\mathrm{d}_{q}(j_{E})<0.$ We write $L_{R}(E, \rho, s)$ for the complex L-function
obtained by suppressing in $L(E, \rho, s)$ the Euler factors at the primes in $R$.
The following two conjectures are made in [1].
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Conjecture 3.2 Assume that $p$ ? 5 and $E$ has good ordinary reduction at $p$ .
Then there exists $\mathcal{L}_{E}$ in $K_{1}(\Lambda(G)_{S^{*}})$ such that, for all Artin representations

$\rho$ of $G$, we have $\mathcal{L}_{E}(\rho)\neq\infty$ , and

$\mathcal{L}_{E}(\rho)=\frac{L_{R}(E,\rho,1)}{\Omega_{+}(E)^{d(\rho)}+\Omega_{-}(E)^{d^{-}(\rho)}}$ $e_{p}(\rho)u^{-f_{\rho}}$ . $\frac{P_{p}(\hat{\rho},u^{-1})}{P_{p}(\rho,w^{-1})}$ ,

where $e_{p}(\rho)$ denotes the local $\epsilon$-factor attached to $\rho$ at $p$ .

Conjecture 3.3 (The main conjecture) Assume that $p\geq 5$ , $E$ has good
ordinary reduction at $p$ , and $X(E/F_{\infty})$ belongs to $\mathfrak{M}_{H}(G)$ . Granted Conjec-
there 2, the $p$ -adic $L$ -function $\mathrm{C}_{E}$ in $K_{1}$ ( $\Lambda(G)$ s*) is a characteristic element
of $X(E/F_{\infty})$ .

Of course, when $E$ does not admit complex multiplication, very little
is known at present about Conjecture 3. However, when $E=X_{1}(11)$ and
$p=5,$ some remarkable numerical calculations of T. Fisher and T. and V.
Dokchitser provide fragmentary evidence in support of it.
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