The main conjectures of non－commutative Iwasawa theory

John Coates
（University of Cambridge）

1 Introduction

The lecture reported on joint work with T．Fukaya，K．Kato，R．Sujatha， and O．Venjakob［1］on the formulation of the main conjectures of non－ commutative Iwasawa theory．The general methods developed in［1］were inspired by the Heidelberg Habilitation Thesis of Venjakob［2］．

Let G be a compact p－adic Lie gorup．We assume throughout that G has no element of order p ，so that G has finite p－homological dimension．Let $\Lambda(G)$ denote the Iwasawa algebra of G ．Let M be a finitely generated torsion $\Lambda(G)$－module．How can we define a characteristic element for M ，and relate it to the Euler characteristic of M and its twists？In the classical case，when $G=\mathbb{Z}_{p}^{d}$ for some integer $d \geqslant 1$ ，such characteristic elements are defined via the structure theory of such modules up to pseudo－isomorphism．In fact，an analogue of the structure theorem is proven in［3］for all non－commutative G which are p－valued．However，in the non－commutative theory this does not seem to yield characteristic elements，both because reflexive ideals of $\Lambda(G)$ are not，in general，principal，and because pseudo－null modules with finite G－Euler characteristic do not，in general，have Euler characteristic 1［4］．The goal of［1］is to use localization techniques to find a way out of this dilemma for an important class of p－adic Lie groups G and a class of finitely generated torsion $L(G)$－modules which we optimistically hope includes all modules which occur in arithmetic at ordinary primes．

2 Algebraic theory

From now on, we assume that G satisfies the following:
Hypothesis on G There is no element of order p in G, and G has a closed normal subgroup H such that $\Gamma=G / H$ is isomorphic to \mathbb{Z}_{p}.

For example, if G is the Galois group of a p-adic Lie extension of a number field F which contains the cyclotomic \mathbb{Z}_{p}-extension of F, then G satisfies the second part of our hypotheses. We do not consider the category of all finitely generated torsion $\Lambda(G)$-modules, but rather the full subcategory $\mathfrak{M}_{H}(G)$ consisting of all finitely generated $\Lambda(G)$-modules M such that $M / M(p)$ is finitely generated over $\Lambda(H)$; here $M(p)$ denotes the p-primary submodule of M. In the special case when $H=1, \mathfrak{M}_{H}(G)$ is indeed the category of all finitely generated torsion $\Lambda(G)$-modules. We define S to be the set of all f in $\Lambda(G)$ such that $\Lambda(G) / \Lambda(G) f$ is a finitely generated $\Lambda(H)$-module, and put

$$
S^{*}=\bigcup_{n \geqslant 0} p^{n} S
$$

Theorem 2.1 The set S^{*} is a multiplicatively closed left and right Ore set in $\Lambda(G)$, all of whose elements are non-zero divisors. A finitely generated $\Lambda(G)$ module M is S^{*}-torsion if and only if it belongs to the category $\mathfrak{M}_{H}(G)$.

Thus S^{*} is a canonical Ore set in $\Lambda(G)$, and we write $\Lambda(G)_{S^{*}}$ for the localization of $\Lambda(G)$ at S^{*}. If R is any ring with unit, we write $K_{m} R$ ($m=$ 0,1) for the m-th K-group of R, and R^{\times}for the group of units of R.

Theorem 2.2 The natural map

$$
\Lambda(G)_{S^{*}}^{\times} \longrightarrow K_{1}\left(\Lambda(G)_{S^{*}}\right)
$$

is surjective.
Let $K_{0}\left(\mathfrak{M}_{H}(G)\right)$ denote the Grothendieck group of the category $\mathfrak{M}_{H}(G)$. We recall that $\Lambda(G)$ has finite global dimension because G has no element of order p.

Theorem 2.3 We have an exact sequence of localization

$$
K_{1}(\Lambda(G)) \longrightarrow K_{1}\left(\Lambda(G)_{S^{*}}\right) \xrightarrow{\partial_{G}} K_{0}\left(\mathfrak{M}_{H}(G)\right) \longrightarrow 0
$$

If $M \in \mathfrak{M}_{H}(G)$, we write $[M]$ for the class of M in $K_{0}\left(\mathfrak{M}_{H}(G)\right)$. We then define a characteristic element of M to be any element ξ_{M} of $K_{1}\left(\Lambda(G)_{S^{*}}\right)$ such that

$$
\partial_{G}\left(\xi_{M}\right)=[M] .
$$

It is shown in [1] that ξ_{M} has all the good properties we would expect of characteristic elements. Most important amongst these for arithmetic applications is its behaviour under twisting. Let

$$
\rho: G \longrightarrow G L_{n}(O)
$$

be any continuous homomorphism, where O denotes the ring of integers of a finite extension of \mathbb{Q}_{p}. Of course, ρ induces a ring homomorphism

$$
\rho: \Lambda(G) \longrightarrow M_{n}(O),
$$

where $M_{n}(O)$ denotes the ring of $n \times n$ matrices with entries in O. If f is any element of $\Lambda(G)$, we define $f(\rho)$ to be the determinant of $\rho(f)$. Although it is far from obvious, it is shown in [1] that one can extend this notion to define $\xi_{M}(\rho)$ to be either ∞ or a. If M is any module in $\mathfrak{M}_{H}(G)$, we can also define

$$
t w_{\rho}(M)=M \underset{\mathbb{Z}_{p}}{\otimes} O^{n}
$$

where G acts on the second factor via ρ, and on the whole tensor product via the diagonal action. Again we have $t w_{p}(M)$ belongs to $\mathfrak{M}_{H}(G)$. We define

$$
\chi\left(G, t w_{\rho}(M)\right)=\prod_{i \geqslant o} \sharp\left(H_{i}\left(G, t w_{\rho}(M)\right)\right)^{(-1)^{i}},
$$

saying that the Euler characteristic is finite if all the homology groups $H_{i}\left(G, t w_{\rho}(M)\right)$ are finite. We write $\widehat{\rho}$ for the contragredient representation of ρ, i.e. $\widehat{\rho}(g)=$ $\rho\left(g^{-1}\right)^{t}$, where the ' t ' denotes the transpose matrix.

Theorem 2.4 Let $M \in \mathfrak{M}_{H}(G)$, and let ξ_{M} denote a characteristic element of M. For each continuous representation $\rho: G \rightarrow G L_{n}(\sigma)$ such that $\chi\left(G, t w_{\hat{\rho}}(M)\right)$ is finite, we have $\xi_{M}(\rho) \neq 0, \infty$ and

$$
\chi\left(G, t w_{\hat{\rho}}(M)\right)=\left|\xi_{M}(G)\right|_{p}^{-m_{\rho}},
$$

where m_{ρ} denotes the degree over \mathbb{Q}_{p} of the quotient field of O.

3 Connexion with L-values

We only briefly discuss the main conjecture when E is an elliptic curve defined over $\mathbb{Q}, p \geqslant 5$ is a prime of good ordinary reduction, $F_{\infty}=\mathbb{Q}\left(E_{p^{\infty}}\right)$, and G is the Galois group of F_{∞} over \mathbb{Q}. Thus G has dimension 2 or 4 according as E does or does not have complex multiplication. Let $X\left(E / F_{\infty}\right)$ be the dual of the Selmer group of E over F_{∞}. Taking H to be the subgroup of G which fixes the cyclotomic \mathbb{Z}_{p}-extension of \mathbb{Q}, the following conjecture (which can be proven in some cases) is made in [1].

Conjecture 3.1 $X\left(E / F_{\infty}\right)$ belongs to $\mathfrak{M}_{H}(G)$.
Now let ρ be a variable Artin representation of G, i.e. a representation which factors through a finite quotient of G. Let $L(\rho, s)$ denote the complex L-function of ρ, and $L(E, \rho, s)$ the complex L-function of E twisted by ρ. The L-functions $L(E, \rho, s)$ appear to have many interesting properties, but they appear to have been somewhat neglected by the experts on automorphic forms. The point $s=1$ is critical for $L(E, \rho, s)$, and we assume in what follows the analytic continuation is known at $s=1$. We fix a minimal Weierstrass equation for E over \mathbb{Q}, and let $\Omega_{+}(E)$ and $\Omega_{-}(E)$ denote generators of the groups of real and purely imaginary periods of the Néron differential of E. Let $d^{+}(\rho)$ (resp. $d^{-}(\rho)$) denote the dimension of the subspace of the realization of ρ which is fixed by complex multiplication (resp. on which complex conjugation acts like -1). A special case of Deligne's conjecture asserts that

$$
\frac{L(E, \rho, 1)}{\Omega_{+}(E)^{d^{+}(\rho) \Omega_{-}(E)^{d^{-}(\rho)}}} \in \overline{\mathbb{Q}} .
$$

Let $p^{f_{p}}$ denote the p-part of the conductor of ρ. For each prime q, we let $P_{q}(\rho, X)$ be the polynomial such that the Euler factor of $L(\rho, s)$ at q is $P_{q}\left(\rho, q^{-s}\right)^{-1}$. Also, since E is ordinary at p, we have

$$
1-a_{p} X+p X^{2}=(1-u X)(1-w X)
$$

where $u \in \mathbb{Z}_{p}^{x}$ and, as usual, $p+1-a_{p}$ is the number of points over \mathbb{F}_{p} on the reduction of E module p. Let R be the finite set consisting of p and all primes q such that $\operatorname{ord}_{q}\left(j_{E}\right)<0$. We write $L_{R}(E, \rho, s)$ for the complex L-function obtained by suppressing in $L(E, \rho, s)$ the Euler factors at the primes in R. The following two conjectures are made in [1].

Conjecture 3.2 Assume that $p \geqslant 5$ and E has good ordinary reduction at p. Then there exists \mathcal{L}_{E} in $K_{1}\left(\Lambda(G)_{S^{*}}\right)$ such that, for all Artin representations ρ of G, we have $\mathcal{L}_{E}(\rho) \neq \infty$, and

$$
\mathcal{L}_{E}(\rho)=\frac{L_{R}(E, \rho, 1)}{\Omega_{+}(E)^{d^{+}(\rho)} \Omega_{-}(E)^{d^{-}(\rho)}} \cdot e_{p}(\rho) u^{-f_{\rho}} \cdot \frac{P_{p}\left(\widehat{\rho}, u^{-1}\right)}{P_{p}\left(\rho, w^{-1}\right)},
$$

where $e_{p}(\rho)$ denotes the local ε-factor attached to ρ at p.
Conjecture 3.3 (The main conjecture) Assume that $p \geqslant 5$, E has good ordinary reduction at p, and $X\left(E / F_{\infty}\right)$ belongs to $\mathfrak{M}_{H}(G)$. Granted Conjecture 2, the p-adic L-function \mathcal{L}_{E} in $K_{1}\left(\Lambda(G)_{S^{*}}\right)$ is a characteristic element of $X\left(E / F_{\infty}\right)$.

Of course, when E does not admit complex multiplication, very little is known at present about Conjecture 3. However, when $E=X_{1}(11)$ and $p=5$, some remarkable numerical calculations of T. Fisher and T. and V. Dokchitser provide fragmentary evidence in support of it.

John Coates
Emmanuel College
Cambridge CB2 3AP
England
J.H.Coates@dpmms.cam.ac.uk

References

[1] J. Coates, T. Fukaya, K. Kato, R. Sujatha, O. Venjakob, The $G L_{2}$ main conjecture for elliptic curves without complex multiplication, to appear.
[2] O. Venjakob, Characteristic elements in non-commutative Iwasawa theory, Habilitationschrift, Heidelberg University (2003).
[3] J. Coates, P. Schneider, R. Sujatha, "Modules over Iwasawa albegras", J. Inst. Math. Jussieu 2 (2003), 73-108.
[4] J. Coates, P. Schneider, R. Sujatha, "Links between cyclotomic and $G L_{2}$ Iwasawa theory, Doc. Math., Kato Volume (2003), 187-215.

