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MONODROMIES OF SCHWARZIAN DIFFERENTIAL
EQUATIONS OF A CERTAIN TYPE

広島大学・大学院理学研究科 須川敏幸 (TOSHIYUKI SUGAWA)
GRADUATE SCHOOL OF SCIENCES,

HIROSHIMA UNIVERSITY

ABSTRACT. We consider a second-Order linear homogenous ordinary differ-
ential equations in connection with the Teichmuller space of a four-times
punctured sphere. Interests will be focused on the mysterious relation be-
tween the shape of the Teichmiiller space and the Fibonacci sequence. The
monodromy homomorphism induced by the differential equations plays a
decisive role in our framework. This note is based on the author’s paper [7]
and the $\mathrm{j}$ oint paper [3] with Y. Komori.

1. AN ORDINARY DIFFERENTIAL EQUATION

Let $\mathrm{Y}$ be a four-times punctured sphere $\overline{\overline{\mathbb{C}}}\backslash \{0,1, \infty, \lambda\}$ with hyperbolic
metric $\rho_{\mathrm{Y}}(z)|dz|$ of Gaussian curvature -4. It is known that the space $B_{2}(\mathrm{Y})$

of holomorphic quadratic differentials $\psi(z)dz^{2}$ with finite norm

$||\mathrm{A}||_{\mathrm{Y}}$

$= \sup_{z\in \mathrm{Y}}\rho_{\mathrm{Y}}(z)^{2}|\psi(z)|$

is one dimensional vector space over C. We may, for instance, take

$\psi_{0}(z)dz^{2}=\frac{dz^{2}}{z(z-1)(z-\lambda)}$

as a basis of $B_{2}(\mathrm{Y})$ . Let $\pi$ : $\mathrm{D}$ $arrow \mathrm{Y}$ be a holomorphic universal covering map
of the unit disk $\mathrm{D}$ $=$ $\{z\in \mathbb{C} : |z|< 1\}$ onto $\mathrm{Y}$ and let $\Gamma$ be the covering
transformation group. Then $\Gamma$ is a Fuchsian group of the first kind acting
on D. It can be seen that the Schwarzian derivative $S_{\pi^{-1}}$ of a local inverse
of $\pi$ is independent of the choice of branch and even of the particular choice
of $\pi$ . Hence it defines a (single- alued) analytic function $\nu_{\mathrm{Y}}$ on Y. Here the
Schwarzian derivative $S_{f}$ of $f$ is defined by

$\mathrm{S}_{\mathrm{j}}$ $=( \frac{f’}{f’})’-\frac{1}{2}(\mathrm{q})^{2}$
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The function $\nu_{Y}$ is sometimes called the uniformizing connection of Y. Then it
is known that $\nu_{Y}$ has the form

$\nu_{\mathrm{Y}}(z)$ $= \frac{1}{2z^{2}(z-1)^{2}}+\frac{1}{2(\sim r-\lambda)^{2}}+\frac{c(\lambda)}{z(z-1)(z-\lambda)}$ ,

where $\mathrm{c}(\mathrm{A})$ is a constant determined by A (see, for instance, [1, Ch. $\mathrm{X}$ , p. 492]).
This constant is known as an accessory parameter. It is generally difficult to
compute $c(\lambda)$ . A method of numerical computation of $\mathrm{c}(\mathrm{A})$ is given in [3] and
the method will be indicated in Remark 2.

We now consider the second-Order homogeneous linear ordinary differential
equation
(1.1) $2y+\prime\prime(\nu_{Y}+t\psi_{0})y=0,$

where $t$ is a complex parameter. We fix a base point $z_{0}$ in $\mathrm{Y}$ and let $y_{0}$

and $y_{1}$ are fundamental (local) solutions of (1.1) around $z_{0}$ , namely, they are
determined by the initial conditions $y_{0}(_{\sim 0}^{\gamma})=1$ , $y\mathrm{O}(z0)$ $=0$ , $\mathrm{y}\mathrm{O}(\mathrm{z}0)$ $=0$ and
$y\mathrm{i}(z_{0})=1.$ It is easy to see that the Wronskian $y0!l_{1}’-l_{0}’l1$ is identically 1. For
a curve $\gamma$ with initial and terminal points at $z_{0}$ , the solutions $!0$ and $y_{1}$ can
be analytically continued along ) to, say, $\tilde{y}_{0}$ and $\tilde{y}1$ , respectively. These are
written as linear combinations of $y_{0}$ and $y_{1}$ , say,

$\tilde{y}_{1}=ay_{1}+by_{0}$

$y_{0}=cy_{1}+dy_{0}$ ,

where $a$ , $b$ , $c$ , $d$ are complex constants. Note that ad-bc $=1$ holds. By the
monodromy theorem, these constants depend only on the homotopy class $[\gamma]$ of
$\gamma$ . In this way, we obtain a homomorphism $\chi_{t}$ : $\pi_{1}(\mathrm{Y}, z_{0})arrow \mathrm{S}\mathrm{L}(2, \mathbb{C})$ satisfying

$\chi_{t}$ : $[\gamma]$ $\vdasharrow$ $(\begin{array}{ll}a bc d\end{array})$

The homomorphism is called the monodromy homomorphism or holonomy rep-
resentation of $\pi_{1}(\mathrm{Y}, z_{0})$ with respect to $t\psi_{0}$ . We write $G_{t}=\chi_{t}(\pi_{1}(\mathrm{Y}, z_{0}))$ .

In particular, when $t=0,$ the quotient $f=y_{1}/y_{0}$ of fundamental solutions
to (1.1) has Schwarzian derivative $S_{f}=\nu_{\mathrm{Y}}$ , and thus, $f=L\mathrm{o}\pi^{-1}$ locally,
where $L$ is a M\"obius transformation. Therefore, the image $\chi_{0}(\pi_{1}(\mathrm{Y}, z_{0}))$ is
M\"obius conjugate with the uniformizing Fuchsian group $\Gamma$ of Y.

Remark 1. Up to Mobius conjugate, the group $G_{0}$ may be regarded as a lift of
$\Gamma\subset$ PSU(I, 1) to $\mathrm{S}\mathrm{U}(1,1)$ . This lift is determined by the condition $\mathrm{t}\mathrm{r}\chi_{0}(\gamma)=$

$-2$ for every simple closed curve rounding about a puncture of Y.

Let $T(\mathrm{Y})$ be the set of those elements in $B_{2}(\mathrm{Y})$ of the form $t\psi_{0}$ for which $G_{t}$ is
a quasiconformal deformation of $G_{0}$ . The connected component of $\tilde{T}(\mathrm{Y})$ which
contains the origin is called (the Bers embedding of) the Teichmiiller space
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of $\mathrm{Y}$ and will be denoted by $T(\mathrm{Y})$ . (Rigorously, our $T(\mathrm{Y})$ is the Teichmuller
space of the mirror image $\mathrm{Y}^{*}$ of Y. To avoid confusion, we adopt a different
definition here from the standard one.)

It is known that $T(\mathrm{Y})$ is a Jordan domain with $\{\psi\in B_{2}(\mathrm{Y}) : |\mathrm{h}’||_{\mathrm{Y}}< 2\}$ $\subset$

$\mathrm{T}(\mathrm{Y})\subset$ $\{\psi\in B_{2}(\mathrm{Y}) : ||\psi||\mathrm{Y} < 6\}$ (see [3]). The quantities

$\mathrm{o}(\mathrm{T}(\mathrm{Y}))=\inf${ $||\psi||_{\mathrm{Y}}$ : $\psi\in$ dT(Y)} and $o(T( \mathrm{Y}))=\sup\{||\psi||_{\mathrm{Y}} : \psi\in\partial T(\mathrm{Y})\}$

are called the inner radius and the outer radius of $T(\mathrm{Y})$ , respectively. There-
fore, we have $2\leq$ 0(T(Y)) $\leq o(T(\mathrm{Y}))\leq 6.$ (In fact, these inequalities are all
strict.)

2. PINCHING DEFORMATION ALONG A SIMPLE CLOSED curve
Let $\tau$ be a complex number with ${\rm Im}\tau>0.$ Then $T=\mathbb{C}/\langle 1, \tau\rangle$ becomes

a complex torus, where $\langle 1, \tau\rangle$ denotes the lattice group generated by 1 and
$\mathrm{r}$ over Z. We denote by $[z]$ the equivalence class represented by $z\in \mathbb{C}$ with
respect to the action of the lattice. Let $\wp$ be the Weierstrass pfunction with
period lattice $\langle 1, \tau\rangle$ and set $e_{1}=\wp(1/2)$ , $e_{2}=\wp(\tau/2)$ , $e_{3}=$ p((l $+\tau)/2$ ). As is
well known, the quantity

A $( \tau)=\frac{e_{3}-e_{2}}{e_{1}-e_{2}}$

is an elliptic modular function. We now choose $\tau$ so that $\lambda(\tau)=$ A. Then
the mapping $p$ : $Tarrow\hat{\mathbb{C}}$ defined by $p([z])=(\wp(z)-e_{2})/(e_{1}-e_{2})$ is a twO-
sheeted branched covering map of $T$ onto $\hat{\mathbb{C}}$ with branch point of order 2
at [0], [1/2], $[\tau \mathit{1}2]$ , $[(1+ \tau)/2]$ . Therefore, the four-times punctured torus $Z=$

$T\mathrm{k}$ $\{[0], [1/2], [\tau/2], [(1+\tau)/2]\}$ is a twO-sheeted unbranched covering space
over Y.

A simple closed curve is called peripheral if it is homotopic to either a point
or a puncture. Let $\gamma$ : $[0, 1]arrow \mathrm{Y}$ be a non-peripheral simple closed curve in
$\mathrm{Y}$ and $\tilde{\gamma}$ be a lift of 7 via the composition of covering maps $\mathbb{C}\backslash$ $(1/2, \mathrm{r}/2)arrow$

$Zarrow Y.$ The difference $7(1)-\tilde{\gamma}(0)$ of the terminal point and the initial point
of $\tilde{\gamma}$ has the form $m+-$ $n\tau$ for relatively prime integers $m$ and $n$ . The ratio
$r=n/m$ $\in\hat{\mathbb{Q}}=\mathbb{Q}\cup\{\infty\}$ is called the slope of 7. It is known that the ratio
determines the homotopy class of $\gamma$ and that any number in $\hat{\mathbb{Q}}$ is realized as
the ratio of a non-peripheral simple closed curve in Y.

Let [7,.] be an element of $\pi_{1}(\mathrm{Y}, z_{0})$ with slope $r\in\hat{\mathbb{Q}}$ and define the function
$\sigma_{f}$ to be $\sigma_{\mathrm{r}}(t)=$ tr $2\chi t([\gamma f])$ . Note that $\sigma_{\mathrm{r}}$ is an entire function and $\sigma_{r}(0)>4.$

Remark 2. The origin is a special point where the entire functions $\sigma_{f}$ take
real values simultaneously. In turn, this property can be used to compute the
accessory parameter $c(\lambda)$ . See [3] for details.
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We next recall fundamental facts about Farey triangles (cf. [6]). For a more
detailed explanation, see [3]. The reader also finds a good account for Farey
sequences in [2] as well as an interesting historical remark.

For three points $a$ , $b$ , $c$ in $\hat{\mathbb{R}}$ , we denote by $\Delta(a, b, c)$ the hyperbolic triangle
formed by three hyperbolic geodesies in the upper half plane IEI connecting two
of the three points $a$ , $b$ and $c$ . Let $\Delta=$ A$(0,1, \infty)$ . Then IH[ is tessellated by A
and its conjugates by the modular group PSL$(2, \mathrm{Z})$ . Note that the stabilizer
of $\Delta$ in PSL(2, Z) consists of three elements and permutes the vertices of A
cyclically. Each triangle which is conjugate with $\Delta$ by the action of PSL(2, Z)
is called a Farey triangle. The initial Farey triangle $\Delta$ and its reflection $\Delta’=$

$\Delta(0,$ $-1, \infty)$ in the imaginary axis form a fundamental domain of the modular
group $\Gamma_{2}=$ { $\pm C\in$ PSL(2, Z) : $C\equiv I$ mod 2} of level 2. We will say that
both $\Delta$ and $\Delta$ ’ are of level 0. A Farey triangle which shares a side with that of
level 0 will be called of level 1 unless it is of level 0. Similarly, a Farey triangle
which shares a side with that of level $n$ will be called of level $n+1$ unless it is
of level $\leq n.$ It is important to note that the corresponding graph to the above
tessellation is a tree, namely, there is no closed circuit.

It is well known that the orbit of 0 under the action of PSL(2, Z) cO-

incides with Q. We denote by $\mathrm{F}(\mathrm{r}\mathrm{z})$ the set of rationals which appear as
vertices of Farey triangles of level $\leq$ n. Set 2(rr) $=\mathrm{F}(1)$ $\mathrm{z}$

$\mathrm{F}(\mathrm{v}\mathrm{z}-1)$ for
$n=0,1$ , $\ldots$ . For instance, $\mathrm{F}(0)$ $=\{-2,0,1, \infty\}$ , $\mathrm{F}(1)$ $=\{-2$ , 1/2, 1/2, 2 $\}$ ,
$\mathrm{F}(1)$ $=\{-3,1/2, -2/3, 1/2, 1/2, 2\mathit{1}3, 1/2, 3\}$ and so on. We note that
$\# F(n)=2^{n+1}$ for $n\geq 1.$ An element $r$ in 2(n) will be called of level $n$

and designated by level(r) $=n.$ Note that if $p_{1}/q_{1}$ and $p_{2}/q_{2}$ are of level $\leq n$

and if $p_{1}q_{2}-q_{1}p_{2}=\pm 1$ , then $(p_{1}+p_{2})/(q_{1}+q_{2})$ is of level $\leq n+1.$

Note that the rationals $\pm r_{n}$ and $\pm 1/r_{n}$ belong to $\mathrm{F}(\mathrm{v}\mathrm{z})$ , where $r_{n}=b_{n+1}/b_{n}$

and $b_{n}$ is the $n$-th Fibonacci number, namely, $b_{n}$ is determined by $b_{0}=1$ , $b_{1}=$

$1$ , $b_{n}=b_{n-1}+b_{n-2}$ $(n=2,3,4, \ldots)$ .
It is shown in [3] that the connected component $P_{r}$ of the inverse image

$\sigma_{\mathrm{r}}^{-1}([4, \sigma_{f}(0)])$ containing 0 is a closed analytic Jordan arc for each rational $r$ .
The arc $P_{r}$ is called the pleating ray with slope $r$ . The the other end point of
$P_{\mathrm{r}}$ , denoted by $\beta.(r)$ , lies on the boundary of the Teichmuller space $T(\mathrm{Y})$ and
corresponds to a cusp group. The deformation along $P_{f}$ can be regarded as a
pinching deformation of the Riemann surface $\mathrm{Y}$ along the hyperbolic geodesic
with slope $r$ .

When A $=1/2,$ the following observation was made in [7] by the aid of
Mathematica for, at least, small $n$ ’s.

Conjecture 1. When A $=1/2,$ then the following relation holds for each $n$ :

$\max||$!$(r)||=||$! $(r_{n})||$ .
$r\in\overline{\mathcal{F}}(n)$
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Note also that $||$!$(r_{n})||=||$!(-r$n$ ) $1$ $=||\#($ 1/$r_{n})||=||\mathrm{d}(-1fr_{n})||$ by symme-
try in the case A $=1/2.$ It is well known that $r_{n}$ converges to the golden ratio
$(\sqrt{5}-1)$/2. Since cusps are dense in the boundary [5], if the above conjecture
is valid, then the next conjecture is valid, too.

Conjecture 2 ([7]). If A $=1/2,$ then

$o(T(\mathrm{Y}))=||\beta((\sqrt{5}-1)/2)||$

holds, where $\beta((\sqrt{5}- 1)/2)$ is the end point of the pleating ray with $i$ rational
slope $(\sqrt{5}-1)/2$ .
$holds_{J}$ where $\beta((\sqrt{5}-1)/2)$ is the end point of the pleating ray with irrational
slope $(\sqrt{5}-1)/2$ .

Based on the last conjecture, we numerically obtained $o(T(\mathrm{Y}))\approx$ 2.9386
when A $=1/2.$ It is naturally expected that, for a general $\lambda$ , a similar statement
would hold for some irrational number $r$ whose continued fraction expansion
has the same tail as that of the golden ratio.

At present, we have no idea to prove the above conjectures in a rigorous
way. It is also interesting to see the asymptotic behaviour of the monodromy
homomorphism )($t$ in connection with the configuration of exotic projective
structures (see [4]). We end this note with the specialized problem.

Problem 3. Investigate the asymptotic behaviour of the entire function $\sigma_{r}(t)$

as $t” \mathrm{r}$ oo for an extended rational number $r\in$ Q.
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