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Abstract

Over time an astonishing and sometimes confusing variety of descriptions of
conic sections has been developed. This article will give a brief overview over some
interesting descriptions, showing formulations in the three geometric algebras of
Euclidean spaces, projective spaces, and the conformal model of Euclidean space.
Systematic illustrations with Cinderella created Java applets are included. I think
a combined geometric algebra & illustration approach can motivate students to
explorative learning.

1 Introduction
Conic sections are the familiar plane objects of points, $\mathrm{x}$-shaped pairs of lines, circles,
ellipses, parabolas and hyperbolas. These curves have an enormous practical significance.
They describe rotation trajectories, the orbits of planets, the trajectories of comets and
soccer balls, commercial satellites, the ideal form of well focused antennas (nowadays
popular for satellite $\mathrm{T}\mathrm{V}$), etc. They are so important that every student in the engineering
sciences has to study them as part of his first year curriculum.

In this article we first briefly touch upon the history of geometric algebra [1], to
motivate the description of conic sections with geometric algebras. The descriptions
in the geometric algebras of twO-dimensioal and three-dimensional Euclidean space of
section 2 are mainly taken from [2], The presentation of each description consists of the
relevant formulas accompanied by an illustrative set of figures. The figures were created
with the interactive geometry software Cinderella[3]. Cinderella allows purely interactive
construction and animations with export functions to Java applets [4, 5, 6] and postscript
format graphics.

One of the finest descriptions of conic sections was given by B. Pascal. Grassmann
later gives a general formula for it in terms of Grassmann algebra. We translate this
into both projective[9] and conforma1[10, 11, 12] geometric algebra. For a subset of conic
sections, the conformal model [10, 11, 12, 13, 14] provides an even more elegant “linear”
description.
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1.1 A new branch of mathematics
In 1844, just about 200 years after Pascal discovered his theorem, the German mathe-
matics school teacher Hermann Grassmann (1809-1877) invented his “Extension Theory”
[15], which he republished in 1862[8]. He saw his “new branch of mathematics” indeed to
”... form the keystone of the entire structure of mathematics.” [8]

Also the popular German mathematician Albrecht Beutelspacher considers the exten-
sion theory to comprise a number of “theoretical milestones” and “gems.” Amongst the
latter he counts:

Without using coordinates, he could represent the equation of a conic section
through five points $(A, B, C, D, E)$ in general position in a plane.

Later we will state Grassmann’s representation of conic sections in precise formal
terms. But before doing that we shall follow up the historical development of this new
“keystone of mathematics.”

1.2 Geometric algebra
In 1878, one year after Grassmann’s death, William K. Clifford (1845-1879) published
his “Applications of Grassmann’s extensive algebra.” [17], in which he successfully uni-
fied Grassmann’s extensive algebra[8, 15, 18] with Hamilton’s quaternion [19] description
of rotations. This was the birth of (Clifford) Geometric $Algebra^{1}$ , (which needs to be
thoroughly distinguished from algebraic geometry.)

During the last 50 years or so geometric algebra has become quite popular as a rather
universal tool for mathematics and its applications [20], including engineering. $[21, 22]$ But
the development of applications seems not finished yet. Projective geometry is by now
well integrated in geometric algebra.[9] Especially for applications in computer vision and
robotics it proves very versatile to adopt a higher dimensional geometric algebra model,
the socalled conformal geometric algebra.[10, 11, 12, 13, 14]

1.3 Conformal model of Euclidean space
The conformal model of Euclidean space simply interprets the point of origin and spatial
infinity as two extra linear dimensions of space, whose vectors have the peculiar property
that they square to zero.[10] This can be seen as borrowing from the description of the
propagation of light in space and time. Light propagates at the invariant vacuum speed of
light and is therefore relativistic. The propagation of light in four-dimensional space-time
also happens along vectors which square to zero. For a point light source, all these vectors
form together the light cone.

Defining an even higher dimensional “light con\"e, the socalled horosphere in our five
dimensional space of origin, 3-space and infinity, we get the socalled conformal model of
Euclidean space. In this conformal model, every point on the horosphere is in one-tO-One
correspondence with every point in Euclidean space. This idea can be implemented with
a host of geometric and computational benefits for areas like: computer vision, computer

1 Clifford wrote: ” The chief classification of geometric algebras is into those of odd and even dimensions
“[17] (italics added).
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graphics, robotics, etc.[ll, 21, 22] The idea of the horosphere is not at all new, it was
already defined by $\mathrm{F}.\mathrm{A}$ . Wachter (1792-1817), an assistant of Gauss.[23]

Based on the conformal model, a number of computer programs have been developed
for various applications, using object oriented programming languages, such as $\mathrm{C}++$ and
Java.[ll, 12, 24, 25] The description of points, pairs of points, lines, planes, circles and
spheres is of great elegance, just using one, two, three or four points. (In the case of lines
and planes one of these points will be at infinity.) But a yet unsolved question is, whether
we can find in the conformal model a similarly elegant description for conic sections, only
using the five general points $A$ , $B$ , $C$, $D$ , $E$ (comp. Fig. 8) which Grassmann used.

The answer will be worked out in this paper. We will find, that in the conformal
model, the implementation of Grassmann’s formula for the conic sections given by five
general points in the plane is indeed possible. But so far the resulting description will
continue to be “quadratic” in each point and not “linear”. This is in contrast to the
“linear” descriptions of e.g. circles (and lines) in the conformal model.

2 Euclidean description of plane conic sections

2.1 Cone and plane

Plane conic sections are simply the curves of intersection of a cone and a plane. This
can be beautifully visualized with colorful, interactive Cinderella[3] created Java applets.
Suitable exported applets allow to freely manipulate the position and orientation of the
plane in space (comp. Fig. 1) $.[4,5,6]$ Cinderella’s Spherical view (a central ball projection
to the surface of a ball) allows even to visualize what happens at infinity. In this view it
is seen that parabolas close at infinity, but hyperbolas remain divergent.

2.2 The semi-latus rectum formula
A wellknown formula for the unified analytic description of ellipses, parabolas and hyper-
bolas is the semi-latus rectum $fo$ rmula. The radial distance $|\mathrm{r}|$ of a point on a conic
curve from a focus point in the direction of $\hat{\mathrm{r}}$ $-/$ $|\mathrm{r}|$ is given by

$| \mathrm{r}|=\frac{l}{1+c*\hat{\mathrm{r}}}$ , (1)

where the semi-latus rectum is defined as the length of the excentricity vector (perpen-
dicular to the directrix, attached to the focus), times the length of the distance of the
focus from the directrix

$l=|\epsilon$ $||\mathrm{d}|$ (2)

The asterisk product in eq. (1) means the scalar product of vectors. Depending on the
scalar magnitude of the excentricity we obtain for

$\mathrm{o}$ $|\epsilon|<1$ an ellipse,

$\mathrm{o}$ $|\epsilon$ $|=1$ a parabola,

$\mathrm{o}$ $|\epsilon$ $|>1$ a hyperbola.
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Figure 1: Conic (inter)sections: a) Point, b) pair of intersecting straight lines, c) circle,
d) ellipse, e) parabola, f) hyperbola.

The semi-latus rectum formula can again be colorfully visualized with a Cinderella created
applet (compare Fig. 2) $.[4,5,6]$ It is possible to interactively change the directrix, the
focal distance, the excentricity, and vary the radial direction by moving a point on the
directrix. The semi-latus rectum $l$ appears as the distance between the focus, and the
intersection point of the conic section with a line parallel to the directrix through the
focus. This happens precisely when the scalar product in eq. (1) vanishes, i.e. when $\hat{\mathrm{r}}$ is
parallel to the directrix.

2.3 Polar angle description of ellipse
The polar angle parameter description of an ellipse is perhaps the most common descrip-
tion of the ellipse studied already in highschool. Usually two mutually orthogonal vectors,
the semi-major axis vector a and the semi-minor axis vector $\mathrm{b}$ with

a $*\mathrm{b}=0\Leftrightarrow$ a 1 $\mathrm{b}$ (3)

are linearly combined with trigonometric coefficients to give the distance of a point on
the ellipse in the direction specified by the polar angle ?

$\mathrm{r}=$ a $\cos\varphi+$ $\mathrm{b}$ $\sin\varphi$ . (4)

Cinderella created Java applets$[4, 6]$ both allow to see an animation with the polar angle
$\varphi$ as animation parameter, and an interactive version where the two. semi-axis, and the
polar angle $\varphi$ can be changed at will (compare Fig. 3).
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Figure 2: Semi-latus rectum formula: a) Ellipse, b) parabola, c) hyperbola.

c)

Figure 3: Polar angle parameter description an ellipse: a) polar angle in first quadrant,
b) polar angle in third quadrant with change of $|\mathrm{b}|$ , c) changing the semi-axis.
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Figure 4: Coplanar circular description of ellipse: a) $1=0$, b) $0<\varphi<\pi/2$ , c) $\varphi=\pi/2$ .

2.4 Coplanar circle description of ellipse
The description of an ellipse by means of a linear combination of two circular motions in
one plane (coplanar) is very instructive. Especially engineering students learn in this way
an easy-tO-apply method for generating elliptical motions from circular motions:

$\mathrm{r}=\mathrm{r}_{+}+\mathrm{r}_{-}$ , (5)

with the first circular motion in the unit bivector \’i-plane of the geometric algebra of the
embedding vector space

$\mathrm{r}_{+}=\mathrm{r}_{+0}\exp(\mathrm{i}\varphi)$ (6)

and the second circular motion with opposite sense of rotation in the same i-plane

$\mathrm{r}_{-}=\mathrm{r}_{-0}\exp(-\mathrm{i}\varphi)$ . (7)

That for fixed $\mathrm{r}_{+0}$ and $\mathrm{r}_{-0}$ the trajectory of $\mathrm{r}$ describes indeed an ellipse can be intuitively
illustrated with Cinderella created applets$[4, 6]$ , both interactively (with free interactive
choices of $\mathrm{r}_{+0}$ , $\mathrm{r}_{-0}$ and $\varphi$ ) and animated (compare Fig. 4).

2.5 Non-coplanar circle description of ellipse
It is further possible to describe an ellipse as a linear combination of two circular motions in
two planes of different orientation (non-coplanar). The two circular motions are supposed
to have equal amplitude, frequency and phase. The two circle planes are characterized in
the geometric algebra of Euclidean three space by their respective unit bivectors $\mathrm{i}_{1}$ and $\mathrm{i}_{2}$ .
That the planes are not coplanar means, that the intersection (or meet) will be a linear
one-dimensional subspace represented by the vector

a $=\alpha \mathrm{i}_{1}\vee \mathrm{i}_{2}=at$ $\mathrm{i}_{1}\llcorner(i\mathrm{i}_{1})$ , (8)

where the symbol ”
$\llcorner$

” represents the right contraction [26] and $i$ the grade three pseu-
doscalar of the geometric algebra of three-dimensional Euclidean space. The real scalar $\alpha$

allows to change the length and orientation of $\mathrm{a}$. The symbol a in (8) for the vector along
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Figure 5: Non-coplanar circle description of ellipse: a) $0<$ $\varphi$ $<\pi/2$ , b) $3\pi/2$ $<p$ $<2\pi,$

c) changed orientation of planes.

the intersection of the two planes indicates rightly, that it will serve as the semi-major
axis vector of the ellipse to be generated. The semi-minor axis vector will be

$\mathrm{b}=\frac{1}{2}\mathrm{a}(\mathrm{i}_{1}+\mathrm{i}_{2})$ . (9)

The formula for the ellipse to be generated is

$\mathrm{r}=\frac{1}{2}\mathrm{a}\{\exp(10)+\exp(\mathrm{i}_{2}\varphi)\}$, $0\leq\varphi<2\pi.$ (10)

The ellipse generated according to (10) can be illustrated by interactive or animated
Cinderella created applets. $[4, 6]$ The intereactive construction allows to change the length
of a and the individual orientations of the planes. The dependence of the semi-minor axis
(9) on the two plane bivectors $\mathrm{i}_{1}$ and $\mathrm{i}_{2}$ is thus well visualized (compare Fig. 5).

2.6 Conic sections as second order curves
Cinderella’s Locus mode is very suitable for visualizing the fact that conic sections are
equivalent to second order curves according to the formula

$\mathrm{r}(\lambda)=\frac{\mathrm{a}_{0}+\mathrm{a}_{1}\lambda+\mathrm{a}_{2}\lambda^{2}}{\alpha+\lambda^{2}}$ , (11)

with the vectors $\mathrm{a}_{0}$ , $\mathrm{a}_{1}$ , $\mathrm{a}_{2}$ . The values of the real scalar $\alpha$ decide wether the resulting
quadratic curve is for

0 $\alpha>0$ an ellipse,

$\circ$ $\alpha=0$ a parabola or

0 $\alpha<0$ a hyperbola.

The real scalar A parametrizes the curves. Interactive Cinderella created applets$[4, 6]$

allow to freely vary the vectors $\mathrm{a}\mathrm{o}$ , $\mathrm{a}_{1}$ , $\mathrm{a}_{2}$ and the scalars $\alpha$ and A. One kind of animation
allows to show how the curves a swept out by the vector $\mathrm{r}$ of $\mathrm{e}\mathrm{q}\mathrm{u}$ . (11) with A as the
animation parameter, (compare Fig. 6)
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Figure 6: Conic sections are second order curves: a) $\alpha>0$ ellipse, b) $\alpha=0$ parabola,
c) $\alpha<0$ hyperbola. Apart from the complete curves, the graphs show the vec-
tors $\mathrm{a}_{0}$ , $\mathrm{a}_{1}$ , $\mathrm{a}_{2}$ and $\mathrm{a}$ .linear combination of the three vectors with scalar coefficients
$\neg_{\alpha+\lambda}1\mathrm{g}$ , $\neg_{\alpha+\lambda\alpha+\lambda}\lambda\lambda^{2}\mathrm{a}_{1,\neg}\mathrm{a}_{2}$ for a certain value of A.

3 Projective description of plane conic sections
3,1 Pascal’s mystic hexagon
Blaise Pascal (1623-1662, Fig. 7) researched the foundations of hydrodynamics, stating
that the pressure is the same at all points in a fluid. This is the basis for hydraulic lifts. [27]
But Pascal is also famous for his works in mathematics, both in theory and application.
He developed and sold e.g. a calculator machine. In his religious writings he famously
stated[28] :

If God does not exist, one will lose nothing by believing in him, while if he
does exist, one will lose everything by not believing.

Our present point of interest is Pascal’s work on conic sections. At the age of 16 he found
what is now called “Pascal’s mystic hexagon” or less glamorous “Pascal’s theorem”:

If a hexagon (ABCDEX) is inscribed in a conic section, then the three points
( $S_{1}$ , $S_{2}$ and $\mathrm{S}_{3}$ ) where opposite side (lines) meet are collinear.[7]

The theorem is illustrated[7, 4, 6] in Fig. 8. The theorem is equally true for all plane
conic sections previously mentioned.

Formally speaking Pascal’s theorem belongs to the field of “higher geom etry,” “geom-
etry of position,” “descriptive geometry,” or in modern terms to “projective geometry.”
The six basic axioms of projective geometry are easy to understand[29]:

$\mathrm{o}$ If $A$ and $B$ are distinct points on a plane, there is at least one line containing both
$A$ and $B$ .

$\mathrm{o}$ If $A$ and $B$ are distinct points on a plane, there is not more than one line containing
both $A$ and $B$ .
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Figure 7: Blaise Pascal (1623-1662)[28]

Figure 8: Pascal’s mystic hexagon: a) ellipse[7], b) parabola, c) hyperbola.



38

Point $=$ Intersection of lines
$s_{1}$

$S_{2}$

$S_{3}$

$XA$ and $CD^{-}$

AB and DE
$BC$ and $EX$

Table 1: Construction of $S_{1}$ , $S_{2}$ , and $S_{3}$

$\circ$ Any two lines in a plane have at least one point of the plane (which may be the
point at infinity) in common.

$\mathrm{o}$ There is at least one line on a plane.

$\mathrm{o}$ Every line contains at least three points of the plane.

$\mathrm{o}$ All the points of the plane do not belong to the same line.

3.2 Conic sections from five points
Pascal’s construction of Fig. 8 can be interpreted in two important ways, an analytic and
a constructive way. The analytic interpretation was given in the introduction.

The constructive interpretation means using the theorem for the construction of a
conic section from five general points on a plane. Assume five points $A$ , $B$ , $C$, $D$ , $E$ to
be given. Construct the four lines AB, $BC$, $CD$, DE and the point of intersection $S_{2}$

of the lines AB and DE. Next draw any line $g$ through the point $S_{2}$ and construct the
intersection points $S_{1}$ and $S_{3}$ of the line $\mathrm{g}$ with $CD$ and $BC$, respectively. After that draw
the lines $S_{1}A$ and $S_{3}$E. According to Pascal’s theorem the point $X$ of intersection of the
lines $SiA$ and $S_{3}E$ is also a point on the conic section. By conducting this construction for
every angle of the line $g$ through the point 52, $X$ will sweep out the whole conic section.
This can be interactively realized with a Cinderella created applet.

A consequence is, that any point $X$ in the plane will be part of the conic section iff
it can be reached by changing the angle of line $g$ through point $S_{2}$ . Therefore to decide
whether a point $X$ is on the conic section or not, we only need to check, whether Si, $S_{2}$ ,
and $S_{3}$ are collinear (on $g$) or not. The positions of $S_{1}$ , and $S_{3}$ in this examination will
critically depend on the position of $X$ (compare Table 1).

3.3 Grassmann’s formula
Grassmann used precisely this method for obtaining his “equation of a conic section that
goes through the five points $A$ , $B$ , $C$, $D$ , $E$ , no three of which lie on the same straight
line” [8].

For this purpose he stated: “By planimetric multiplication I mean relative multipli-
cation in the plane as a domain of third order, ...” [8] This hint to the plane as a domain
of third order is very important, because it shows that Grassmann actually expands the
plane projectively by adding an extra dimension, commonly interpreted as the origin.

Grassmann further obtains the expression AB of a line from the outer product of
two points $A$ and $B$ on the line. Grassmann omits the product symbol. Therefore the
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expression AB comes to mean both the product of two projective points $A$ and $B$ that
results in an algebraic representation of a line and the common symbolic representation
AB of a line through two points $A$ and $B$ .

Let us go into further geometric and algebraic details. The three-dimensional basis of
the projective space of a plane is given in terms of three orthonormal vectors $\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{0}\}$ .
The first two vectors span the familiar non-projective Euclidean plane. The third vector
$\mathrm{e}_{0}$ , is the additional third dimension for lifting the origin to $\mathrm{e}_{0}$ . We represent a point in
the Euclidean plane by a linear combination of $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ :

a $=a_{1}\mathrm{e}_{1}+a_{2}\mathrm{e}_{2}$ , (12)

where $a_{1}$ and $a_{2}$ are simply the twO-dimensional Cartesian coordinates. The projective
representation[13] of the point $A$ is obtained by adding $\mathrm{e}_{0}$

$A=$ a $+$ $\mathrm{e}_{0}$ . (13)

Projective points are homogeneous, i.e. $\lambda A$ represents the same point. The Euclidean
equivalent of a projective point $A$ is obtained by

$\mathrm{a}=\frac{A-A*\mathrm{e}_{0}\mathrm{e}_{0}}{A*\mathrm{e}_{0}}$ , (14)

I now deliberately introduce the product symbol ”
$\Lambda$

” for the exterior product in order to
ease he distinction of the symbolic representation of a line AB and Grassmann’s algebraic
representation A $\Lambda B$ . The exterior product is antisymmetric:

$A\wedge B=(\mathrm{a}+\mathrm{e}_{0})\wedge(\mathrm{b}+\mathrm{e}_{0})=$ a $\Lambda \mathrm{b}+(\mathrm{a}-\mathrm{b})\Lambda \mathrm{e}_{0}$ . (15)

a $\Lambda \mathrm{b}$ is the moment bivector of a line and $(\mathrm{b}-\mathrm{a})$ is its direction vector. The two
entities suffice to construct the line.[ll] Grassmann’s planimetric product of two lines AB
and DE can be realized in the geometric algebra of the projective three-dimension$\mathrm{a}1$ space
spanned by $\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{0}\}$ by

$S_{2}=(A\Lambda B)\llcorner$ [I3 $(D\Lambda E)$ ], (16)

where the symbol ”
$\llcorner$

” represents the right contraction [26] and $I_{3}=\mathrm{e}_{1}\Lambda \mathrm{e}_{2}\Lambda \mathrm{e}_{0}=\mathrm{i}\mathrm{e}_{0}$

is the volume 3-vector of the projective space ( $\mathrm{i}=\mathrm{e}_{1}\Lambda \mathrm{e}_{2}$ is the unit bivector of the
Euclidean plane spanned by $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ ) . $[I_{3}(D\Lambda E)]$ results in the dual complement vector
perpendicular to the projective line bivector DAE. Finally the right contraction with the
line bivector $A$ $\Lambda B$ results in the element $S_{2}$ in the line A $\Lambda B$ , which is perpendicular to
[I3 ($D\Lambda E$)] in $A\wedge B$ , and therefore also contained in $D\Lambda E$ . Inserting (13) and simplifying
the expressions algebraically, we get for the intersection

$S_{2}=\lambda_{2}\mathrm{s}_{2}+\lambda_{2}\mathrm{e}_{0}=$ (a -b) $[\mathrm{i}(\mathrm{d}\wedge \mathrm{e})]-(\mathrm{d}-\mathrm{e})[\mathrm{i}(\mathrm{a}\Lambda \mathrm{b})]+\mathrm{i}[(\mathrm{d}-\mathrm{e})\Lambda(\mathrm{a}-\mathrm{b})]\mathrm{e}_{0}$ (17)

In projective geometry points are identical up to scalar factors. We therefore divide by

$\lambda_{2}=\mathrm{i}$ [( $\mathrm{d}$ - e) $\Lambda$ $(\mathrm{a}-\mathrm{b})$ ] $=(d_{1}-e_{1})(a_{2}-b_{2})-(d_{2}-e_{2})(a_{1}-b_{1})$ (18)
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to get according to eq. (14) the plane Euclidean vector

$\mathrm{s}_{2}=\frac{1}{\lambda_{2}}\{(\mathrm{a}-\mathrm{b})[\mathrm{i}(\mathrm{d}\wedge \mathrm{e})]-(\mathrm{d}-\mathrm{e})[\mathrm{i}(\mathrm{a}\wedge \mathrm{b})]\}$ (19)

Inserting coordinates (13) we explicitly get

$\mathrm{s}_{2}=\frac{1}{\lambda_{2}}\{(d_{1}e_{2}-d_{2}e_{1})(\mathrm{a}-\mathrm{b})-(a_{1}b_{2}-a_{2}b_{1})(\mathrm{d}-\mathrm{e})\}$ (20)

In the very same way Grassmann calculates $S_{1}$ and $S_{3}$ by planimetric products as
$S_{1}=(X\Lambda A)\mathrm{L}$ [I3 $(C$ $\Lambda D)$ ], $S_{\theta}=(B\Lambda C)\mathrm{L}$ [I3(D $\wedge X)$ ], (21)

So we can finally express the collinearity of Si, $S_{2}$ and $S_{3}$ by

$S_{1}\Lambda S_{2}\wedge S_{3}=0,$ (22)

i.e.

$\{(X\wedge 4)\llcorner[I_{3}(C\Lambda D)]\}\Lambda$ { $(A\wedge B)\llcorner$ [I3 $(D\Lambda E)]$ } $\Lambda$ { $(B\Lambda C)\llcorner$ [I3 $(E\wedge X)]$ } $=0.$ (23)

This is Grassmann’s formula for the conic sections through five general points $(A,$ $B$ , $C$, $D$ ,
$E)$ in a plane expressed in the geometric algebra of the projective space $\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{0}\}$ . Every
point $X$ , that fulfills equation (23) will be on the conic section. The equation is quadratic
in $X$ and in all of the five points $A$ , $B$ , $C$, $D$ , $E$ . With the help of the anticommutator ”

$\mathrm{x}$

”

$B_{1} \mathrm{x}B_{2}=\frac{1}{2}$ ( $B_{1}B_{2}-$ B2BX) (24)

we can rewrite (23) as

$\{[(X\wedge 4)\mathrm{x}(C\wedge D)]\mathrm{x}[(A\wedge B)\mathrm{x}(D\Lambda E)]\}\Lambda\{I_{\theta}[(B\wedge C)\mathrm{x}(E\wedge X)]\}=0.$ (25)

4 Conformal geometric algebra description of plane
conic sections

4,1 Grassmann’s formula for the conformal model
The five-dimensional conformal model [10, 11, 12, 13, 14] adds to the three-dimensional
Euclidean space two dimensions: one for representing the origin and one for representing
infinity. This is done by introducing two null-vectors, which square to zero and are
perpendicular to the vectors of Euclidean space:

$\{\overline{\mathrm{n}}, \mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{n}\}$, (20)

where $\overline{\mathrm{n}}$ and $\mathrm{n}$ represent the origin and infinity, respectively. The conformal representation
of a point $A$ is obtained by adding two contributions

$A=$ a $+ \frac{1}{2}a^{2}\mathrm{n}+\overline{\mathrm{n}}$ , (27)
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with $a^{2}=$ aa. A straight Euclidean line AB in the conformal model is given by the outer
product of wo points on the line with infinity forming the trivector

$A$ $\Lambda B\Lambda \mathrm{n}=$ a $\Lambda \mathrm{b}\wedge \mathrm{n}+(\mathrm{b}-\mathrm{a})N=\mathrm{m}_{\mathrm{l}}\mathrm{n}+\mathrm{d}_{1}N$ , (28)

where the unit bivector $N=\mathrm{n}\Lambda\overline{\mathrm{n}}$ represents the additional two dimensional (Minkowski)
space. A point $X$ is on the line AB iff

$X\Lambda$ A $\Lambda B\Lambda \mathrm{n}=0.$ (29)

Similarly the line DE is given by the trivector

$D\Lambda E\wedge \mathrm{n}=\mathrm{d}\Lambda \mathrm{e}\Lambda \mathrm{n}+(\mathrm{e}-\mathrm{d})N=\mathrm{m}_{2}\mathrm{n}+\mathrm{d}_{2}N$ , (30)

where $\mathrm{m}_{1}$ and $\mathrm{m}_{2}$ are the Euclidean moment bivectors of the lines AB and DE, and the
vectors $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$ are their direction vectors, respectively. The intersection $S_{2}^{c}$ of two lines
AB and DE is obtained in a fashion very similar to (16)

$S_{2}^{c}\wedge \mathrm{n}=(A\wedge B\wedge \mathrm{n})\llcorner[I_{4}(D\Lambda E\wedge \mathrm{n})]$ , $S_{2}^{c2}=0,$ (31)

where $I_{4}=$ iN, with \’i being the bivector that represents the plane shared by $A$ , $B$ , $D$ and
$E$ .

We now perform a detailed calculation of the right side of the first equation of (31) in
order to show that the special form of the bivector on the left side is indeed justified. (A
reader less familiar with geometric algebra may skip this calculation.)

$(A\wedge B\Lambda \mathrm{n})\mathrm{L}[I_{4}(D\wedge E\Lambda \mathrm{n})]=$ $(30)$ $+\mathrm{d}_{1}N)\mathrm{i}N(\mathrm{m}_{2}\mathrm{n}+\mathrm{d}_{2}N)\rangle_{2}$

$=\langle \mathrm{m}_{1}\mathrm{n}\mathrm{i}N\mathrm{m}_{2}\mathrm{n}+\mathrm{m}_{1}\mathrm{n}\mathrm{i}N\mathrm{d}_{2}N+$ dlNiNm2n $+\mathrm{d}_{1}N\mathrm{i}N\mathrm{d}_{2}N\rangle_{2}$

$=\langle \mathrm{i}\mathrm{m}_{\mathrm{l}}\mathrm{n}7\mathrm{V}\mathrm{n}\mathrm{m}_{2}+\mathrm{i}\mathrm{m}_{1}\mathrm{n}\mathrm{d}_{2}N+\mathrm{d}\mathrm{i}\mathrm{i}\mathrm{m}2\mathrm{n}+\mathrm{d}_{1}\mathrm{i}\mathrm{d}_{2}N\rangle_{2}$

$=\langle 0-$ imid2n $+$ im2din $+\mathrm{i}\mathrm{d}_{1}\mathrm{d}_{2}\overline{\mathrm{n}}\wedge \mathrm{n}\rangle_{2}$

$=\langle--\mathrm{i}\mathrm{r}\mathrm{o}_{1}\mathrm{d}_{2}+\mathrm{i}\mathrm{m}2\mathrm{d}\mathrm{i}\mathrm{n}\langle \mathrm{i}\mathrm{d}_{1}\mathrm{d}_{2}\rangle_{0}\mathrm{i})_{1}$ $\wedge$ n.
$\lambda_{2}\mathrm{s}_{2}$ -A2

(32)
(33)
(34)
(35)
(36)

Angular brackets with an integer grade index ( $\rangle_{k}$ , $k\geq 0$ refer to the operation of grade $k$

selection. The equality in (32) is a simple application of the definition of the contraction
of a vector $\mathrm{I}\mathrm{A}(\mathrm{D}\Lambda E\Lambda \mathrm{n})$ ( $=$ the dual of the trivector $(D\Lambda E\Lambda \mathrm{n})$ ) from the right onto
a trivector to the left.[26] The equality between lines (33) and (34) uses the following
identities: $\mathrm{m}_{1}\mathrm{n}\mathrm{i}=$ imin, $\mathrm{m}_{2}\mathrm{n}=\mathrm{n}\mathrm{m}_{2}$ , $N\mathrm{i}=\mathrm{i}N=I_{4}$ , and $NN=1.$ The equality
between the lines (34) and (35) uses the following identities: $\mathrm{n}N=$ n, nn $=0,$ and
hence $\mathrm{n}N\mathrm{n}=0.$ It further uses $\mathrm{n}\mathrm{d}_{2}=-\mathrm{d}_{2}\mathrm{n}$, $\mathrm{d}_{1}\mathrm{i}=-\mathrm{i}\mathrm{d}\mathrm{i}$, $\mathrm{d}_{1}\mathrm{m}_{2}=-\mathrm{m}_{2}\mathrm{d}_{1}$ , and that
$N=\mathrm{n}\Lambda \mathrm{i}$ $=-$ $\mathrm{i}$ $\Lambda \mathrm{n}$ is already a bivector. It remains to be observed that in line (36)
the entities $\mathrm{i}\mathrm{m}_{1}$ , $\mathrm{i}\mathrm{m}_{2}$ and $\langle \mathrm{i}\mathrm{d}_{1}\mathrm{d}_{2}\rangle_{0}=-\lambda_{2}$ are all scalars, whereas $\mathrm{d}\mathrm{i}$ , $\mathrm{d}_{2}$ and $\mathrm{i}$ are all
vectors.

The explicit calculation of (31) yields therefore

$S_{2}^{c}=- \lambda_{2}(\mathrm{s}_{2}+\frac{1}{2}s_{2}^{2}\mathrm{n}+ \mathrm{i})$ , (37)
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with the same Euclidean vector $\mathrm{s}_{2}$ as in equations (19) and (20). Note that $\mathrm{n}\wedge \mathrm{n}=0,$

but the term $(s_{2}^{2}/2)\mathrm{n}$ is inserted to fulfill $S_{2}^{c2}=0,$ the second part of (31). Similar to (31)
we obtain

$S_{1}^{c}\wedge \mathrm{n}=(X\wedge A \Lambda \mathrm{n})$ $\llcorner[I_{4}(C\wedge D\wedge \mathrm{n})]$ , $S_{1}^{c2}=0,$ (38)

and
$S_{3}^{c}\Lambda \mathrm{n}=(B\Lambda C\Lambda \mathrm{n})\mathrm{L}[\mathrm{h}\{\mathrm{E}\wedge X\wedge \mathrm{n})]$ , $S_{3}^{c2}=0.$ (39)

Using the three conformal points of intersection $S_{1}^{c}$ , $S_{2}^{c}$ and $S_{3}^{c}$ we can finally give the
equation for the conic sections through five general points on a plane in the conformal
model as

$S_{1}^{c}\Lambda S_{2}^{c}\Lambda S_{3}^{c}\Lambda \mathrm{n}=0.$ (40)

This is the conformal equivalent of Grassmann’s formula for conic sections, which in turn
has been seen to be based on Pascal’s theorem. Every conformal point $X=x+\mathrm{j}x^{2}$ $\mathrm{i}+\mathrm{n}$

that fulfills (40) is on the plane conic section through $A$ , $B$ , $C$, $D$ , $E$ . By construction,
equation (40) is again quadratic in $X$ and in all of the five points $A$ , $B$ , $C$, $D$ , $E$ .

4.2 Cirlces
This quadratic property of (40) is in contrast to the simpler representation of circles[ll]
by three conformal points $A_{1}$ , $A_{2}$ and A3

$A_{1}\Lambda A_{2}\Lambda 4_{3}$ . (41)

According to (28) straight lines are simply circles through infinity $\mathrm{n}$ . All points $\mathrm{X}$ on the
circle through $A_{1}$ , $A_{2}$ and A3 are simply obtained from

$X\wedge A_{1}\wedge A_{2}\wedge A_{3}=0.$ (42)

This equation is linear in $\mathrm{X}$ and in the three general defining points $A_{1}$ , $A_{2}$ and A3. The
explicit form of (41) becomes

$\frac{1}{2}(a_{1}^{2}\mathrm{a}_{2}\Lambda \mathrm{a}_{3}+a_{2}^{2}\mathrm{a}_{3}\Lambda \mathrm{a}_{1}+a_{3}^{2}\mathrm{a}_{1}\Lambda \mathrm{a}_{2})\mathrm{n}$

$+(\mathrm{a}_{3} \Lambda \mathrm{a}_{1}+\mathrm{a}_{2}\wedge \mathrm{a}_{3}+\mathrm{a}_{1}\Lambda \mathrm{a}_{2})\mathrm{n}-$ (43)
$+ \frac{1}{2}([a_{2}^{2}-a_{3}^{2}]\mathrm{a}_{1}+[a_{3}^{2}- a_{1}^{2}]\mathrm{a}_{2}+[a_{1}^{2}-a_{2}^{2}]\mathrm{a}_{3})N$ .

The expected first term $\mathrm{a}_{1}\Lambda \mathrm{a}_{2}\wedge \mathrm{a}_{3}$ will be zero, because we assume a circle in two
Euclidean dimensions2 and not three, i.e. the origin $\mathrm{i}$ will always be in the circle plane.
Separating off the circle center vector $\mathrm{c}$ and the radius $r(x_{1}^{2}=x_{2}^{2}=x_{3}^{2}=1)$

$\mathrm{a}_{1}=\mathrm{c}+r\mathrm{x}_{1}$ , $\mathrm{a}_{2}=\mathrm{c}+r\mathrm{x}_{2}$ , a3 $=\mathrm{c}+r\mathrm{x}_{3}$ , (44)

we finally get for (43)

$\mathrm{c}(\mathrm{c}\wedge I_{c})\mathrm{n}+\frac{1}{2}(r^{2}-c^{2})I_{\mathrm{c}}\mathrm{n}+I_{\mathrm{c}}\overline{\mathrm{n}}-\mathrm{c}I_{\mathrm{c}}N$ , (45)

$2\mathrm{A}$ more general treatment of circles in the conformal model in three dimensions is included in [12].
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where we set the bivector of the circle plain to

$I_{c}=(\mathrm{a}_{3}-\mathrm{a}_{2})\Lambda(\mathrm{a}_{1}-\mathrm{a}_{2})$ . (46)

Because we assume, that we are just dealing with the plane two dimensional case the
circle center $\mathrm{c}$ must also be in the $I_{c}$-plane (i.e. $c\Lambda I_{c}=0$) and hence

$A_{1}\wedge A_{2}\wedge A3$ $=$ [ $\frac{1}{2}(r^{2}-c^{2})\mathrm{n}+\overline{\mathrm{n}}-$ cN]Ic. (47)

We therefore see how (41) includes component by component the circle plane $I_{e}$ , the center
$\mathrm{c}$ and the radius $r$ . Equation (42) is a condition for all points $X$ on the circle (41). By
inserting $X= \mathrm{x}+\frac{1}{2}x^{2}\mathrm{n}+\overline{\mathrm{n}}$ into (42) we get after some algebra

$(\mathrm{x}-\mathrm{c})^{2}=r^{2}$ . (48)
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