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Fourier transforms of invariant functions
on finite reductive Lie algebras

Emmanuel LETELLIER

Abstract: Let G be a connected reductive group defined over F, with Lie algebra
G. We give two definitions of a Deligne-Lusztig induction for the @,-valued functions
on G(Fg) which are invariant under the adjoint action of G(Fq) on G(F,). The first
definition is based on the two-variable Green functions defined in group theoritical
terms (using £-adic cohomology) and then transfered to the Lie algebra by means of a
G-equivariant bijection Gun; — Gnii- The second one involves the Lie algebra version
of Lusztig’s character sheaves theory. We formulate a conjecture about a commutation
formula between Deligne-Lusztig induction and Fourier transforms. Using those two
definitions of Deligne-Lusztig induction, we establish this conjecture in almost all cases.
The importance of such a conjecture comes from the fact that it reduces {Let03b)] the
computation of the trigonometric sums {Spr76] on G(F,) to the computation of some
fourth roots of unity coming from Fourier transforms [Lus87] and the values of the
generalized Green functions defined by Lusztig.

Introduction

Let G be a connected reductive group over an algebraic closure F of the finite field F, with g
elements and let p be the characteristic of F. Assume that G is defined over Fy with associated
Frobenius endomorphism F. Then the Lie algebra G of G and the adjoint action of G on G are
also defined over Fy. We still denote by F the corresponding Frobenius endomorphism on G. We
then denote by G¥ (resp. GF) the set of the elements of G (resp. G) which are fixed by F. Let ¢
be a prime # p and let Q, be an algebraic closure of the field Qg of f-adic numbers. We denote
by C(GF) the Q,-vector space of Q,-valued functions on GF which are invariant under the adjoint
of GF on GF. Assume that p and g are large enough so that there exists a G-invariant biblinear
form p : G x G — F defined over Fy, and let ¥ : F, — @, be a non-trivial additive character of
Fy. Then the Fourier transform F : C(GF) — C(GT) with respect to the pair (u, ¥) is defined by
the following formula . o
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where f € C(GF) and = € GF. The functions of the form F9(£p), where o is the characteristic
function of a GF-orbit O of GF, form a basis of C(GF) and are called trigonometric sums. They
were first introduced by Springer [Spr71] [Spr76] in connection with the Q,-character theory of
finite groups of Lie type: it was shown by Kazhdan [Kaz77], using the results of [Spr76], that the
values of the Green functions of finite groups of Lie type can be expressed (via the exponential
map) in terms of the values of trigonometric sums of the form F (fo) with O semi-simple regular.



The first motivation of this work is to study trigonometric sums using the techniques developped
principally by Lusztig to study the irreducible Q,-characters of finite groups of Lie type. In
particular this suggests the existence of a “twisted” induction for Lie algebras which would fit
to the study of trigonometric sums, that is, which would commute with Fourier transforms. Gus
" Lehrer has proved [Leh96] that Harish-Chandra induction commutes with Fourier transforms,
suggesting thus to define the required twisted induction as a generalization of Harish-Chandra
induction. A natural reflex would be to adapt the definition of Deligne-Lusztig induction [DL76]
to the Lie algebra case, however the definition is not directly adaptable since there is no “action”
of the Lie algebra on the cohomology of Deligne-Lusztig varieties. The definition of Deligne-
Lusztig we give here uses the “character formula” where the “two-variable Green functions” are
defined in group theoritical terms and then transferred to the Lie algebra via a G-equivariant
homeomorphism from the nilpotent variety Gns onto the unipotent variety Guni. Our definition
of Deligne-Lusztig induction is thus available if such a map Gnyi — Guni is well-defined which is
the case if p is good for G [Spr69]. Let £ be the Lie algebra of an F-stable Levi subgroup L of
G and let RY : C(LF) — C(GF) denote the Deligne-Lusztig induction; the author conjectured the
following commutation formula

™ 'R% o F£ = eger F9 oRY

where F£ is the Fourier transforms with respect to (ulcxz, ¥) and eg = (~1)F+~70m(G) If L isa
Levi subgroup of an F-stable parabolic subgroup of G, then the fomula (*) is a result of G. Lehrer
- [Leh96] since in that case RS is the Harish-Chandra induction. Using the Lie algebra version of
Lusztig character sheaves theory, we have another definition of Deligne-Lusztig induction .which
does not involve any map Gnii — Guni (proving thus the independence of our definition of Deligne-
Lusztig induction from the choice of such a map). Using these two definitions of Deligne-Lusztig
induction, the above commutation formula is proved in many cases (including the cases where
the root system G does not have components of type Dy or where L is a maximal torus). Now
using the commutation formula (*), we can reduce the computation of trigonometric sums on G F
to the computation of some constants coming from Fourier transforms [Lus87] (called Lusztig’s
constants) and the computation of the generalized Green functions defined by Lusztig [Lus85] (a
preliminary version of these results is available from [Let03b]). The Lusztig constants have been
computed by Digne-Lehrer-Michel [DLM97] in the case of groups of type An, by Waldspurger
[Wal01] in the case of groups of type C,, and in the case of the special orthogonal groups SO, (F),
and by Kawanaka [Kaw86] in the exceptional cases Ej, Fy and G2. Moreover Lusztig has given
an algorithm which reduces the computation of the values of generalized Green functions to the
computation of some roots of unity whose values are known in many cases (Shoji has recently
computed these roots of unity in type An).

This paper is essentially a résumé of [Let03b]. In section 1, we study some properties of
algebraic groups and their Lie algebras related to the characteristic p in order to have an explicit
range of values of p for which the Lie algebra version of Lusztig character sheaves theory applies.
In sections 2 and 3, we give the two definitions of Deligne-Lusztig induction mentionned above. In
_ sections 4, we explain how the conjecture (*) reduces to verify a property on the Luzstig constants
" [Lus87] attached to the “cuspidal pairs” of the simple groups of classical type. In section 5, we give

a formula for the Lusztig constants attached to the “cuspidal pairs” of simple groups, genera]izing
a preliminary formula given in [DLM97] for the “regular” case. However our formula is not explicit
enough to verify the required property on Lusztig’s constants. So we have to use the results of
[DLM97], [Wal01]; we then see that only the case of the spin groups of type Dy, remains. Finally
we state our results concerning (*).



Notation 0.1. Let H be a linear algebraic group over F. If & € H, we denote by zs the semi-
simple part of z and by x, the unipotent part of . We denote by H° the neutral component
of H and by Zy the center of H. If z € H, the centralizer of z in H is denoted by Cg(z)
; it will be more convenient to denote the neutral component of Cy(z) by C&(z) rather than
by Cy(z)°. Let H = Lie(H) be the Lie algebra of H, for z € H, we denote by x, the semi-
simple part of z and by z, the nilpotent part of z. We denote by [,] the Lie product on H and
by z(H) := {z € H|Vy € H,|[z,y] =0}. We have an inclusion Lie(Zg) C z(H). U f: H - X
is a morphism of algebraic varieties over F, we denote by df its differential at 1.The adjoint
action of H — GL(H) is denoted by Ad = Ady and we put ad = ady = d(Ady); recall that
ad(z)(y) = [z, y]. Let K be a subgroup of H, by “H-orbit of H”, we shall mean “Ad(K)-orbit of
H” and if z € H, we denote bu OF the K-orbit of z. If z € M, then we denote by Cy(z) the
centralizer of z in H i.e. Cr{z) = {h € H|Ad(h)z = x} and by Cn(z) := {y € H|[z,y] = 0}. If
z € H is semi-simple, we have Lie(Cx(x)) = Cx(z) [Bor, 9.1].

Notation 0.2. Let now G be a connected reductive algebraic group over F with Lie algebra g.
We assume that G is defined over Fy, with ¢ a power of a prime p, and we denote by F the
corresponding Frobenius endomorphisms on GG and on G. If P is a parabolic subgroup of G, we
will denote by Up the unipotent radical of P and by Up the Lie algebra of Up. If P = LUp , with
corresponding Lie algebra decombosition P = L& Up, is a Levi decomposition in G, we denote
by mp: P — L and 7p : P — L the corresponding canonical projections. The letter 7' will denote
a maximal torus of G and its Lie algebra will be denoted by 7. The dimension of T is called the
rank of G and is denoted by r7k(G). As usual, we denote by X(T') the group of algebraic group
homomorphisms T' — F* and by & = &(T) ¢ X(T') the root system of G with respect to T. The
Z-sublattice of X (T') generated by ® is denoted by Q(®) and the Z-lattice of weights is denoted
by P(®). The group G is said to be semi-simple if Q(®) is of finite index in X(T") (which condition
is equivalent to Q(®) C X(T) C P(®) ) and G is said to be simple if it is semi-simple and if &
is irreducible. The group G is then said to be adjoint if X(T") = Q(®) and simply connected if
X(T) = P(®). Recall that an F-stable torus H C G of rank n is said to be split if there exists
an isomorphism H = (FX)" defined over F,. The F, rank of an F-stable maximal torus of G is
defined to be the rank of its maximum split torus. An F-stable maximal torus of G is said to be
G-split if it is maximally split in G. The Fg-rank of G is the F,-rank of its G-split maximal tori.
An F-stable Levi subgroup L of G is G-split if it has a G-split maximal torus; this is equivalent
of saying that L is the Levi subgroup of an F-stable parabolic subgroup of G.

1 About reductive groups and their Lie algebras

The following results are well-known, however their proof are not always easily available in the
literature. For complete proof of the following results which are not refered, see [Let03b]. The
following result gives a necessary and sufficient condition on p for Lie(Zg) C z(G) to be an equality:

Proposition 1.1. The following assertions are equivalent:
(i) the prime p does not divide |(X(T)/Q(®))
(i) Lie(Zg) = z(G).

tot'l'

This result has the following easy consequence:



Corollary 1.2. Assume G semi-simple and let G = G)...G, be the decomposition of G as a
product of simple algebraic groups Gi. If p does not divide | X (T)/Q(T)|, then G = @, Lie(Gs).

By a G-invariant bilinear form p on G, we shall mean a symmetric bilinear form p: Gx G — F
such that for any g € G, 7, y € G, we have u(Ad(g)z, Ad(g)y) = u(z,y). A well-known example
of such a form is the Killing form defined on G x G by (x,y) — Trace(ad(z) o ad(y)). As far asI
know, no necessary and sufficient condition on p for the existence of non-degenerate G-invariant
bilinear forms on G has been given in the literature. Here we give such a condition on p when G
is simple of type Ay, or when G is simply connected of type either By, Cy or Dy.

Recall that a prime is said to be good for G if it does not divide the coefficient of the highest
root of ®. If a good prime for G does not divide |P(®)/Q(®)], it is said to be very good for G.
Recall that if ® does not have irreducible components of type Ay, then the very good primes for
G are the good ones.

From [SS70, 1, 5.3], it is known that if G is simple and if p is very good for G, or G = GLn(F),
then there exists a non-degenerate G-invariant bilinear form on G. Using a Lie algebra isomorphism
G ~ Lie(Z¢) ® (G/Lie(Zg)), it follows from 1.2 applied to G/Z, that the above result can be
extended to the case of reductive groups, that is if p is very good for G reductive, there exists a
non-degenerate G-invariant bilinear form on G. We have the following proposition:

Proposition 1.3. Assume G simple and let (*) be the proposition “there exists a non-degenerate
G-invariant bilinear form on G”.

(i) If G is of type An, then (*) holds if and only if p is very good for G or p divides both
|X(T)/Q(®)| and |P(®)/X(T)|-

(i) If G is simply connected of type either By, Cy or Dy, then (*) holds if and only if p is
good for G.

Note that the restriction to z(G) of a non-degenerate G-invariant bilinear form on G might be
degenerate, this happens for instance if we take the form (z, y) — Trace(zy) on G with G = G Ly (F)
and p|n. However if p is very good for G, this situation does not happen, more precisely we have:

Proposition 1.4. Assume that p is very good for G and let u be a non-degenerate G-invariant
bilinear form on z(G) ® (G/z(G)) = G. Then the subspace z(G) is the orthogonal complement of
G/2(G) in G with respect to . In particular, the restrictions of p to 2(G) and to G/2(G) remain
non-degenerate. ‘ .

Lemma 1.5. [Leh96, proof of 4.9] Let u be a non-degenerate G-invariant bilinear form on G. The
restriction of u to any Levi subalgebra is still non-degenerate.

Now let L be a Levi subgroup of G with Lie algebra £. Note that if z € G satisfies C&(z) = L,
then € z(L). Define
2(L)reg = {z € G| C&(z) = L}.

Proposition 1.6. (i) Ifp is good for G, then for any semi-simple element x € G, the group C&(z)
is a Levi subgroup of G.

(i) If p is good for G and if p does not divide |(X(T)/Q(2)) torl then for any Levi subgroup
L of G, the set 2(L)reg is not empty.



The assertion 1.6(i) comes from the fact that for z € Lie(T), the set {a € ®|da(z) =0} is a
Q-closed root subsystem of @ [Slo80, 3.14]. The assertion 1.6(ii) is proved using 1.6(i) and 1.1.

2 Twisted induction: a first definition

For a full detailed version of this section, see [Let03a)].

Assumption 2.1. In this section, we assume that p is good for G so that there eists a G-
eguivariant homeomorphism ¢ : Gy — Gun; defined over F,, where G acts by the adjoint action
on the nilpotent variety Gniy and by conjugation on the unipotent variety Gyn;.

Lemma 2.2. [Bon02, Lemma 8.2 For any Levi decomposition P = LUp in G with corresponding
Lie algebra decomposition P = L & Up, we have:
('i) a([mﬂ) = Luni: _ _
. (i) for any z € Ly, ¢(z +Up) = ¢(z)Up.

For a variety X over F, we denote by H:(X,Q,) the i-th group of £-adic cohomology with compact
support as in [Del77}.

Let L be an F-stable Levi subgroup of G, let P = LUp be a Levi decomposition of a (possibly
non F-stable) parabolic subgroup P of G and let P = L &Up be the corresponding Lie algebra
decomposition. We denote by L¢ the Lang map G — G,z + 27 F(z). The variety L5 (Up) is
endowed with an action of G¥ on the left and with an action of L¥ on the right. These actions
induce actions on the cohomology and so make H}(Lg!(Up),Q,) into a GF-module-L¥. The
virtual Q,-vector space H} (L' (Up)) := 3 (~=1)*HHLZ (Up), Qp) is thus a GF-module-L¥.

The two-variable Green function Qf-_c.,, : GFy x LF, — Z is defined by
QZcrp(u,v) = |LF|™ Trace (§(v), #(v) )| Hi(Lg' (UP))) -

We “extend” this function to a function S¢_p : GF x LF — @, as follows: for (r,y) € GF x LF,
define

S¢cplz,y) = 3 1C2 () F1ICE (ys) 171 Q2 ) (Ad(R™Y)2n, yn)-
h€GFIAd(h)yu=2

Remark 2.3. (i) If (u,v) € GE, x LE,, then S¢p(u,v) = |LF|Q% p(u,v).

(ii) The function S‘C;C'P is the Lie algebra analogue of the function GF x LF — @, given by
(9,1) = Trace((g, [)]H2 (LG (Up))) es it can be seen from [DM91, 12.3].

Definition 2.4. The Deligne-Lusztig induction RYp : C(LF) — C(GF) is defined by:

Recp(N@) = ILFI7 Y 8T p(2,9)f(y) for f € C(LF) andz € GF.
yeLF

Deligne-Lusztig induction satisfies the following elementary properties analogous to the group
case:



Proposition 2.5. (i) If P is F-stable, then Rgc? coincide with Harish-Chendra induction, that
18
Récp(N@) =PI 3 f(np(4d(g)a)).

9EGT|Ad(g)zePF
(i) Deligne-Lusztig induction is transitive, and satisfies the Mackey formula.

(i%) R%CP does not depend on P, and commutes with the duality map.

3 Twisted induction: a second definition

Starting from [Lus87] and by adapting Lusztig’s ideas to the Lie algebra case, we have a Lie
algebra version of Lusztig’s character sheaves theory under the condition “p is acceptable” (see
below) leading to the definition of a twisted induction which is better adapted to the study of
Fourier transforms. This section is a dense résumé of [Let03b, Chapter 3).

In the following assumption, by a cuspidal pair of G, we shall mean a cuspidal pair (S,£) of
G in the sense of [Lus84, 2.4] such that S contains a unipotent conjugacy class of G.

Assumption 3.1. In this section, we assume that p is acceptable for G i.e. that p satisfies the
Jollowing conditions:

(i) p is good for G.

(i) p does not divide |(X(T)/Q(®)),,. |-

(iii) There exists a non-degenerate G-invariant bilinear form u on G.

(iv) p is very good for any Levi subgroup of G supporting a cuspidal pair.

(v) There exists a G-equivariant isomorphism @ : Gnig — Guni.

The following result can be easily deduced from the results of section 1 and the classification of
the cuspidal data of G [Lus84]:

Lemma 3.2. (i) If p is acceptable for G, then it is acceptable for any Levi subgroup of G.
(i) If p is very good for G, then it is acceptable for G.
(iii) All primes are acceptable for G = GL,(F).
(w) If G is simple, the very good primes are the acceptable ones for G.

3.1 Admissible complexes (or character-sheaves) on G

Notation 3.3. Let X be a variety over F. We denote by Sh(X) the abelian category of Q,-sheaves
on X and we denote by @, the constant sheaf on X. We denote by 'DZ(X ) the bounded “derived
category” of Q,-(constructible) sheaves as in [BBD82, 2.2.18]. By a complez on X we shall mean
an object of DY(X). For K € D!(X), the i-th cohomology sheaf of K is denoted by HK. If
f: X — Y is a morphism of varieties, we have the usual functors f,. : Sh(X) — Sh(Y) (direct
image), fi : Sh(X) — Sh(Y) (direct image with compact support), f* : Sh(Y') — Sh(X) (inverse
image) and the functors Rf, : D3(X) — DY(Y), Rfi : DY(X) — DA(Y) and Rf* : DY(Y) — DE(X)
as in [Gro73, Exposé XVII]. The functors Rf., Rfi, Rf* commute with the shift operations [m)]
(if K € Db(X), the m-th shift of I is denoted by K [m]; for any integer i, we have H'(K[m]) =
HF™K). If there is no ambiguity we will denote by f., fi and f* the functors Rf,, Rfi and Rf*.
We denote by M(X) the full subcategory of D¥(X) consisting of perverse sheaves on X. Recall



that M(X) is abelian. Note that if X is smooth of pure dimension, then for any ¢ € ls(X), the
complex £[dim X] is a perverse sheaf on X. For a locally closed smooth irreducible subvariety
Y of X together with a local system £ on Y, we denote by IC(Y,€) € DE(Y) the corresponding
intersection cohomology complex defined by Goresky-MacPherson and Deligne [BBD82]. Then
the complex IC(Y,£)[dimY] is a perverse sheaf on Y; moreover it is simple if £ is irreducible.
Recall that any simple perverse sheaf on X is of the form j; (IC(Y,£)[dimY]) with j: ¥ < X for
some (Y, £) as above with ¢ irreducible.

Notation 3.4. Let H denote a connected linear algebraic group over F acting algebraically on
X. Let Shg(X) (resp. Mpy(X)) be the category of H-equivariant sheaves (resp. H equivariant
perverse sheaves) on X. They are respectively full subcategories of Sh{X) and M(X). If r :
H x X — X is the second projection and p : H x X — X is the action of H on X, then the
H-equivariant sheaﬁes, resp. the H-equivariant perverse sheaves, on X can be identified with
{¢ € SMX)|7*({) =~ p*(¢)}, resp. {K € M(X)|n*(K) =~ p*(K)}. We denote by Isy(X) the full
subcategory of Is(X) consisting of H-equivariant local systems on X.

Notation 3.5. Assume that X is defined over F, with Frobenius endomorphism F : X — X.
A complex (or sheaf) K on X is said to be F-stable if F*(K) is isomorphic to K. An F-
equivariant complex (resp. sheaf) on X is & pair (K,¢) with K € D3(X) (resp. K € Sh(X))
and ¢ : F*(K) 5 K an isomorphism. The morphisms of F-equivariant complexes {or sheaves)
are the obvious ones. If (K,¢) is an F-equivariant complex on X, we define the characteristic
function Xk,¢ : XF — Q, of (K,¢) by Xx o(z) = 3;(—1)"Trace(¢:, HiK) where ¢% is the
automorphism of H K induced by ¢. If (€, ¢) is an F-equivariant sheaf on X, the characteristic
function Xg 4 : XF — Q, of (£,4) is then defined by Xg¢(z) = Trace(¢z&:). If (X,9)
and (K',¢’) are two isomorphic F-equivariant complexes (or sheaves), then their characteristic
functions are equal. Let (X, ¢) and (K’, ¢') be two F-equivariant simple perverse sheaves (or two
irreducible local systems) on X such that K =~ K’, then ¢ = c¢' for some ¢ € @: . If moreover if
¢ =1, then (K, $) =~ (K',¢'). Now let H and p be as in 3.4. If H and p are both defined over F,,
then the characteristic function of any F-equivariant H-equivariant perverse sheaf (or sheaf) on
X isan H F_invariant function on X ¥,

Notation 3.6. If ¥ is a G-stable (for the adjoint action) locally closed, smooth, irreducible subset of
G and if £ is a G-equivariant local system on £, then we will denote by K(Z, £ ) the G-equivariant
perverse sheaf j) (IC(T, £)|dim £]) where j : & < G.

3.7. We define the parabolic induction of equivariant perverse sheaves as in [Lus87]: let P be a
parabolic subgroup of G and LUp be a Levi decomposition of P. Let P = L&Up be the correspond-
ing Lie algebra decomposition. Recall that mp : P — L denotes the canonical projection. Define
Vi ={(X,h) € G x G| Ad(h~1)X € P} and V2 = {(X,hP) € G x (G/P)| Ad(h~1)X € P}. Then
we have the following diagram

LIV Zvy Zhg

where 7/(X,hP) = X, 7'(X,h) = (X, hP), n(X,h) = np(Ad(h~1)X). Let K be an object in
M (L). The morphism 7 is smooth with connected fibers of dimension m = dim G + dimUp and
is P-equivariant with respect to the action of P on V; and on £ given respectively by z.(X, h) =

(X,hz"1) and z.X = Ad(rp(z))X. Hence m*K [m] is a P-equivariant perverse sheaf on V; and
since 7’ is a locally trivial principal P-bundle there exists a unique perverse sheaf K on V, such
that 7*K[m] = (7')* K|dim P]. Now we define the induced complex ind$ K of K by ind%c.pK =
(7)1 K € DE(G). This process defines a functor ind%cp from the category M (L) of L-equivariant



perverse sheaves on £ to DY(G). It K € M5 (L) is such that ind%c,,K € M(G) then 'md%c-PK is
automatically a G-equivariant perverse sheaf on G; indeed the morphisms =, 7’ and n” are all G-
equivariant if we let G acts on V; and V3 by Ad on the first coordinate and by left translation on the
second coordinate, and on L trivially. Note that if P, L and K are all F-stableandif¢ : F*I{ — K
is an isomorphism, then ¢ induces a canonical isomorphism %) : F‘(indgcpK )= indgcpK such
that RE(Xx,¢) = Xindg Kk, Where RY is the Harish-Chandra induction (see 2.5(i)).

3.8. Let (P,L,Z,£) be a tuple where P is a parabolic subgroup of G, L is a Levi subgroup of
P, ¥ = Z + C with C a nilpotent orbit of £ and Z a closed irreducible smooth subvariety of
2(L), and where £ is an L-equivariant irreducible local system on I. Let P = £ ® Up be the
Lie algebra decomposition corresponding to the decomposition P = LUp. Then the complex
ind%c-p (K(Z,€)) is a G-equivariant perverse sheaf on G. If moreover the local system £ is of the
form ¢ R £ with £ € IsL(C) and ¢ € Is(Z) such that ¢[dim Z] is of geometrical origin in the sense
of [BBDB82, 6.2.4], then the perverse sheaf indgc,, (K(Z,£)) is semi-simple.

3.9. Let (P,L,X,£) be as in 3.8 and assume moreover that Zyey := ZMz(L)yey # 8. In this situa-
tion, we can regard the perverse sheaf ind%c-p (K(Z, £)) as an intersection cohomology complex on
G as follows. Let Tyeg := Zreg+C and put Y = UgGG Ad(g)(Sreg). The subset Y is then locally
closed in G, irreducible and smooth of dimension dim G—dim L+dim X. We now construct following
[Lus84] a G-equivariant semi-simple local system on Y: we have a diagram & - =, Y, N Y
where Y1 := {(X,g) € G x GJAd(g™1)X € Sreg}, Yo := {(X,gL) € G x (G/L)|Ad(g™1)X € e}
and a(X,g) = Ad{g~1)X, o/(X,g) = (X,9L), a"(X,g) = X. Denote by ¢; the irreducible L-
equivariant local system a*(€) on Y; (with respect to the action of L on Y given by z.(X,g) =
(X, gz 1)). The L-equivariance of §; implies the existence of a unique irreducible local system
& on Y3 such that (o/)*& = £. Since a” is a Galois covering with Galois group Wg(X), the
stabilizer of T in Ng(L)/L, the sheaf (a"').£2 is a semi-simple local system on Y. Now G acts
onY by Ad, on Y; and Y2 by Ad on the first coordinate and by left translation on the second
coordinate, and on X trivially; the morphisms «, o’ and o” are then G-equivariant from which
we deduce that (a”).£; is G-equivariant. The complex ind§(£) := K(Y,(e").£a) is thus a G-
equivariant semi-simple perverse sheaf on G and each direct summand is G-equivariant. Now as
in the situation of [Lus84, 4.5), we show that there is a canonical isomorphism

indgc'p (I{(E, 8)) :’ lndg(f")

Notation 3.10. Consider the non-trivial additive character ¥ : F} — @: fixed in the introduction.
We denote by Al the affine line over F. Let h : A’ — A! be the Artin-Shreier covering defined
by h(t) = t9 —t. Since h is a Galois covering of A with Galois group F,, the sheaf h.Qyisa
semi-simple local system on A! on which Fy acts; we denote by Ly the subsheaf of h,@Q, on which
Fg acts as ¥~!. There exists an isomorphism ¢, : F*Lyg = Ly such that for any integer i > 1,
we have X“’d,g; =WoTrg /v, Fo — Q; , see [Kat80, 3.5.4].

3.11. We are now in position to define the admissible complexes (or character sheaves) on
G [Lus87]. Let C be a nilpotent orbit on G and ¢ an irreducible G-equivariant local system on
C. One says that the pair (C,() is cuspidal if for any proper Levi decomposition P = LUp in
G, we have (1p)1(K(C,¢)lp) = 0. By a cuspidal orbitel complez, we shall mean a complex of
the form K(O,£) with O = ¢ + C, £ = Q, R ( where (C,() is cuspidal and ¢ € z(G). By a
cuspidal admissible complez, we shall mean a complex of the form K (X, £) whith £ = z(G) + C,



€ = m*Lg B ( where (C,() is cuspidal and m : 2(G) — F is a F-linear form. If L is a Levi
subgroup of G such that £ supports a cuspidal pair, then we say that L is a cuspidal Levi subgroup
of G. We say that (L,X,€) is a cuspidal datum of G if L is a (cuspidal) Levi subgroup of G and if
K(Z,€) is a cuspidal admissible complex on £. Finally, we define the admissible complezes on G
to be the G-equivariant simple perverse sheaves on G which are direct summand of the complexes
of the form ind%(é‘) with (L, T, €) a cuspidal datum of G.

3.12. We have the following fundamental result: let (L,%,€) and (L',%’,£’) be two cuspidal
data of G. Then the complexes ind%(é‘) and indg/(f,") have a common direct summand if and
only if (L,%,€) and (L', %', £’) are G-conjugate (i.e. there exists g € G such that L' = gLg™?,
3 = Ad(g)T and Ad(g)*&’ is isomorphic to &), in which case we have indg(f)) ~ indg,(é").

3.2 Endomorphism algebra of ind%(€)

Let (L, %, £) be a cuspidal datum of G. Let Ng(€) := {n € Ng(L)| Ad(n)T = L, Ad(n)*€ ~ &}
and let Wg(€) be the finite group Ng(€)/L. We use the notation of 3.9.

Following [Lus84] and [Lus85, 10.2], we are going to describe the endomorphism algebra A :=
End(ind$(£)) in terms of Wg(€). Let w € Wg(€) and let &, : Y2 = Y; be the isomorphism
defined by 8,,(X,gL) = (X, gi~!L) where 1 denotes a representative of w in Ng(£); the map
8, does not depend on the choice of the representative 1 of w. We have the following cartesian
diagram:

"

T2y, %,y ,y

Au) | fu | 5 | 1]

):;h_"'__yl__i'._,yz.__?."__,y

where f;(X, g) = (X, gw™!). From the above diagram we see that any isomorphism Ad(w)*€ = £
induces a canonical isomorphism 8,€; = £2; conversely since o : Y; — I, is a trivial principal
G-bundle if G acts on Y; by left translation on both coordinates and on I, trivially, the functor
a* : Sh(Zrey) — She(Yy) is an equivalence of categories and so any isomorphism &3,& =~ &
defines a unique isomorphism Ad(w)*€ ~ £. Using o o 8%, = o/ we identify the one dimensional
Q,-vector space A, of all homomorphisms 8% — £, with a subspace of .A. From the previous
discussion, we have a natural injective Q,-linear map Hom(Ad(w)*&, £) — A.

For each w € Wg(E), we choose a non-zero element 8y, of A,,. Note that for w,w' € Wg(£), we
have d,, 08y = 8y.. Hence for any w, w' € Wg(E), we have 8, 00%,(6y) € Ayw. We thus havea
well-defined product on €D,, ey, ¢y Aw given by 8u.0y: := 800}, (8w). This makes D, ey () Aw
into a Qg-algebra. Then as in [Lus84, Proposition 3.5}, we show that Buewge) Av = A 8s Qe
algebras.

3.3 F-stable admissible complexes

3.13. Let (L,T,€) be an F-stable cuspidal datum of G i.e. F(L) =L, F(X) = L and F*£ ~ €,
and let ¢ : F*£ = £ be an isomorphism. For any w € Wg(€), we choose arbitrarily a non-zero
element 8, € A, C A, see previous subsection. We fix an element w of W¢/(€) together with
a representative w of w in Ng(€). By the Lang-Steinberg theorem there is an element z € G
such that 2~1F(z) = w™!. Let L, := zLz~? and let £, be its Lie algebra. Then L,, and
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T = Ad(2)T are both F-stable. Let £, be the local system Ad(z7)*£. We now define an
isomorphism ¢y, : F*&, = &, in terms of ¢. The automorphism 6, defines an isomorphism
€ ~ Ad(W)*€ leading to an isomorphism (*) F*Ad(z~1)*& ~ F*Ad(z~1)*Ad(w)*€. Since we
have Ad(w) o Ad{(z7?) o F = F o Ad(z™!), the isomorphism (*) gives rise to an isomorphism
h: F*Ad(z71)*E = Ad(z~1)*F*£. Then the isomorphism ¢, : F*€,, ~ &, is Ad(z™1)*(¢) o h.

We denote by ¢9 : F* (ind€ (£)) = ind{(€) the natural isomorphism induced by ¢ and by ¢F :
F* (indgw(&u)) 5 ind%m (€w) the natural isomorphism induced by ¢y,. As in [Lus85, 10.6], there
is a natural isomorphism j : ind%m (Ew) S ind%(€) such that the following diagram commutes.

P (indgm (gw)) PO g (indg(a))

l«aﬁ, io,..o¢°

indgw (Ew) — ind§,(€)

As a consequence we get that Xindg (£),8um0d® = Xi“dgm (Eu)dl"

3.14. Let (L,%,€) be a cuspidal datum of G, let K9 = ind$(£) and let A = End(KS9). If
A is a simple direct summand of K€, we denote by V4 the abelian group Hom(A4, K 9). Then
V4 is endowed with a structure of A-module defined by 4 x V4 — Vg4, (a,f) — ao f; since
A is a simple perverse sheaf, the A-module V, is irreducible. We have a natural isomorphism
€ 4(Va ® A) 5 K9 where A runs over the set of simple components of K¢ (up to isomorphism).
For any z € G and any integer i, it gives rise to an isomorphism (*) @ ,(Va ® HLA) = HLKS
under which an element v ® a € V4 ® Hi A corresponds to vi(a) where vi : HiA — HLKY is the
morphism induced by v: A — K9.

Assume now that the datum (L, %, £) is F-stable and let ¢ be an isomorphism F*€ ~ £. The
complex K9 is thus F-stable and we denote by ¢9 : F*K¥9 5 K9 the isomorphism induced by ¢.
Let A be an F-stable simple direct summand of K9 together with an isomorphism ¢4 : F*4 5 A.
This defines a linear map 04 : V4 — Va, v — ¢9 o F*(v) 0 ¢3' such that for any z € GF and
any integer i, the isomorphism 04 ® (9a). : V4 ® HLA S V4 ® HLA corresponds under (*) to
(¢9)% : HEKS 5 HiKSY. On the other hand, if B is a simple component of K9 which is not
F-stable, then (¢9)% maps Vg @ HL B — M. K¥ onto a different direct summand. It follows that,

3.15.
XKG'¢Q = ZTI(O‘A, VA)XA,¢,\
A

where A runs over the set of F-stable simple components of K9 (up to isomorphism). If for
w € We(E), we replace ¢9 by 6y, o ¢9 with 8y, as in 3.13 and we keep ¢4 unchanged, then the
formula 3.15 becomes

3.16.
X6 8,096 = O Th(0 004, Va)Xag4-
A X .

Following {Lus86, 10.4} we deduce that

3.17.
Xags=Wa@EI D (0w o 0a)™,Va)Xko p,00¢
weWe(€)

for any F-equivariant complex (4, ¢4) with A a simple direct summand of X g



. We use the notation of 3.13; by 3.13 and 3.17 we get that

3.18.
Xaga =MW1 Y. Te((6wooa)?, Va)Xinag (£.).68
wWEWg(E)

for any F-equivariant admissible complex (A, ¢ 4) with 4 a simple direct summand of K.

3.19. Let A be an F-stable admissible complex on . By 3.12, there is a unique {up to G-
conjugacy) cuspidal datum (L, Z, £) of G such that A is a direct summand of ind%(£). Hence from
Lang’s theorem, we may choose (L, Z, £) to be F-stable; we thus have a formula like 3.18 for any
F-equivariant admissible complex (4, ¢4) on G.

3.20. Let I(G) be a set parametrizing the isomorphic classes of the F-stable admissible complexes
on G. For ¢ € I(G), let (4,,¢,) be a corresponding F-equivariant admissible complex on G. Then
by the main result of [Lus87], the set {X 4, ¢,|¢ € 1(G)} is a basis of C(GF).

3.4 Twisted induction: a second definition

3.21. Let M be an F-stable Levi subgroup of G and let M be the Lie algebra of M. We define
our twisted induction R, : C(MF) — C(GF) on each element of a basis {Xa,6.lt € IIM)} of
C(MF) as in 3.20. Let + € I(M) and let (L, 3, ) be an F-stable ‘cuspidal datum of M such that
A, is a direct summand of ind}!(€). Let ¢: F*£ 5 € be an isomorphism. For w € Was(€), let
6w be a non-zero element of € A, C End(ind$!(£)). As in 3.18 we have

3.22.

Xaso =Wu(E)™ 37 Tr(6w 0 0) ™ Va) Xinagr (6a), ot
wEW (E)

Then we define Rﬁ,,(XA.,.ﬁ,.) by

3.23.

R.%A (Xa.0.) = IWM(e)I—l Z Tr((6w 0 04,) 7, Va, )xindgw (Ew) S
wEWn (€)

Definition 3.24. The induction defined above is called geometrical induction.

Remark 3.25. (i) Note that the definition of RS, : C(MF) — C(GF) does not depend on the choice
of the isomorphisms ¢, with ¢ € I(M)F. Indeed, let R’ i,, be the induction defined on another
basis {X4,,¢;|¢ € I(M)F} and let ¢« € I(M)F. Since A, is a simple perverse sheaf, there exists
a constant ¢ € Q, such that ¢, = c¢;. Let o)y, : Va, — Vg, be defined in terms of ¢M, ¢/ as
0.4, is defined in terms of M, ¢,. We thus have o4, = c~1oY,. Hence for any w € Wy (E), we
have (6w © 04,)™! = c(6y 0 0’y )~! and s0 from 3.23, we get that R§, (X4, 4) = cR’g,, (Xa4,,0)
But since X4, ¢, = cX4,,¢:, this proves that RS, (X4, 4.) = R’gA(XA“M). It is also clear that
the induction RﬁA does not depend on the choice of the isomorphisms ¢ : F*& = & and on the
choice of the isomorphisms 8,, € A,. The independent from the choice of the F-stable cuspidal
data (L, X, £) is a little bit more subtle, see remark before 3.28.

11
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(i) If (M, T, £) is an F-stable cuspidal datum of G together with an isomorphism ¢ : F*£ ~ £,
then
R4 (Xk(z.6).8) = Xinag(e),49-
(iii) Note that unlike Deligne-Lusztig induction, the definition of geometrical induction does
not involve any parabolic subgroup of G.

3.26. The following fact is clear: assume that X%, : C(MF) - C(GF) is a Qj-linear map such
that for any F-stable cuspidal datum (L, X, £) of M and any isomorphism ¢ : F*£ ~ £, we have
XS4 (Xinagt6),6m) = X (¢),g0- then X5y = B,

3.27. For any F-stable cuspidal datum (L, £, £) of M and any isomorphism ¢ : F*€ ~ £, we have
RSy (Xinage(£r,0m) = Xinag(6),65°
As a straightforward consequence of 3.27, we get that the geometrical induction is transitive

and together with 3.26 we get that the formula 3.23 does not depend on the choice of the cuspidal
datum (L, X, £). .

Theorem 3.28. Assume that g is large enough so that the main result of [Lus90] applies. Then
Deligne-Lusztig induction and geometrical induction coincide.

Outlined of the proof: Since Deligne-Lusztig induction is transitive, by 3.26, it is enough to
prove that these two inductions coincide on the characteristic functions of F-equivariant cuspidal
admissible complexes. Recall that if (L,E,f.‘) = (L,z(L)+C,Q, R C) is an F-stable cuspidal
datum of G together with ¢¢ : F*¢ = (, the corresponding generalized Green function Qg:,c.(,m :
GE, — Qq is defined as the restriction to Gy of X, g ) oo Where ¢9 is the canonical isomorphism
induced by 1® ¢¢ : F*€ = €£.

Now let (L,%,&) = (L,2(L) + C,m*Ly ® ¢) be an F-stable cuspidal datum of G and let
¢ : F*€ 5 £ be an isomorphism. Let o,u € G¥ with ¢ semi-simple and u nilpotent such that
[o,4] = 0. Assume that z € G¥ is such that Ad(z~!)o € 2(£). Then put L; = zLz™! and
Ly = Lie(L,). We have o € z(£) and so L, is a Levi subgroup of Cg(0). Let C; = Ad(z)C and
let (Cz, ¢c. ) be the inverse image of the F-equivariant sheaf (£, ¢) by Cz — I, v - Ad(z~1)(o+v).
Note that the irreducible local system {; is isomorphic to Ad(z~1)*¢. Then as in [Lus85, 8.5] we
show the following character formula:

- Cg
(1) Xpugerge@+0) =G 3 @@, w.
2€GF|Ad(z-Y)o€2(L)

The main result of Lusztig [Lus90}, giving (in the group case) a comparaison formula between the
two-variable Green functions and the generalized Green functions, can be transfered to the Lie
algebra case by mean of the isomorphism ¢ : G4 = Guni. Using this comparaison formula together
with the character formula (1), we show that RY (XrE.e)e)(o +u) = deg(e)"pg (o0 +u) =
RZ(Xx(z.6))(0 +u) O

4 Fourier transforms and Deligne-Lusztig induction

In the following, for any F-stable Levi subgroup L of G, the Fourier transforms F£ : C(LF) —
C(LF) is taken with respect to (ulcxc, ¥) as in the introduction. In [LetO3b}, the author has

conjectured the following statement:



Conjecture 4.1. For any F-stable Levi subgroup L of G, we have F9 072% = eGeLRg o F£ where
€= (_I)F,,-—ra.nk(G').

From now we assume that p is acceptable and that ¢ is large enough so that Deligne-
Lusztig induction coincides with geometrical induction. It is then clear that 4.1 is equivalent to:

Conjecture 4.2, For any F-stable Levi subgroup L of G supporting an F-equivariant cuspidal
admissible complez (K, ¢), we have FS o RE (X 4) = eceLRE o F*(Xk.p)-

We denote by F9 : Mg(G) — Mg(G) the Deligne-Fourier transforms with respect to (u, ¥)
that maps K € Mg(G) onto (pr2)i((pr1)*K ® u*Ly)[dimG] where pry,pra : G x G — G are
the two projections. Recall that if (K, ¢) is an F-equivariant complex, then there is a canonical
isomorphism F(¢) : F*(F9K) — FPK such that Xrox,ry = (—1)99|GF |3 F9 (X ). If L
is a Levi subgroup of G supporting a cuspidal pair, then by 1.4 any F-linear form on 2(L) is of
the form m, : 2(L) — F, z — u(z,0) for some o € 2(L). Now from [Lus87], for any cuspidal
datum (L, %, €) = (L,2(£) + C,(m—,)* Ly B () of G where o € 2(L) we have F£(K(Z,£))
K(o+ C,Q,R(). As a consequence we get that 4.2 is equivalent to:

Conjecture 4.3. For any F-stable Levi subgroup L of G supporting an F-equivariant cuspidal
orbital complez (K, ¢), we have F¥ o RY (X k. ¢) = egerRE o FE (X 3).

We want to prove that the statement 4.3 is actually equivalent to:

Conjecture 4.4. For any F-stable Levi subgmup L of G supporting an F-stable cuspidal pair
(C,¢) and any isomorphism ¢ : F*¢ = {, we have FEoRE (X (cc),0) = €ceLRI0FE (X (ci0).6)-

Note that 4.4 is a particular case of 4.3. The fact that 4.3 and 4.4 are equivalent comes from
the following theorem:

Theorem 4.5. Let (L,C,() be such that L is an F-stable Levi subgroup of G and (C,() is an
F-stable cuspidal pair of L. Then there is a constant c € @: such that for any o € z(L)F and
any ¢ : F*(K,) = K, where K, = K(oc + C,Q,®¢) , we have

F9o Rg(x;",,¢) = C'R.g O}-C(X]{".¢).

About the proof of 4.5: When the variety z(L) is used as a parametrizing set of the cuspidal
orbital complexes on L of the form K (o + C,Q, R (), it is denoted by S. Let 2Z; = S x z(L)
and 2 = {(z,2)jz € 2(£)} C § x 2(L). Then L acts on Z; x C and on Z x C by the adjoint
action on C and trivially on the first coordinate. Consider the following F-stable irreducible local
systems: €1 = (i5(z)) Lo ®( € lsp (21 x C), where p,(c) is the restriction of p to 2(L) x (L), and
& = QR € ls1(22xC). Let o € z(L)F, we put Iy » == K (2(£) +C, (m,)* Ly V() and Ky, :=
K, as in 4.5. Clearly we have (jo.c) K1 = Ki,,[dimS) and (jo.c)" K2 = Ka,0[dimS] where
Jo,c i L = Sx L,z (0,2). Following [Wal01, Chapter 2], one has a functor ind§xg » : Mr(S x
L) — DY(S x G) generalizing the construction of indgc.p, see 3.7. From [Wal01}, the complexes
K$x9 = indg:gm(K 1) and K5*9 := indg';%’,,(K 2) are simple perverse sheaves on S x G. More

precisely since {(s,z) € 21|z € z(L)yeg} and {(s, z) € 22|z € 2(L)req} are non-empty, we can show
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[Wal01], following the strategy of 3.9, that the complexes K $%9 and K$*9 are the perverse

extensions of F-stable irreducible local systems on some F-stable locally closed subvarieties of G
in particular Kf"g and Kﬁgxg are both F-stable. Let ¢y : F*(I{1) ~ K1 and ¢ : F*(K3) ~ Ko
be two isomorphisms, and let 5% : F*K5*9 ~ K5%9 and ¢5*9 : F*K35*9 ~ K5*9 be the two
isomorphisms induced respectively by ¢; and ¢2. As in the proof of 3.28, one has a “character
formula” [Let03b] expressing Xysxg ysx¢ and Xysxe ysxo in terms of the generalized Green
functions. Hence if we define the Deligne-Lusztig induction R3X% : C(SF x LF) — C(SF x ¢F)
by ReX9(f)(¢t,z) = |LF|? Yk 8% p(x,y)f(t,y) where Sgcp(z, y) is as in section 2, then we
show that

s _ Sxg —
Rs:%(meﬁx) = xKlsxc'q,.;rxc and RS:L(XK,,m) = XKf"",ntf"g'

Now one has a Fourier transform FS%9 : C(SF x GF) — C(S¥ x GF) given by F5*9(f)(t,z) =
IGF|-4 Y, egr ¥ (uly; 2)) f(t,y) and a Deligne-Fourier transforms FS*G s Mg(SxG) — Mg(Sx
G) given by FS*9(K) = (p13)1 ((p12)* K ® (p2s)* (u* L)) [dim G] where py3,p12 : SxGx G — Sx G
and po3 : S X G X G — G x G are the projections. We have the following relation: if (K, ) is an
F-equivariant complex on § x G , then ¢ induces an isomorphism F(¢) : F*(FS*9K) = FS*9K
such that
x}‘SxFK,]-'(¢) = (_1)dimGlgFi,}foG(XK#).

Also the Deligne-Fourier transform commutes with the parabolic induction ind3%9 p as it can be
seen from [Wal01, Chapter 2}, and FS*£(K,) ~ K;. Hence (¥) FS*X9(K5*9) ~ K39, Since our
perverse sheaves K %% and K3 *9 are simple, when taking the characteristic functions in (*), we
finally deduce that there exists a constant ¢ (which does not depend on o) such that

FS*G (REXG (X ra0)) = CREZE(FS*E (XK 2))-
Restricting this equality to {c} x GF, we get the required result O

4.6. The previous equivalences shows that, under the assumption “p is acceptable and g is large”,
we have reduced the study of 4.1 to that of 4.4.

4.7. Now let L be an F-stable Levi subgroup of G supporting an F-stable cuspidal pair (C,().
Since the group We(¢), defined as in 3.2 with ¢ instead of £, is nothing but W¢(L) := Ng(L)/L
[Lus84, 9.2], we get that there exists an F-stable G-split Levi subgroup L, of G which is G-
conjugate to L, and w € Wg(L,) such that (L, C,¢) is of the form ((Lo)w, (Co)w, ({o)w), see 3.13.
Put T =2(L)+C, Z, = 2(Lo) +Co, £ = Q,X¢ and & = Q, ®(,. From [Lus87], there exist two
constants v, v, € 7@: such that for any isomorphisms ¢ : F*({) ~ ¢ and ¢, : F*({,) =~ {, we have

F(X@eyame) =YXk o.6 80d F(Xk(2,,6.0,1800) = 10X K(Corto) do-

The constant < is called the Lusztig’s constant attached to (L,C,{) with respect to F. Let
e : We(Lo) — Q, be the sign character of Wg(Lo). :

Proposition 4.8. We have:
F9 o RE(Xk(c)0) = €aeLRE © FX (Xx(c,0).0)
if and only if v = egere(w)vo.

The proof of 4.8 uses the fact that Harish-Chandra induction commutes with Fourier trans-
forms; this has been proved at first by Lusztig [Lus87] in the case of cuspidal functions and then



by Lehrer in full generality [Leh9G). With the above notation, put § = nropy with 77 = €, /28
and g1 = (—1)"k(L/ZL), Then the equality 7 = egere(w)v, of 4.8 is equivalent to § = 7,. We call
% the modified Lusztig’s constant attached to (L, C,{) with respect to F. -

From 4.6 and the proposition 4.8 we deduce the following theorem:

Theorem 4.9. Assume that p is acceptable for G and that q is large enough so that Deligne- Lusztig
induction coincides with geometrical induction. Then the following assertions are equivalent:

(i) The statement 4.1 holds.

(i) For any F-stable iriple = (L, C,() with L a proper G-split Levi subgroup of G and (C,() a
cuspidal pair on L, the modified Lusztig’s constant attached to v does not depend on the Frobenius
wkF with w € Wg(L).

-5 Lusztig’s constants

Remark 5.1. The Lusztig constant attached to an F-stable maximal torus T is equal to (—1)”°(G)qm39‘,

hence does not depend on the Frobenius wF for w € Wg(T).

5.2. The statement 4.9(ii) can be easily reduced to the case where G is simple. Then using the
classification of the cuspidal data of simple algebraic groups [Lus84], we see that 4.9(ii) reduces
to:

Conjecture 5.3. Assume that:

(i) G is either semi-simple of type A, or simple of type By, Cy or Dy,

(i) p is very good for G, .

(i) G supports an F-stable cuspidal pair (C, ().
Then the modified Lusztig’s constants attached to (C, () does not depend on the Fy-structure on G
for which the induced Frobenius endomorphism stabilizes (C,() .

5.4. The statement 5.3 is clear if G is of type either By, or Cy, since in that case any Frobenius
endomorphism on G acts trivially on the root system of G. From now we assume that G is simple
and supports an F-stable cuspidal pair (C,(). We also assume that p > 3(h$ — 1) where A is
the Coxeter number of G. In the following we give a formula for the Lusztig’s constants attached
to (C,(). '

5.5. We fix an element u, € C¥ where C is as in 5.3. Under our assumption, we can use Dynkin-
Kostant-Springer-Steinberg’s theory on nilpotent orbits on G. Hence there exists an F-stable
Z-grading G = @, §(3) of G with the following properties: '

(1) uo € G(2).

(ii) P = @00 (i) is the Lie algebra of an F-stable parabolic subgroup P of G and £ = G(0)
is the Lie algebra of an F-stable Levi subgroup L of P,

(iii) G(2) is stable under the adjoint action of L and OL is dense in G(2).

(iv) Up = Bi>0G(3).

(v) The group Cy,.(u,) is unipotent and connected, and the group Cg(u,) is the semi-direct
product of Cr(u,) and Cy,(u,) as an algebraic group.

(vi) We have O N ( @i32 G(1)) = OF .

(vii) The pair (C,¢) being cuspidal, by [Lus84, 2.8] the element u, is distinguished i.e. the
map ad(u,) : G(0) — G(2) is bijective. Hence we have G(i) = {0} if 4 is odd i.e. Up = @;5, G(i),
and from (iii) we deduce that CZ(u,) = {0}. -
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5.6. We now define the generalized Gelfand-Graev functions following [Kaw85]. Let Ag(u,) =
Co(uo)/C&(u,) and let H(F, Ag(uo)) be the group of F-conjugacy classes of Ag(uo). By setting
that 1 € H(F, Ag(u,)) corresponds to the GF-orbit of u,, we have a well-defined parametrization
of the GF-orbits in CF by HY(F, Ag{u,)). From 5.5(v), we have Ag(u,) ~ Ar(u,), hence for
z € HY(F, Ag(u,)) = H'(F, AL(u,)), we can choose an element u, € G(2)F which is in the G¥-
orbit of C¥ corresponding to z. Let Up = €;<_,G(i), then for each z € H(F, AL(uo)), we
define a linear additive character ¥, : (Up)F — Q, by ¥, (u) = ¥ {p(uz, u)) where (u, ¥) is as in
section 4. The corresponding generalized Gelfand-Graev function T', : GF — @, is defined by:

T.(z) = [UF|™? > v, (Ad(g)z).
{g€GT|Ad(g)x€U,}

The G-equivariant irreducible local system ¢ corresponds to a unique F-stable irreducible character
(denoted again by {) of Ag(u,) which can be extended to a character on the semi-direct product
Ac(uo) % {F) where (F) is the cyclic group generated by the Frobenius F. The restriction to
Ag(u,).F of this extended character is constant on the Ag(u,)-orbits and so leads to a unique
function { on HY(F, Ag(u,)) ~ HY(F, AL(u,)). We then define a nilpotently supported function
T¢: GF — @e by: .

Te= Y |2l{(z)Ts.

2EHY(F,AL (1))

5.7. By [Lus92, 7.6}, the function I'¢ is proportional to the characteristic function of the F-
equivariant perverse sheaf (K(C,(),¢) for any ¢. As a consequence we get that:

FOI) =TT

where 4 denotes the Lusztig’s constant attached to (C,¢) with respect to F. From the clas-
sification of the distinguished parabolic subgroups of G, we can verify that the longest element
w, of Wg(T) (with T a maximal torus of L) normalizes L and Ad{w,) maps G(2) onto G(-2).
As a consequence O, N G(—2) # B and any element of OF, N G(~2) is distinguished with
associated parabolic subgroup P~ = LUp. Let u} € 05",1 NG(—2)F. From [Lus92, 6.13] we have
FOTe)(ws) = EMICa(uo)Flg= "= F" where by definition |1 = [{z~F(z)|z € Az (uo)}I-
Hence by 5.5(v), we deduce that:

F_ E(I)IIIICL(UO)FI —dimCgne) ‘""’C’;P‘“"’
- T(w) ! '

Hence the computation of 4F reduces to that of I'¢(us). For any z € H(F, AL(uo)) we have:

L)) = [UE™ S O.(Ad(g)ul) = ) ¥.(Ad(g)uy).

ge(P=)¥ geL”

These equalities come from 5.5(vi), 5-.5(iii) where (uo, P) is replaced by (ug, P7), and the fact that
the restriction of ¥, to @, _, G(i) is trivial. We thus get that:

Te(up)= 3. [206(2) X ¥ (Ad(D)w;).

2E€EHY(F,AL(10)) leLF

Let Lr : L — L, t — t~1F(t) be the Lang map. Then we have a surjective map

L : L11(CL(u0))/CL(u) — H'(F, Cr(uo)) = H'(F, AL (uo))



which maps tCL(u,) onto the F-conjugacy class.of t~*F(t). For z € H(F, Ar(u,)), let I, € L be
such that I71F(l,) = z where £ € CL(u,) is a representative of z, and u, = Ad(l:)u,. Then we
have a well-defined map ¢, : LF — Z-l(z) given by t + t1,CL(uo). This map is clearly surjective
and its fibers are all of cardinality a, = |{h € CL(uo)|h"12F(h) = }|.

For g € LL1(CL(uo)) and z € (Up)F, define 9T ,(z) := ¥ (u(Ad(g)uo, 7)) = ¥ (k(uo, Ad(g™ (2))) =

Uo(Ad(g™")z). We thus have:
Z ‘I’:(Ad(t)u;) = Z i Polug) =a. Z I\I’D(u;)'

teL” teLF 1L (2)
We finally deduce that:
Te(up) = |CL(uo)] > {(LW) o(us).

1€L7HCL(u0))/CL(u0)

Indeed we have a.|z] = |CL(u,)| since by 5.5(vii), we have Az(u,) = CrL(u,). Note that
L7}(C(uo))/CLluo) = (L/CL(us)) ™. We define the quantity:

o=l Y CEW)TAdu)

te(L/Cuue))”

where ¥ is the additive character of G(2)¥ defined by ¥}(v) = ¥(u(u},v)). Note that o¢ does
not depend on the choice of the extension of ¢ on Ag(u,) % (F). Since |1]|CL(uo)F| = |CL(uo)l,
we thus have:

5.8.
1 d
F=07l¢%
where d = dim Cy,. (u,) — dim Cz(u,).

From 5.8, we see that to prove 5.3, we are reduced to prove the analogous statement for the
constants o¢. The constant o¢ is computed explicitely in [DLM97] when G is of type An from
which we can verify the required property. Hence from 4.9, 5.4 and the computation of the Lusztig
constants in the case of SO, (F) [Wal01], we deduce the two following theorems:

Theorem 5.9. Assume that p > 3(hS — 1) and that q is large enough so that Deligne-Lusztig
induction coincides with geometrical induction. Assume moreover that every simple component of
G/Z¢ of type Dy, is either the special orthogonal group SOan(F) or the adjoint group of type D,
then 4.1 holds.

Theorem 5.10. Assume that p and q are as in 5.9. Let L be an F-stable Levi subgroup of G.
Let f be the characteristic function of an F-equivariant L-equivariant simple perverse sheaf (K, ¢)
which is supported by the Zariski closure of an L-orbit of L. If K is a direct summand of the
parabolic induction of a cuspidal orbilal perverse sheaf supported by a regular orbit, then

FI(RLUS)) = eceLRL(FE(S)).

Now a result of [Sho95] says that [Lus90, 1.14], which gives a relation between generalized
Green functions and two-variable Green functions, holds for any ¢ whenever the cuspidal Levi
subgroup is a maximal torus. Hence from 5.1, we have:

17



18

Theorem 5.11. The statement 5.10 holds for p acceptable and any q whenever the complez K is
a direct summand of the parabolic induction of a cuspidal orbilal perverse sheaf on the Lie algebra
of a mazimal torus of G.

If G is either GL,(IF), or a simple group of type Es, Fy or Ga, and if p is good for G, then the
only proper Levi subgroups which support a cuspidal pair are the maximal tori. Hence from 5.11
we have:

Corollary 5.12. Assume that G is either GL,(F) or a simple group of type either Eg, Fy or G,
and that p is good for G, then 4.1 holds.
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