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THREE-PLAYER GAME OF $‘ \mathrm{X}\mathrm{E}\mathrm{E}\mathrm{P}rightarrow \mathrm{O}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{E}\mathrm{X}\mathrm{C}\mathrm{H}\mathrm{A}\mathrm{N}\mathrm{G}\mathrm{E}$’

$\mathrm{b}(\mathrm{t}_{\theta}\mathrm{g}$
$(\mathrm{M}\mathrm{I}\mathrm{N}\mathrm{O}\mathrm{R}\mathrm{U}$ SAKAGUCHI* $)$

February 14, 2004 $\backslash$

$C!\tilde{6}\prime j$

ABSTRACT. A three-player sequential-move game with imperfect information is ana-
lyzae and the explicit solution is given. This work is the first extension of the present
author’s recent paper Ref. [8] to the three player games. The solution derived is surpris
ingly complicate in comparison with the one for the two player game. Our intuition,
that the lasbmovae has an advantage over the middle-mover, and the middle-mover,
in turn, has an advantage over the first mover, $\dot{\mathfrak{B}}$ proven $\mathrm{t}$ co that $\mathrm{T}\mathrm{h}\mathrm{r}\infty \mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\alpha$

simultaneous-move game is also solved. A $\infty \mathrm{n}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ for the solution to the four-player
game is guven.

1 ThreePlayer Games of ‘Score Showdown’. Consider the three players I II and
$\mathrm{m}$ (sometimes they are denoted by 1,2 and 3). Let $X_{i\mathrm{j}}(i= 1,2,3; =1,2)$ be the random
variable $(\mathrm{r}.\mathrm{v}.)$ observed by player $i$ at the $j$-th observation. We assume that $X_{\mathrm{i}\mathrm{j}}$ ’s are i.i.d.,
each with uniform distribution in $[0, 1]$ . The game is played in the three stages.

In the first stage, I observes that $X_{11}=x$ and chooses one of the either $A_{1}(\dot{\iota}.e.$ , I
accepts $x$) or $R_{1}$ ( $i.e.$ , I rejects $x$ and resamples a new $\mathrm{r}.\mathrm{v}$ . $X_{12}$). The observed value $x$ and
I’s choice of either $A_{1}$ or $R_{1}$ are informed to II and $\mathrm{m}$ . But $X_{12}$ is a $\mathrm{r}.\mathrm{v}$ . for the all players
(including I himself).

In the second stage, II observes that $X_{21}=y,$ and chooses either one of A2 (i.e., II
accepts $y$) or $R_{2}$ ($i.e.$ , $\mathrm{D}$ rejects $y$ and resamples a new $\mathrm{r}.\mathrm{v}$ . $X$22). The observed value $y$ and
$\mathrm{I}\mathrm{I}$’s choice of either $A_{2}$ or $R_{2}$ are informed to $\mathrm{m}$. But $X_{22}$ is a $\mathrm{r}.\mathrm{v}$. for $\mathrm{J}\mathrm{U}$, and ir himelf.

In the third stage, $\mathrm{m}$ observes that $X_{31}=z$ and chooses either one of A3 ( $i.e.$ , III
accepts $z$) or $R_{3}$ ( $i.e.$ , III rejects $z$ and resamples a new $\mathrm{r}.\mathrm{v}$. $X3$ ). X32 is a $\mathrm{r}.\mathrm{v}$. for $\mathrm{m}$

himself, that is, $\mathrm{m}$ doesn’t know its realized value until the showdown is made.
Let, for $i=1,2,$ 3,

(1.1) $S_{\dot{*}}(X_{i1},X_{2}\dot{.})=\{X_{1}X_{02}^{\cdot}$.. if $X_{\dot{\mathrm{z}}1}$ is $\{$
accepted
rejected by player $i$ ,

which we call the score for player $i$ .
After the third stage is over, the showdown is made, the scores are compared, and the

player with the highest score among the players becomes the winner. Each player aims to
maximize the probability of his (or her) winning. We assume that all players are intelligent,
and each player should prepare for that any subsequent player must use their optimal
strategies.

The three-player game of ‘Keep or-Exchange’ ($i.e.$ , the score is defined by (1.1)) is solved
in Section 3. The solution is found to be very complicate far more than expected. It is
compared with that of the two player case, given in Section 2. In Ref. [8] the other tw0-player
games of ‘Competing Averag\’e, where the score is
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and ‘Showcase Showdown’ where the score is

(1.3) $S_{i}(X_{1}\dot{.},X_{\dot{8}2})=\{$ $X_{i1}(X_{\dot{l}1}+X_{\overline{\iota}2})I(X_{i1}f X_{*2}.\leq 1)$ : if $\{$

$X_{\overline{\iota}1}$ is accepted
$X_{i2}$ is resanpled,

are solved. The three player game versions of these two player games remain to be solved
as yet. See also Ref. $[1\sim 7]$ .

Intuitively it would seem in the three player games, that the last-mover has an advantage
over the middle mover, and the middle mover, in turn, has an advantage over the first-
mover. Theorem 2 in the present paper shows that this intuition is correct in ‘Keep-0r-
Exchange’, where the score is (1.1). It is an inte resting work to investigate whether the
counter examples do exist or not.

Th $\infty$-player simultaneous-move game is solved in Section 4. A conjecture for the solu
tion to the fo$\mathrm{u}\mathrm{r}$-player game is given. We observe that player behaves more cautiolls as he
has more competitors.

2 $\mathrm{K}\mathrm{a}\mathrm{e}\mathrm{p}-\mathrm{o}\mathrm{r}\cdot \mathrm{E}\mathrm{x}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}$
$-\mathrm{T}\mathrm{w}\infty \mathrm{P}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}$ game. First we solve the two player game.

We will find, in the nffit sectioa that the three player game is surprisingly complicate to
solve, compared with in the two player case.

Let $W_{\dot{l}}(\dot{\epsilon}=1,2)$ be the event that player : wins. To find the players’ optimal strategies
we must derive them in reverse order. Define state $\{(\mathrm{H}(\mathrm{j};,’ \mathrm{H}3$ $\}$ for $\mathrm{I}\mathrm{I}$, to mean that I

$\{\begin{array}{l}\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{e}\mathrm{d}\mathrm{r}\mathrm{e}\mathrm{j}e\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}\end{array}\}$ $X_{11}=x$ in the first stage and II has just observed $\mathrm{X}2\mathrm{i}=y$ in the second
stage. Then we have
(2.1) $p_{2A}(y|x,A_{1})=P${ $W_{2}|\mathrm{I}\mathrm{I}$ accepts $\mathrm{X}2\mathrm{i}=y$ in state $(y|x,$ $4_{1})$} $=I(y>x)$ ,

(2.2) $p\mathit{2}R(y|x, A_{1})$ $=$ $P${ $W_{2}|\Pi$ rejects $X_{21}=y$ in state $(y|x,A_{1})$ }
$=$ $P(X_{22}>x$} $=X$ $\equiv 1-x,$ indep.of $y$ ,

(2.3) $hA(y|x, /?_{1})$ $=$ $P${ $W_{2} \prod$ accepts $\mathrm{X}2\mathrm{i}=y$ in state $(y|x,R_{1})$}
$=$ $P(X_{12}<y)=y,$ indep.of $x$ ,

and

(2.4) $p_{2R}(y|x, R_{1})$ $=$ $P${ $W_{2}|\mathrm{I}\mathrm{I}$ rejects $X_{21}=y$ in state $(y|x,R_{1})$ }
$=$ $P(X_{12}<X_{22})$ $= \frac{1}{2}$ , indep.of $x$ and $y$ ,

Theorem 1 The solution to the twO-player game with the score function (1.1) is as follows.
The optimal strategy for I in the first stage is given by:
(2.5) Accept $(Reject)X_{11}=x,$ if $x>(<)\sqrt{3}/8\approx$ 0.6124.

The optimal strategy for $\Pi$ in the second stage $\dot{\mathit{0}}e$ given by

(2.6) Accept (Reject) $X_{21}=y,$ if $y>(<)\{1/2x\}$ in state $\{(t(i |x,R_{1})|x,A_{1})$ $\}$ .
The optimal values are

(2.7) $P(W_{1})$ $=$ $\frac{1}{3}\{1+2(3/8)^{3/2}\}\approx 0$.ou
$P(W_{2})$ $=$ $1-P(W_{1})= \frac{2}{3}\{1$ $-(3/8)^{3/2}\}\approx$ 0.5136.

Proof is given in Ref. [8].
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3 $\mathrm{K}\mathrm{e}\mathrm{e}\mathrm{p}\cdot \mathrm{o}\mathrm{r}$-Exchange– Th en-Player game. Let $W_{i}$ be the event that player $i$

wins. To find the players’ optimal strategies, we must derive them in reverse order. Define

state $\{(z|xA_{1},yR_{2})(z|xA_{1},yA_{2})\}$ for III, to mean that I accepted $X_{11}=x$ in the first stage, II

$\{\begin{array}{l}\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{e}\mathrm{d}\mathrm{r}\mathrm{e}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}\end{array}\}$ $X_{21}=y$ in the second stage, and III has just observed $X_{31}=z$ in the third

stage. Also define the other two states $(z|xR_{1},yR_{2})$ and $(z|xR_{1},yA_{2})$ similarly. Then we
easily find that

(3.1) $P3A(z|xA_{1},yA_{2})$ $\equiv$ $P${ $W_{3}|\mathrm{I}\mathrm{E}$ accepts $X_{31}=z$ in state $(z|xA_{1},yA_{2})$}
$=$ $I(z>y)$ , (since II behaves optimally)

(3.2) $p_{3R}(z|xA_{1},yA_{2})$ $\equiv$ $P${ $\mathrm{W}_{3}|\mathrm{I}$ rejects $X_{31}=z$ in state $(z|xA_{1},yA_{2})$}
$=$ $P(X_{32}>y)=\overline{y}$ ,

(3.3) $p3A(z|xA_{1,j/}R_{2})$ $\equiv$ $P${ $W_{3}|\mathrm{I}\square$ accepts $X_{31}=z$ in state $(z|xA_{1},yR_{2}$)}
$=$ $I(z>x)P(z>X_{22})$ $=zI(z >x)$ ,

(3.4) $\mathrm{P}3R(z|xA_{1}, yR_{2})$ $\equiv$ $P${$W_{3}|\Pi$ rejects $X_{31}=z$ in state $(z|xA_{1},yR_{2}$ )}

$=$ $P\{X_{32}>(x\vee X_{22})\}$ $= \frac{1}{2}(1-x^{2})$ ,

(3.3) $\mathrm{P}3\mathrm{A}(z|xR_{1},yR_{2})$ $\equiv$ $P${ $W_{3}|\mathrm{m}$ accepts $\mathrm{X}_{31}$ $=z$ in state $(z|xRx$ , $yR_{2}$ )}
$=$ $P(z>X_{12}\vee X_{22})$ $=z^{2}$ ,

(3.6) $p_{3R}(z|xR_{1},yR_{2})$ $\equiv$ $P${ $W_{3}|\mathrm{I}\Pi$ rejects $X_{31}=z$ in state $(z|xR_{1},yR_{2}$ )}
$=$ 1/3, $\forall(x,y,z)$ ,

and

(3.7) $p_{3A}(z|xR_{1j/},A_{2})$ $\equiv$ $P${ $W_{3}|\mathrm{m}$ accepts $X_{31}=z$ in state $(z|xR_{1}$ , $y$A2)}
$=$ $I(z>y)P(z>X_{12})=zI(z>y)$,

(3.6) $p_{3R}(z|xR_{1},yA_{2})$ $\equiv$ $P${ $W_{3}|\mathrm{m}$ rejects $X_{31}=z$ in state $(z|xR_{1},yA_{2}$)}

$=$ $P \{X_{32}>(y\vee X_{12})\}=\frac{1}{2}(1-y^{2})$ .

Theorem 2 TAe solution to the three-player game with the score Junction (1.1) is as fol-
lowB. The optimal strategy for I in the first stage is given by:

(3.9) Accept (Reject) $X_{11}=x,$ if $x>(<)x_{0}=c^{1/4}\approx$ 0.68774,

Mere $c\approx$ 0.22372 $\dot{u}$ a four-Order polyn omial of $k^{1/3}\equiv$ $(9)^{1;}3\approx$ 0.64568, given by
(3.24). The optimal strategy for II in the second stage is:

(3.10) Accept (Reject) $X_{21}=y,$

if $y>(<)\{$
$yo(x)$ . , $\mathrm{a}$\dot nstate $\{$

$k^{1f^{3}}\approx 0_{-}64568$

$(y|xA_{1})$

$(y|xR_{1})$
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where $\mathrm{y}\mathrm{o}(\mathrm{x})\equiv\sqrt{h^{-}(x)}I(0<x\leq\sqrt{2}-1)+\sqrt{h+(x)}I(J -1<x\leq\xi)+xI(\xi<x\leq$

$1),h^{-}(x) \equiv\frac{1}{8}(3-2x^{2}+3x^{4}),h^{+}(x)\equiv$ $\mathrm{i}(1-x+x^{2}-x^{3}),k$ $\equiv\frac{9-\sqrt{\mathrm{S}}}{27}\approx$ 0.26918 and
$4\approx$ 0.54368 is in a untque roof in $(0, 1)$ of the equation $x^{3}+x^{2}+x-$ $1=0$ (See Figure 2).
Note that $y\mathrm{o}(x)\geq x,$ $\mathrm{i}x$

$\in$ $(0, 1)$ . The optimal strategy for III in the third stage is given by:

(3.11) Accept (Reject) $X_{31}=z,$

if $z$ $>(<)\{$ $\frac{y1}{1,,\frac 122},(1-x^{2})x/\sqrt{3}\approx 0.57735(1-y^{2})\vee y-$, in state $\{$

$(z|xA_{1},yA_{2})$

$(z|xA_{1},yR_{2})$

$(z|xR_{1},yR_{2})$

$(z|xR_{1},yA_{2})$ .
The optimal value for the three players are

(3.12) $P(W_{1})\approx$ 0.32309, $P(W_{2})\approx$ 0.33270 and $P(W_{3})\approx$ 0.34421.

Proof. The theorem is proven in the four steps. $(\emptyset*)$

Remark 1 We observe, by Theorems 1 and 2, that the difference between the players’
winning probabilities is diminished in the three player case than in the two player case.
Remark 2 We give a numerical example which shows how Theorems 1 and 2 work.

Two player game Three-player game
If I observes $X_{11}=x=$ 0.482, then If I observes $X_{11}=x$ $=$ 0.482, $\mathrm{t}\mathrm{h}\overline{\mathrm{e}}\mathrm{n}$

1st stage he announces 0.482 $\ R_{\mathrm{I}}$ (since he announces 0.482 & $R_{1}$ (since
$x<\sqrt{3}/8\approx$ 0.6124) and exchange $x<x_{0}=$ 0.6877) and exchange
$x$ to $X_{12}$ $x$ to $X_{12}$

If II $\mathrm{o}\mathrm{b}\mathrm{s}$ . $X_{91\sim}=y=$ 0.644, then he If II -obs. -X21 $=y=-$0.644, then he
2nd stage. accepts it (since $y>1/2$). announces $0.644\ R_{2}$ (since $y<$

$y\circ=$ 0.6457) and $\underline{\mathrm{e}}\mathrm{x}\underline{\mathrm{c}\mathrm{h}}$ ge it to $X_{22}$

3rd Stage If III $\mathrm{o}\mathrm{b}\mathrm{s}$ . $X_{31}=z=$ 0.581, he
accepts $\underline{\mathrm{i}\mathrm{t}}$ (since $z>1/\sqrt{3}\approx$ 0.5774)

$\mathrm{I}(\coprod)$ wins if $X_{12}>(<)0.644$. Players’ scores are $X_{12}$ , $X_{22}$ , and
Showdown 0.581, resp. Player with the highest

score wins.

Remark 3 It seems to us that the sequential game discussed in the present paper doesn’t
belong to the area of dynamic programming. The result obtained in the two player game
is not applicable to the three-player game.

4 Simultaneous-Move Game. In the simultaneous-move version of the game, the un-
fair information acquisition by the players disappears. Each player $i,i=1,2,3$, privately
observes $X_{1}$ and chooses either one of $A_{}$ or Ri. The observed value and choice by each
player are unknown to his (or her) opponents. Suppose that players’ strategies have the
form of :

I accepts (rejects) Xxl $=x,$ if $x>(<)a$,

II accepts (rejects) $X_{2\mathrm{I}}=y,$ if $y>(<\rangle b$ ,

III accepts (rejects) $X_{31}=z,$ if $z>(<)c$.
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Let $M_{i}$ (a, $b,$ $\mathrm{c}$) $\equiv P${ $W_{i}|\mathrm{I}$, $\mathrm{U}$ , and $\Pi \mathrm{I}$ choose $a,b$ and $c$, respectively},i $=1,$ 2, 3. Evi-
dently $\sum_{i=1}^{3}M_{i}(a,b, c)=1,\forall(a,b, c)\in[0,1]^{3}$, and, by symmetry, $M_{i}(a, a,a)=1/3,\forall i$ , $/_{a}$ $\in$

$[0, 1]$ .
Let $pAAA_{\mathrm{f}}PR\mathrm{m}$ , qAAA, etc.} denote the winning probability for I when the players’

choice triple is A-A-A,R-R-R,A-A-R, etc. Also let qAAA, $qRm$, qAAR $(r_{A}AA, r_{RRR},r_{AAR})$

etc, similarly denote the winning probability for rr (HI). Then we find that

(4.1) Mi $(\mathrm{a},\mathrm{b},\mathrm{c})=pAAA+pyR$ $+$ (other six probabilities),

(4.2) $M_{2}(a,b, c)$ $=qAAA+qRRR+$ (other six probabilities),

(4.3) $M_{3}(a,b,c)=rAAA$ $\mathrm{f}$ $r_{R}\mathrm{m}$ $+$ (other six probabilities),

where

PAAA $=$ $P${$X_{11}|>a,X_{21}>b,$ $X_{31}>$ a,X21 $>X_{21}\vee X_{31}$} $= \int_{a\vee(\mathrm{b}\mathrm{V}\cdot)}^{1}(t-b)$ ($t-$ c)dt,

PRRR $=$ $P \{X_{11}<a,X_{21}<b, X_{31}<c, \mathrm{X}_{12}>X_{22}\vee \mathrm{X}_{32}\}=\frac{1}{3}abc$,

PARA $=$ $P${$X_{11}>a,X_{21}<6,$ $\mathrm{X}3\mathrm{i}<\mathrm{a}$ ,X21 $>X_{22}\vee X_{32}$ } $=bc \int_{a}^{1}t^{2}$dt,

pAAR $=$ $P${$X_{11}>a,X_{21}>b,X_{31}<c,X_{11}>X_{21}\vee$ X32} $=c \int_{a}$i$bt(t-b)dt$,

PARA $=$ $P \{X_{11}>a,X_{21}<b,X_{31}>c, X_{11}> \mathrm{X}_{22}\vee X_{31}\}=b\int_{\alpha\vee e}^{1}t$ ($t-$ c)dt,

PRAA $=$ $P \{X_{11}<a,X_{21}> 6,\mathrm{X}3\mathrm{i}>\mathrm{q} X_{12}>X_{21}\vee X_{31}\}=a\int_{b\vee \mathrm{c}}^{1}(t-b)$($t-$ c)dt,

$pmA$ $=$ $P\{\mathrm{X}_{11}<a,X_{21}<b, X_{31}>c,X_{12}>X_{22}\vee X_{31}\}=ab$ $\int_{c}^{1}t$ ($t-$ c)dt,

pRAR $=$ $P\{X_{11}<a,X_{21}>b, X_{31}<c,X_{12}>X_{21}\mathrm{V}X_{32}\}=acl^{1}t$ ($t-$ b)dt,

&.
First we have to noice that

$M_{*}$.($a$,a2 ) $= \frac{1}{3}$ , $:=$ 1,2,3,Va $\in[0,1]$ .

We prove this for $i=1$ only. Proof is the same for $i=2,3$. Prom (4.1) we have

$M_{1}(a,a,a))$ $=$ $[$PAAA+Pnnn $+(\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$ six $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{h}.\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{e})]_{\varpi b=\mathrm{c}}$

$=$ $(1+a) \int_{a}^{1}(t-a)^{2}dt+51a^{3}1a^{2}l^{1}t^{2}dt+2(a+a^{2})\int_{a}^{1}t(t-a)ae$

$=$ $\frac{1}{3}(1 +a)(1-a)^{3}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}(1-a^{3})+2(a+a^{2})\cdot$ $\frac{1}{6}(2-3a+a^{3})$ ,

which is easily shown to be equal to 1/3, $la\in$ $[0, 1]$ .
Theorem 3 Solution to the $s|.m\mathrm{c}dtaneous$-rnove three-player game. The game hatt a unique

root in $[0, 1]$ of the equation
$eqi^{l}i^{b\dot{n}um}$

point
$(a^{*},a^{*},a^{*})$ ’ and the cornrnon equilibrium value 1/3,

$where,a^{*}=_{\grave{\iota}^{1}}’\cdot r.\nwarrow \mathrm{f}-\backslash \overline{\mathrm{t}}!a$

unique

(4.4) $2a^{4}=1-af$ $a^{2}-a’.$

$($ R\sigma $\mathrm{o}\mathrm{t}$

$\mathrm{i};0$
$m_{\dot{|}}\#\epsilon d)$
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The two player game is solved in Ref [8]. Let

$M_{1}(a, b)\equiv P${ $W_{1}|\mathrm{I}(\mathrm{I}\mathrm{I})$ chooses $\sigma(b)$ } $=1-M_{2}(a, b)$ .

Then it is shown that

$M_{1}(a,b)= \frac{1}{2}\{-a^{2}b+(a+1)(1-b+b^{2})\}$ $-I(a \geq b)\frac{1}{2}(a-b)^{2}$ ,

Then it is shown that

$M_{1}(a,b)= \frac{1}{2}\{-a^{2}b+(a+1)(1-b+b^{2})\}-I(a\geq b)\frac{1}{2}(a-b)^{2}$ ,

$\frac{\partial M_{1}(a,b)}{\partial a}=-ab$ $+ \frac{1}{2}(1-b+b^{2})-I(a\geq b)(a-b)$.
And we have the following

Theorem 4 Solution to the $simultaneou\mathit{8}$ more twO-player game. The game has a unique
saddle point $(q, g)$ and the saddle value $\frac{1}{2}$ , where $g= \frac{1}{2}(\sqrt{5}-1)\approx$ 0.61803 (For the proof,
see Refi [8] $)$ .
Remark 4 The optimal threshould number is $g$ (golden bisection number) in the two player
game and it increases to $a^{*}\approx$ 0.691 in the three player game. Furthermore, by considering
Theorems 3 and 4 we have a conjecture that the simultaneous-move four-player game has a
unique eq.point $(a^{*},a^{*},a^{*},a^{*})$ and the common eq.value 1/4, where $a^{*}\approx$ 0.738 is a unique
root in $[0, 1]$ of the equation $3a^{6}=1-a+a^{2}-a^{3}f$ $a^{4}-a^{5}$ . Player behaves more cautious
as he (or her) has more competitors.
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