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ON ASYMPTOTIC MOMENTS OF L-FUNCTIONS

LAURENT HABSIEGER

ABSTRACT. We give a survey on recent results about the asymptotic moments of L-functions associated to
primitive forms and of symmetric square of primitive forms.

1. INTRODUCTION TO MODULAR FORMS

For any positive integer NV, let T'o(IV) denote the congruence modular group
{(‘c’ Z) : (a,b,c,d) € 2%, ad—bc=1, c=0 mod N} .
For any positive even integer k, a parabolic form of level k and weight NV is a function f which is

holomorphic on the upper half-plane H = Sz > 0 and which satisfies to the two conditions
i) for every z € H and every (Z 3) € To(N),

f (‘c‘jj 3) = (2 + d)* £(2);

ii) the function z — (S2)*/2| f(z)| is bounded on #.

Let Sk(N) denote the set of these forms. It is an hermitian space, when endowed with Petersson’s
scalar product

= P
(fr9) = fr o T

Any form in f € 5x(N) has a Fourier expansion at infinity

+o0
flz)= Z f(n) exp(2imnz).

n=1

For n a positive integer, one defines the n-th Hecke operator T, by

Tn S(k, N) - S(k,N)
+00 3 400 ’ ~ .
E f(m)e2nrm= - Z E dk—lf (%1_,15) e2urmz'
m=1 m=1 (ddl(;v“):;

These operators commute and are selfadjoint when (n, N) = 1. They also enjoy the following multiplica-
tive property

TnTa= Y. @ Tppa.

dj(m,n)
(d,N)=1
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Let d, N' be two divisors of N such that dN' | N and N' < N. For f € S(k,N'), the function
z = f(dz) belongs to S(k,N). The space spanned by such forms is called the space of old forms. Its
orthogonal is the space of new forms. The space of new forms has a special orthogonal basis Hi (N),
whose elements are called primitive forms of level k and weight V. Primitive forms are elgenvectors of

the Hecke operators: T, f = f(n) f, and they are normalized with the condition f ( )=
The eigenvalues of the Hecke operators are usually written as

fn) = Ap(m)n*=072,

which is motivated by Deligne’s estimate: As(p) € [-2,2] for p a prime. We then have A¢(1) = 1 and

M= Y A ()

di(m,n)
(d,N)=1

Let us define the harmonic factor
T'(k - 1)

W)= @

It allows to state a trace formula [I-L-S): when N is squarefree, and when (m.N) = (n, N) = 1, we have

Z w(f)Ag(n)As(n) = eV )6,,,,,, + remainder term,
JFEHZ(N)

where § denotes here the Kronecker symbol.

2. MOMENTS OF L-FUNCTIONS

A. L-functions.
For each f € H{(N), define the L-function

+o0
9=y 20
n=1

It may be written as an eulerian product

L(f,8) = [] L(fp,9)

peP
with
L(fp,s)=( )., b

B. Symmetric square of primitive forms.
For f € Hy(N), let us write

1= - - (- 42)

o - 247) (- 2410) -4

p

0 otherwise.

and define

From now on, we assume that IV is squarefree.

As(p) ezv(p))'1 and eN(p)={1 if (p, N) =1,

(1)
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Define the symmetric square of a primitive form f by the formula

L(sym®f,s) = [] L(sym}f,s).

pEP

It has the expansion
=M (7?)
L(sym®f,s) = (™(28) 3 Lt

with
+00 1
M= 3 2.
C (8) r=1 re
(*N)=1

One can compute explicitly its Dirichlet series: for ®s > 1,

Loy, 0) = 320
r=]1
with
priry= > Ar(1%).

{m,N)=1

C. Asymptotic moments.
For k €]0, 1], define
N={NeNuN)#0,p|N=p>N"},

and, for n € Z, put

HoN) = s 3 an(DL( D",

k feH; (N)

Y wn(Llsym?f, 1),

Mo (N) = o=
™ = Zmmw R

By using the trace formula (1) and density results, Royer [R1, R2] proved the existence of

Hp= lim Ha(N) and My = lim Mu(N).

NEN NEN

He also gave explicit expressions for these asymptotic moments. Let n be a nonnegative integer. Define

f,,(bl,...,b,.)z{(dl, \dn1) € 114, 1((—d;5’——"7"_‘?,b,-+1)}

and

ha(r) = z E 1.

byyeens bn  (dy....dp_1)EFn(by,....bn)
by tbp=vr (dl"'dn—1)2="

Then we have

Hn - E (1')
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Similarly, put
b 2
En(b1, ..., ba) = {(dl, ydn—1) € N*~1:d; | (—a—; bi+l) }

and
mﬂ-(r) = E : § : 1;
By b (dysees dy_1)EER (LY, ... bn)
by--bp=r dy--rdp_1=7
so that

+00
My =¢@n Y 2el)

r
r=1
The values of the negative asymptotic moments involve the Mdbius function u. Define

hon(r) = 3 I s(as)pn(a:bi)? x 3 1.

(81118 n b1,e- b )ENIN =1 (d1,-.-1dpn~1)EFn(a1,....an)
¢1...,”(51...b")2=, . (,41...,1"_1)2:..1...,,.
Then we have
h—n(r)
H_,= E
r=1

Similarly put

m_n(r) = > I w(asbici)ud:) x > 1.

(ag,..., an by, ..ibp €1, en)EN3N i=1 {dy...., dp_1)€EER(ay by,..., anbn)
nl---n,.(bx'-~bn)2(:1--»cn)3=r dy---dy _1=arby---anbn

Then we get
M_n=(@)™ Z m‘"(")

r=1
3. EULERIAN PRODUCTS FOR THE ASYMPTOTIC MOMENTS

The aim of the section is to provide nice explicit eulerian products for the asymptotics moments which
are defined above. More precisely we would like each p-factor to be a fixed polynomial in some variable
depending on p. This can be performed using generating functions of various classes of paths.

A. Combinatorial paths.
A Dyck path of semilength n is a path in the first quadrant, which begins at the origin, ends at (2n,0)
and consists of steps (1,1) and (1,-1). Let C, denote the number of Dyck paths of semilength n. We

have ) X
1)
Cn = n+1 ( n) ’
the n-th Catalan number.

A Riordan path of length n is a path in Z?2 which begins at the origin, ends at (n,0), consists of steps
(1,1),(1,~1) and (1,0), and remains above the z-axis except in the case of a double step (1,—-1) — (1,1).
Let R, .2 denote the number of Riordan path of length n.

These numbers may be expressed as integrals:

/ \/1———dz and Rn = / (z? - \/1———:dz 2)
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We shall need the following two polynomials:
L n : = n
sn(z) = ]Z_% (2]_) C;z* and £,(z) = né(—l)m (m) R,z™.

From the integral formulas (2), we deduce integral expressions for these polynomials:

8n(z) = -:;—/;(1+t:::)"ﬂ1 - %dt (3)
£n(z) =%/_22 (1+(1—t2)z)"\/1~€;dt. (4)

B. Connections between the moments and the paths.
In [R2, H-R], Royer and I showed the following formulas, for every nonnegative integer n:

o= W (85

PEP

and

_ 1 p
M-r = gy Lo (7o i)

PEP

¢(2)%+3 ( P
Hups = =roe— 1l sn\ 755 )
AN ,,IE:!:, 1+p2>
_ S(2)**3¢3)n R
Mtz ===ty gf( =)

Royer [R2] proved the negative case by simplifying the formulas involving the Mébius function, and by
interpreting the remaining sums with paths. The positive case was treated in [H-R]. The main idea is to
build recursively the sums defining the asymptotic moments, and to consider each step of the construction
as a weighted path step.

C. Applications.
From (3-4), we can deduce the asymptotic behaviour of the asymptotic moments when n goes to
infinity. Let -y denote the Euler constant. When n goes to infinity, we get

log H, = 2nloglogn + 2yn + O (__n_) ,

logn
_ 4(2)) n
log H_, =2nloglogn + log (4(4) n+0 fogn ) °
n
log M, = 3nloglogn +3yn+ O (m) ,

n
log M_, = nloglogn + (7 — 210g{(2))n + O (@) .

Explicit versions of these equalities provide estimates for the extremal values of L(f,1) and L(sym?f,1).
More precisely, put
M ={NeN:u(N)#0 and P~(N)>log(3N)}.
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Then there exist K, Ks, K3, K4 only depending on k such that, for every N € Nb, there exist four forms
h1, fa, fa, f4 € Hy(N) satisfying to the conditions ‘

L(f1,1) > K (loglog(3N))* ,

L(f2,1) < Ka (loglog(3N)) ™",
L(sym® f3, 1) > K3 (loglog(3N))®
L(sym?®f,1) < K4 (loglog(3N)) ™" .

These results are obtained by Royer and Wu [R-W)]. They also proved that, under the generalized Riemann
hypothesis, these are the correct order of magnitude: only the constants may be improved.

4. EXTENSIONS

‘We know that
2 n 2
H_n:Hlf (1+5+—1-) y1-Zdz,
pe1>7r -2 p p? 4
1 2 z 1\" z2?
- 2n+3 - 1 ot il 1—-dz.
Hnts =((2) Hﬂ’/z( +p+p2) e

pPEP -

The same method allows to replace 1/p by 1/p* in the above formula, for ®s > 1. The same kind of
result holds for M, n € Z.

Cogdell and Michel [C-M] found these formulas in a completely different way, which enables them to
deal with the case n € C. Under suitable hypothesis, they also found analogues of these formulas for
higher symmetric powers: the term of order p in the eulerian product associated to the z-moment related

to m-th symmetric power is given by

-z

2r .. 1
/ H (1 - te'?) —sin?4dé .
0 s

~m<j<m
J=m mod 2

(One can get back to the original formulas for m = 1,2 using the change of variable z = 2 cosf.)
The same kind of asymptotic behaviors hold when z = n is real and goes to infinity. For n positive,
they got
n
(m + Dnloglogn+ (m + 1)yn+ O (Eg_n) .

For z = —n, n positive and odd, they found

(m + 1)nloglogn + (m + 1)(y — log{(2))n + O (ﬁ;‘;) :

For z = —n, n positive and even, they got

n
Apnloglogn + Bpn+ O (m) )

where exp(A,,) is the minimum of the Chebyshev polynomial of the second kind on [-2,2].
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