
85

Fractional Derivative Models ofDamped Oscillations

Susumu Sakakibara
School of Information Environment

Tokyo Denki University

susumu@sie.dendai.ac.jp
$\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{s}\mathrm{d}.\mathrm{s}\mathrm{i}\mathrm{e}.\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{i}.\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}$

1 Introduction
The history of fractional differentiation is quite old. According to the historical survey in [1],

UHdpital asked Leibniz in 1695 about the meaning of $\mathrm{d}^{n}yJdx^{n}$ , when $n$ is fraction. Since then,
fractional differentiation attracted attention ofmany mathematicians, including Euler, Laplace,
Fourier, Abel, Liouvlle, Riemann and Laurent, though the subject is not very much popular
today. The fractional derivative was defined in terms of its action on an exponential function
by Liouville in 1832, and Riemann gave a definition in terms of integration in the publication
of his earlier works in 1892. This has opened modern treatment of fractional differentiation.

Due to the needs of industrial application of oil rdated materials, the study of viscoelastic
fluids and bodies has begun since early twentieth century. When rod immersed in viscous
(Newtonian) fluid is pulled out, the strain (distance moved) $\epsilon$ is proportional to the time, $\epsilon\propto t,$

while with elastic material, the strain stays constant in time, $\epsilon$ - const. In 1921, Nutting $[2, 3]$

has observed that in the rod experiment with viscoelastic fluids, the strain increases with time
as $\epsilon\propto t^{v}$ , $0<v<1.$ The idea of using fractional derivatives to describe viscoelasticity is due
to Gemant [4], and Scott Blair $[5, 6]$ . In 1936, based on his own experiment, Gemant noted
that fractional derivative defined in terms of fractional power series would show good fit with
his data. Scott Blair suggested in 1947 that the Nutting behavior would be accounted for by the
use of fractional derivatives in the relation between strain and stress, the s0-called constitutive
equation.

The most typical formulation ofthe problem is to use the ffactional derivative term in place
ofthe viscous damper term in the usual damped oscillation. In the light ofmodern treatment of
fractional differentiation, the problem becomes a study ofdifferential equations with fractional
derivatives. Such models have been extensively studied by Bagley and Torvik in a series ofpapers
[7, 8, 9]; see also references in $[10, 11]$ . An extensive review of fractional differential equations
is given in Podlybny 10], and a survey ofapplications offfactional calculus in physics induding
viscoelasticity is given in Hifer [11].

Denoting the amount of the shrinkage of the body under compression by $x(t)$, the restoring
force is proportional to $x(t)$ . In terms of Fourier transform, the term corresponds to a real
coefficient. On the other hand, the damping force due to viscous damper is proportional to
the velocity $dx/dt$ , which corresponds to an imaginary coefficient in the Fourier transform. In
the proposed modd, the viscoelastic damping is assumed to be proportional to its fractional
derivative $\mathrm{d}^{v}d\mathrm{d}t^{v}$ , $v\in$ R, $v>0.$ Its Fourier transform is proportional to $(ia^{1})^{v}$ , which has both
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a real part and an imaginary part, thereby accounting for dasticity and viscousity by a single
term.

In most experiments carried out today, response of the system under applied sinusoidal
force i$\mathrm{s}$ studied. Thus, the solutions are usually studied in the frequency domain, and closed
fo$\mathrm{r}\mathrm{m}$ solutions of the oscillation in the time domain are not always derived. To fill this gap,
Sakakibara [12] has studied the damped oscillation with a viscoelastic damping corresponding
to a fractional derivative of order 1/2 in detail. This paper is intended to generalize the study to
an arbitrary order. To make the presentation self contained, we first give a brief review of the
ffactional derivative and the method of solving ffactional differential equation, in the following
section.

2 Fractional Derivatives
Let $D^{-1}f(t)$ be the integral

$D^{-1}7(t)= \int_{c}^{t}f(t_{1})\mathrm{d}t_{1}$ , $c\in \mathbb{R}$

of a Riemann integrable function $f(t)$ , and similarly $D^{-n}f(t)$ be the $n$ times integral

$D^{-n}f(t)= \int_{c}^{t}\mathrm{d}t_{1}\int_{c}^{t_{1}}\mathrm{d}t_{2}\int_{c}^{t_{2}}\mathrm{d}t_{3}$ . . . $\mathrm{j}_{c}^{t_{-1}}.f(t_{n})\mathrm{d}t_{n}$. (1)

Proposition 1 The integral (1) cart be rewritten as

$D^{-n}f(t)= \frac{1}{(n-1)!}\int_{c}^{t}(t-t_{n})^{n-1}f(t_{n})\mathrm{d}t_{n}$ . (2)

Proof For $n=2,$ by exchanging the order of integration,

$D^{-2}f(t)= \int_{c}^{t}\mathrm{d}t_{1}\int_{c}^{t_{1}}f(t_{2})\mathrm{d}t_{2}=\int_{c}^{t}\mathrm{d}t_{2}\int_{t_{2}}^{t}f(t_{2})\mathrm{d}t_{1}=\int_{c}^{t}(t-t_{2})f(t_{\sim},)\mathrm{d}t_{2}$ .

Next, we assume
$D^{-n+1}f(t_{1})= \frac{1}{(n-2)!}\int_{c}^{t_{1}}(t_{1}-t_{n})^{n-2}f(t_{n})\mathrm{d}t_{n}$

Then, by the exchange of integration order,

$D^{-n}f(t)= \int_{c}’\mathrm{d}t_{1}D^{-n+1}f(t_{1})=\int_{c}^{t}\mathrm{d}t_{1}\frac{1}{(n-2)!}\int_{c}^{t_{1}}(t_{1}-t_{n})^{n-2}f(t_{n})\mathrm{d}t_{n}$

$= \int_{c}^{t}\mathrm{d}t_{n}\int_{t_{n}}^{t}\frac{(t_{1}-t_{n})^{n-2}}{(n-2)!}f(t_{n})\mathrm{d}t_{1}=\int_{c}^{t}\frac{(t-t_{n})^{n-1}}{(n-1)!}f(t_{n})\mathrm{d}t_{n}$ .

By simple induction, (2) is valid for $n\in$ N. $\square$

By the shift of variable $tarrow t$ - $c$, the lower limit $c$ may be set equal to 0, without loss of
generality. By extending $n$ in (2) to a real number $\mu$ , we define the ffactional integral of a
Riemann integrable ffinction defined on $[0, \infty)$ .
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Definition The Riemann-Liouville fractional integral of $f$(t) is defined by

Dvf(t) $= \frac{1}{\Gamma(\mu)}\int_{0}^{t}(t-\tau)^{\mu-1}f(\tau)\mathrm{d}\tau$, ${\rm Re}\mu>0,$ (3)

where
$\Gamma(z)=$ $\mathrm{f}\infty t^{z-1}e^{-t}\mathrm{d}t$ (4)

is the Euler gamma function. It satisfies the identity

$\Gamma(z+1)=z$ $\Gamma(z)$

and $\Gamma(n+1)=n!$ for $n\in$ N. The Riemann-Liouville fractional derivative of $f(l)$ is defined by

$D^{v}f(t)=D^{n}D^{-n+v}\mathrm{f}(\mathrm{t})$ $n=\lceil v1$ $v\#$ $n$, (5)

where $Dvf(t)=\mathrm{d}^{n}f$(t)/dtn is the usual $n$-th derivative.

A typical example would be $f(t)=t^{n}$ for which the fractional integral is

$D^{-\mu}t^{n}= \frac{1}{\Gamma(\mu)}\int_{0}’(t-\tau)^{\mu-1}r\mathrm{d}r$ $= \frac{1}{\Gamma(\mu)}t^{n+}l$ $\int_{0}^{1}(1-u)^{\mu-1}u^{n}\mathrm{d}u=\frac{\Gamma(n+1)}{\Gamma(n+\mu+1)}t^{n+\mu}$ , (6)

where
$\mathrm{B}(\mathrm{p}, q)=\int_{0}^{1}u^{p-1}(1-u)^{q-1}$du

is the Beta function, and the well known identity

$B(p, q)= \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$

has been used. For $\mu=1,$ it reduces to the familiar result

$D^{-1}t^{n}= \frac{\Gamma(n+1)}{\Gamma(n+2)}t^{n+1}=\frac{1}{n+1}t^{n+1}$ .

The fractional derivative of $t^{n}$ is

$D^{v}tn$ $=DD^{-1+v}t^{n}=D \frac{\Gamma(n+1)}{\Gamma(n+2-v)}t^{n+1-v}$ $= \frac{\Gamma(n+1)}{\Gamma(n+1-v)}t^{n}$
”$v$ . (7)

However, note that for $n=0,$

$D^{v}t^{0}=DD^{-1+v}t^{0}= \frac{1}{\Gamma(1-v)}t^{-v}$

but
$D^{-1+v}Dt^{0}=0.$

In contrast to the usual derivatives of integer order, we have

$D^{v}D^{\mathit{1}}f(t)\#\Psi D^{v}7(t)\neq\Psi^{+v}f(t)$ (8)

in general.
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3 The Eigenfunction
In order to find solutions to linear differential equations involving fractional derivatives, we
need the eigenfunction of $D^{v}$ , $v>0,$ i.e., the solution of

$D^{v}f(t)=af(t)$.

Recalling that the eigenfunction of $D$, or $D^{-1}$ , is $e^{at}$ , define the Miller-Ross function

Et(v, $a$) $=D^{-v}e^{a\prime}=t^{v}e^{at}\gamma^{*}$ ( $v$, at), (9)

where
$\gamma^{*}(v, t)=\frac{t^{-\nu}}{\Gamma(v)}\mathrm{j}_{0}\xi^{v-1}e^{-\xi}d\xi\infty$

is the incomplete gamma function [1].

Theorem 2 Let Et(vt $a$) be the Miller-Ross function defined by (9). Then

Et(v, $a$) $=t^{v}E_{1,1+v}(at)$, (10)

where
$E_{\alpha,\beta}(t)= \sum_{k=0}^{\infty}\frac{t^{k}}{\Gamma(\alpha k+\beta)}$ (11)

is the Mittag-Leffler function [10].

Proof Using (6),

$E_{t}(v, a)=D^{-v}e^{a}=D^{-v} \sum_{k\mathrm{H}1}^{\infty}\frac{(at)^{k}}{\Gamma(k+1)}$

$= \sum_{k\ovalbox{\tt\small REJECT}}^{\infty}\frac{a^{k}}{\Gamma(k+1)}\frac{\Gamma(k+1)}{\Gamma(k+1+v)}t^{k+v}=t^{v}\sum_{k=0}^{\infty}\frac{1}{\Gamma(k+1+v)}(at)^{k}$

which verifies (10). $\square$

Some of the special cases are:

$E_{t}(0, a)=e^{at}$ (12)

Et(v, $a$) $=0,$ ${\rm Re} v>0,$

$E_{\iota^{(v,0)=\frac{t^{v}}{\Gamma(1+v)}}\prime}$

$E_{t}( \frac{1}{2}, a)=e’\frac{\mathrm{e}\mathrm{r}\mathrm{f}\sqrt{at}}{\sqrt{a}}$ (13)

where
$\mathrm{e}\mathrm{r}\mathrm{f}(t)=\frac{2}{\sqrt{\pi}}\int_{0}^{t}e^{-\xi^{2}}c\mathit{3}\mathit{4}$

is the error function. By direct calculations, we have
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Theorem 3 The Miller-Ross function (9) satisfies the following identities:

$E_{t}$ (v, $a$ ) $=aE_{t}(v + 1, a)+ \frac{t^{v}}{\Gamma(v+1)}$ ,

(14)
$E_{t}(-p, a)=aEt(\mathit{0}, a)$, $p\geq 0,$

$FE_{t}(v, a)=E_{t}(v-\mu, a)$, $\mu\in$ R.

From the above properties, it can be shown that

DE,$(0, a)=E_{t}(-1, a)=$ aEt$(0, a)$

which means that Et{0, $a$) $=$ ? is the eigenfunction of $D$ with eigenvalue $a$. Similarly, we see
that

$D^{1/2}E,(0, a)=E,(- \frac{1}{2}, a)$

$D^{1/2}E_{t}(- \frac{1}{2}, a)=E_{t}(-1, a)=a$ Et{0, $a$)

or
$D^{1/2}(E_{t}(- \frac{1}{2}, a^{2})+$ aEt$(0, a^{2}))=a(E,(- \frac{1}{2}, a^{2})+aE_{t}(0, a^{2}))$ .

Thus, the sum
en(t, $a$) $=E_{t}(- \frac{1}{2}, a^{2})+aE,(0, a^{2})$

is the eigenffinction of $D^{1/2}$ with eigenvalue $a$ .
Theorem 4 LetEt(v, a) be the Miller-Ross function defined by (9). $T/ien$

en(t, $a$) $= \sum_{k=0}^{n-1}a^{k}E_{t}(-\frac{n-k-1}{n}, a^{n})$ , $n\in$ N, (15)

is the eigenfunction $ofD^{1/n}$ with eigenvalue $a$, $i$ . $e.$ , it satisfies
$D^{1/n}e_{n}(t, a)=$ en(t, $a$). (16)

Note that the eigenffinction en(t, $a$) is singular at the origin.

4 The Laplace transform
The Laplace transform of a function $f(t)$ is defined as

$f(t)\mapsto F(s)=$ $\mathrm{f}$

”

$e^{-st}f(t)\mathrm{d}t$

where the Doetch symbol $f\mapsto F$ shows the correspondence between the function and its
Laplace transform. It is well known that

$f(t)=e^{at} \mapsto\frac{1}{s-a}$

which is readily obtained by definition as

$\int_{0}$

”

$e^{-st}e^{u} \mathrm{d}t=\frac{e^{-s+a}}{-s+a}|_{0}^{\infty}=\frac{1}{\mathrm{s}-a}$ .

Note that the same result may be obtained by the series expansion. To this end, we first note
that
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Lemma 5
$\frac{t^{k}}{k!}\mapsto\frac{1}{s^{k+1}}$ (17)

Proof Using,

$\int_{0}$

”

$e^{-st} \frac{t^{k}}{k!}\mathrm{d}t=\frac{1}{s^{k+1}k!}\int_{0}^{\infty}e^{-st}(st)^{k}\mathrm{d}(st)=\frac{1}{s^{k+1}k!}\Gamma(k+1)=\frac{1}{s^{k+1}}$

$\square$

Then by applying Lemma 5, we have

$e^{at}= \sum_{k=0}^{\infty}\frac{(at)^{k}}{k!}\mapsto\sum_{k=0}^{\infty}\frac{a^{k}}{s^{k+1}}=\frac{1}{s}\sum_{k=0}^{\infty}\frac{a^{k}}{s^{k}}=\frac{1}{s(1-ds)}=\frac{1}{s-a}$ .

Similarly, we can show that

Lemma 6
$E_{t}(v, a) \mapsto\frac{1}{s^{v}(s-a)}$ . (18)

Proof Using Lemma 5,

$E_{t}$(v, $a$) $=t^{v}E_{1,1+v}(at)= \sum_{k\ovalbox{\tt\small REJECT}}^{\infty}\frac{a^{k}t^{k+v}}{\Gamma(k+v+1)}\mathrm{o}-\cdot\sum_{k=0}^{\infty}\frac{a^{k}}{s^{k+v+1}}=\frac{1}{s}\sum_{k=}^{\infty}$

o
$\frac{a^{k}}{\oint}=\frac{1}{s^{v+1}(1-ds)}=\frac{1}{s^{v}(s-a)}$ .

$\square$

For the eigenfunction en(t, $a$) of $D^{1/2}$ given by (15) with $n=2,$ we have

e2(t, $a$) $=E_{t}(- \frac{1}{2}, a^{2})+aE_{t}(0, a^{2})\mapsto\frac{1}{s^{-1/2}(s-a^{2})}+\frac{a}{s-a^{2}}=\frac{s^{1/2}+a}{s-a^{2}}=\frac{1}{s^{1/2}-a}$.

Similarly, we can show

Corollary 7 The Laplace transform ofthe eigenfunction en(t, a) $ofD^{1/n}$ , n $\in \mathrm{N}$ is given by

$e_{n}(t,$a) $0 arrow\frac{1}{s^{1/n}-a}$ . (19)

5 Oscillation Equation with Fractional Derivative Damping

We consider the fractional differential equation

$D^{2}x(t)+a_{2n-}1n-1/n_{X(t)+}.$ . . $+a_{1}D^{1/n}x(t)+x(t)=0,$ $n\in$ N. (20)

When $a_{n}=0$, $n=1,2$, . . . , $2n-1,$ the equation reduces to the harmonic oscillation equation
$D^{2}x(t)+x(t)=0.$ Actually, the equation reads $mD^{2}x(t)+kx(t)=0,$ where $m$ is the mass and
$k$ the spring constant of the oscillator. Defining $\omega_{0}=\sqrt{\mathcal{U}m}$ and rescaling time $tarrow t\mathit{1}\omega_{0}$ , we
normalized the coefficients to unity. We $\mathrm{w}\mathrm{i}\mathrm{U}$ be interested in the impulse response ofthe system.
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Let
$\mathrm{P}(\mathrm{z})=z^{N}+a_{N-1}$ $!^{-1}+\ldots+a_{2}z^{2}+a_{1}z+$ $1$ (21)

be a polynomial of degree $N$, and $\alpha_{j}$ be $N$ roots of $P(z)=0.$ Then

$P(z)=(z - \alpha_{1})(z-\alpha_{2})\cdots(z -\alpha_{N})=\prod_{j=1}^{N}(z -\alpha_{j})$

Note that
$\frac{1}{P(z)}=\sum_{j=1}^{N}\frac{1}{P(\alpha_{j})}\frac{1}{z-\alpha_{j}}$. (22)

By multiplying $P(z)$ on both sides, we obtain the Lagrange interpolation formula

$\mathrm{j}$ : $\mathrm{r}\vdash-\prod_{k\neq j}^{N}’-\alpha_{k})=11$
(23)

Furthermore, by comparing the coefficients on both sides of this equation, and combining the
terms, we find that

Theorem 8 Let $P(z)$ be the polynomial ofdegree N defined in (21), and $\alpha_{i}$ , j $=1,$ 2, . . . , N, be
the roots $ofP(z)=0.$ All roots are assumed to be distinct. Then

$\sum_{j=1}^{N}\frac{\alpha_{j}^{m}}{F(\alpha_{j})}=$

0, $m=0,$ 1, 2, $\ldots$ , $N-2,$

1, $m=N-1,$ (24)

$. \sum \mathrm{z}_{1}$ $\alpha_{j}=-a_{N-1}$ , $m=N.$

The ffactional differential equation (20) may be written in terms of $P(z)$ , with $N=2n,$

$P(D^{1/n})x(t)=(D^{\gamma} \sim+ a_{2n-1}D"/n+\ldots+a_{1}D^{1/n}+ 1)x(t)=\prod_{j=1}^{2n}(D^{1/n}-\alpha_{j})x(t)=0.$ (25)

The solution $x(t)$ of the equation (25) is obtained by the analogy to the method of solution of
the usual differential equation

$Dx(t)-ax(t)=0,$ $\mathrm{x}(0)$ $=1.$

By taking the Laplace transform, we find

$sX(s)-x(0)-aX(s)=0,$

or
$X(s)= \frac{1}{s-a}$ .

The inverse Laplace transform gives
$x(t)=?$.
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Thus, formally considering the Laplace transform of $D^{1/n}x(t)$ as $s^{1/n}X(s)$ , the equation (25) be-
comes

$P(s^{1/n})X(s)=0.$

Ifwe want $x(t)$ to represent the impulse response, then 0 on the right-hand side of (25) would
be replaced by $\delta(t)$ . Since the Laplace transform of $\delta(t)$ is 1, we have

$X(s)= \frac{1}{P(s^{1/n})}=\sum_{j=1}^{2n}\frac{1}{P’(\alpha_{j})}\frac{1}{s^{1/n}-\alpha_{j}}$.

By taking the inverse Laplace transform,

$x(t)= \sum_{j=1}^{2n}\frac{e_{n}(t,\alpha_{j})}{P(\alpha_{j})}$ .

Note that the correspondence $D^{1/n}f(t)\circ-\mathrm{o}s^{1/n}F(s)$ may not be guaranteed for an arbitrary $f(t)$ .

Theorem 9 $x(t)$ be given by

$x(t)= \sum_{j=1}^{2n}\frac{e_{n}(t,\alpha_{j})}{P(\alpha_{j})}$ . (26)

Then, it is a solution ofthefractional differential equation (25), with $x(0)=0$ and $Dx(0)=1.$

Proof Due to the eigenequation (16), the equation (25) is verified by direct substitution of
(26). into , the equality is seen to hold. Note that $x(t)$ may be expressed in several different
forms,

$x(t)= \sum_{j=1}^{2n}\frac{e_{n}(t,\alpha_{j})}{F(\alpha_{j})}$

$= \sum_{j=1}^{2n}\frac{1}{P’(\alpha_{j})}\mathrm{j}_{0}^{1}\alpha_{j}^{k}E_{t}( -\frac{n-1-k}{n}, \alpha_{\mathrm{i}}n)$ (27)

$= \sum_{j=1}^{2n}\frac{1}{P(\alpha_{j})}\sum_{k=0}^{n-1}\alpha_{j}^{k}t^{-(n-1-k)/n}E_{1_{\iota}1-}$ (n-l-k5)$/n(’ jt)n$

$=$
$\mathrm{I}$

$\frac{1}{P(\alpha_{j})}\sum_{k=0}^{n}\sum_{l=0}^{\infty}\frac{\alpha_{j}^{ln+k}d^{-1+(1+k\mathrm{y}_{n}}}{\Gamma(l+(1+k\mathrm{y}n)}$ . (28)

The terms of $l=0$ in (28) vanishes due to Theorem 8. The terms of $\mathit{1}=1$ and $k$ $<n-1$ also
vanishes. Thus, for small $t$ , keeping only the terms of $\mathit{1}=1,$ $k=n-1,$ and $\mathit{1}=2$, $k$ $=0,$ we
have

$x(t)=$ $\sum$ $\frac{\alpha_{j}^{2n-1}}{P(\alpha_{j})}t+\sum_{j=1}^{\mathrm{h}}$ $\frac{\alpha_{j}^{2n}}{P(\alpha_{j})}\frac{t^{1+1/n}}{\Gamma(2+1/n)}+O(t^{1+yn})$ (29)

$=t- \frac{a_{2n-1}}{\Gamma(2+1Jn)}t^{1+1/n}+O(t^{1+2/n})$. (30)
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Thus we prove that $x(0)=0.$ Furthermore, by taking the first derivative,

$Dx(t)=1- \frac{a_{n- 1}}{\Gamma(1+1/n)}\underline,t^{1/n}+O(t^{2Jn})$.

Hence $Dx(0)=1,$ which completes the proof. $\square$

The asymtotic expansion of the solution $x(t)$ is obtained by expressing the Mittag-Leffler
ffinction in terms of the confluent hypergeometric function, which is defined by

$M(a;b;z)$ $= \sum_{n=0}^{\infty}\frac{(a)_{n}}{(b)_{n}}\frac{f}{n^{\mathfrak{l}\mathfrak{l}}}$

where
$(a)_{n}=a(a+1)(a+2) \cdots(a+n-1)=\frac{\Gamma(a+n)}{\Gamma(a)}$

is the Pochhammer symbol. The asymptotic expansion is

$M(a;b;z)$ $= \frac{\Gamma(b)}{\Gamma(b-a)}(-z)^{-a}+O(|z|^{-a-1})$ ,

for large la see for example [13]. Noting that $(1)_{n}=n!$ , we have the relation

$M(1, b;z)= \sum_{n=0}^{\infty}\frac{\Gamma(b)}{\Gamma(b+n)}\mathscr{S}=\Gamma(b)E_{1.b}(z)$.

Thus
$E_{t}(v, a)= \frac{t^{v}(-at)^{-1}}{\Gamma(v)}$, lzl $arrow\infty$. (31)

Theorem 10 The asymptotic expansion ofthe solution (26) is given by

$x(t)= \frac{a_{1}}{n\Gamma(1-\frac{1}{n})}t^{-1/n-1}+O(|t|^{-1/n-2})$, $|\mathrm{r}1arrow\infty$. (32)

where $a_{1}$ is the coefficient in (20).

Proof The leading term in the asymptotic expansion of $x(t)$ in (27) arises from the term of
$k=n-2$ in (28). Using (31), we find

$x(t)= \sum_{j=1}^{2n}\frac{\alpha_{j}^{n-2}}{P’(\alpha_{j})}\frac{t^{-1/n}(-\alpha_{j}^{n}t)^{-1}}{\Gamma(-1/n)}+O(|t|^{-1/n-2})=\sum_{j=1}^{2n}\frac{\alpha_{j}^{-2}}{P(\alpha_{j})}\frac{t^{-1/n-1}}{n\Gamma(1-1/n)}+O(|t|^{-1/n-2})$

By differentiating both sides of (22), we obtain

$\frac{P(Z)}{P(z)^{2}}=\sum_{j=1}^{2n}\frac{1}{l^{\mathrm{y}}(\alpha_{j})(z-\alpha_{j})^{2}}$ ,

and, by setting $\mathrm{z}$ $=0,$

$a_{1}= \frac{P’(0)}{P(0)^{2}}=\sum_{j=1}^{2n}\frac{1}{P(\alpha_{j})\alpha_{j}^{2}}$.

Subtituting this result in the above expression, we complete the proof. $\square$
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Figure 1: The impulse responce $x(t)$ (left), and the resonance curve (right)

6 An Example
One of the most simple example is the case with $n=2$, and $a_{1}\neq 0$ , $a_{2}=a_{3}=0,$

$D^{2}x(t)+a_{1}D^{1/2}x(t)+$ $\mathrm{x}(t)$ $=0,$

assuming that $a_{1}$ is a positive real number. This is studied in [12] in some detail. Due to the
relation (13), the eigenfunction becomes

$e_{2}(t, a)=a \mathit{7}t(1+\mathrm{e}\mathrm{r}\mathrm{f}(a\sqrt{t}))+\frac{1}{\sqrt{\pi t}}$ .

The solution of the equation is given by

$x(t)= \sum_{j=1}^{4}\frac{\alpha_{j}}{P’(\alpha_{j})}e$
”$(1+$ $\mathrm{e}$

$\mathrm{r}\mathrm{f}(\alpha_{j}\sqrt{t}))$,

where $\alpha_{j}$ are four roots of
$P(z)=z^{4}+a_{1}z+1.$

Since the coeffients are all real, the roots arise in complex conjugate pairs, or as real numbers,

which guarantees that the solution $\mathrm{x}(t)$ is real valued. The solutions are plotted in Figure 1 (left)

for some values of $\zeta=a_{1}3^{\mathrm{y}4}/4$ . Also noted is the resonance curve in Figure 1 (right). When
the oscmator is subject to the external force $\sin$ ) $\mathrm{r}$ , the stationary response $x(t)=A\sin(\gamma t$ -$ $)$

is obtained. The amplification $A$ and phase delay $\phi$ are plotted against the ffequency $\gamma$ of the
applied force. As $\langle$ increases, not only the damping but also the frequency is increase, as implied
by viscoelasticity. The asymptotic behavior is given by

$x(t)= \frac{a_{1}}{2\sqrt{\pi}}t^{-}"+O(\mathrm{I}t1^{-5/2})$ , $|t|arrow\infty$ ,

implying slow decay as compared with exponential decay of the usual viscous damping.
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7 Conclusions
The solution ofthe ffactional differential equations describing oscillation with viscoelastic damp-
ing has been given in a closed form. This allows us to study the behavior of the solution pre-
cisely. In particular, the asymptotic power-law decay is determined by the lowest order deriva-
time $D^{1/n}x(t)$ whose coefficient is $a_{1}$ . On the other hand, the initial decrease in the velocity $Dx(t)$

is determined by the therm $D^{2-1/n}x(t)$ with the coefficient $a_{2n-1}$ . Thus, if $a_{2n-1}=0,$ then it
will depend on the next term $D^{2-2/n}x(t)$ . As is clear ffom the method of solution, $n$ is a natural
number.

Apart from the phenomenological reasoning offfactional derivatives given in Introduction,

one may be concerned about underlying physics. The asymptotic power law decay indicates the
lack of characteristic scale, implying fractal structure. In order to identify such a correspon-
dence, Schiessel and Blumen $[14, 11]$ have shown that by forming a nested ladder of the usual
spring-dashpot combinations, one can obtain a mechanical model which has ffactal like prop-
erties. This has been shown in the Laplace transform $X(s)$ of $x(t)$ , for some special choice of
parameters. Sakakibara $[15, 16]$ has shown that their result can be cast into a closed form for

$\mathrm{x}(\mathrm{t})$ , which shows the power-law decay $x(t)$ – $t^{-\gamma}$ . The exponent $-\mathrm{y}$ may be an arbitrary real
positive number. In the models discussed here, the exponent must be of the form -1 – $1/n$ ,
$n\in$ N. Thus, our models might well be considered as phenomenological, effective theory of
oscillations with viscoelastic damping.
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