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1. Introduction.

In this paper, we consider a hyperbolic structure on a manifold to be a (not necessarily
complete) Riemannian metric of constant sectional curvature -1. A hyperbolic 3-manifold is
an orientable 3-manifold with a hyperbolic structure. It is wel known that the complement
of the figure eight knot $K$ in the 3-dimensional sphere $S^{3}$ admits a complete, volume finite
hyperbolic structure $\sigma_{\infty}$ . By Mostow-Prasad rigidity, such a hyperbolic structure on $S^{3}-K$ is
unique. On the other hand, Thurston [11] analyzed flexibility of the hyperbolic structure $\sigma_{\infty}$

by allowing incomplete hyperbolic structures on $S^{3}-K\mathrm{r}$ In fact, he showed that deformations
of $\sigma_{\infty}$ on $S^{3}-K$ (no longer complete) can be holomorphically parametrized by points in an
open subset $U$ of a complex afEne plane curve $C$ . Its is given in (1) below.

When the parameters of deformations get closer to the boundary au or get into $C-U,$

degenerations of the hyperbolic structures occur. There are finitely many degenerations
which induce closed 3-manifolds with other geometric structures by Dehn filling along If. In
fact, there are twenty such degenerations and such a closed 3-manifold is one of the following
types :a Sol-manifold, a $\mathrm{P}\overline{\mathrm{S}}\mathrm{L}_{2}(\mathrm{R})$ -manifold, a Haken manifold which is decomposed into
a $\overline{\mathrm{P}\mathrm{S}}\mathrm{L}_{2}(\mathrm{R})$ -maaxifold and a Euclidean manifold along an embedded torus, or a Euclidean
orbifold.

We give explicitly a birational map from $C$ to a non-singular plane cubic curve in
Weierstrass form $E$ which is given in (3) below. The curve $E$ is what is called an elliptic
curve defined over Q. It is well known that any elliptic curve is an abelian group under an
addition law. In this paper, we see that a concrete correspondence holds between the closed
3-manifolds mentioned above (except the $\mathrm{P}\mathrm{S}\mathrm{L}_{2}\mathrm{R}$ manifold ) and some points of finite order
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on the elliptic curve $E$ . Especially, the Haken manifolds above exactly correspond to the

rational points of $E$ which form the cyclic group of order four.

2. Deformations of hyperbolic structures and hyperbolic Dehn filling.

In this section, we briefly describe a concrete treatment of deformations of hyperbolic

structures on 3-manifolds which is given by deforming ideal tetrahedra and also well-known

results on the hyperbolic Dehn filling for the figure eight knot complement. (See Thurston

[11] [12] [13], Cooper-Hodgson-Kerckhoff [1] and Neumann-Zagier [9].)

Each ideal tetrahedron $S$ in the 3-dimensional hyperbolic space $\mathrm{H}^{3}$ is determined up

to isometry by a complex number as follows (Fig. 1, see [13]). Take a 3-dimensional simplex

i $\mathrm{n}$

$\mathrm{H}^{3}$ . Transform it by the unique orientation-preserving isometry of $\mathrm{H}^{3}$ which sends the

fir$\mathrm{s}\mathrm{t}$ three vertices of the simplex to the points 0, 1and $\infty$ in the upper half space model

of $\mathrm{H}^{3}$ . Its congruence class is determined by the position of the last vertex, which is at

some point $z$ $\in \mathrm{C}-\{0,1\}$ . This complex number $z$ is a parameter of isometry classes of

ideal tetrahedra. Then we write $S=S(z)$ . The Euclidean triangle cut out of any vertex

of $S(z)$ by a horosphere section is similar to the triangle in $\mathrm{C}$ with vertices 0, 1 and $z$ . To

each edge of $S(z)$ is associated one of the three numbers $z$ , $(z-1)/z$ and l/(l-z). Call

this number the modulus of the edge. If $z$ is on the real line, then the ideal tetrahedron
$S$ (z) is flattened in a 2-dimensional hyperbolic subspace in $\mathrm{H}^{3}$ . If ${\rm Im}(z)>0,$ the map of

the simplex preserves orientation. Then the ideal tetrahedron $S(z)$ with ${\rm Im}(z)>0$ is said

to be positive. If ${\rm Im}(z)<0,$ the map of the simplex reverses orientation. Then the ideal

tetrahedron $S$ (z) with ${\rm Im}(z)<0$ is said to be negative. When we construct hyperbolic

3-manifolds by gluing the faces of ideal tetrahedra, we usually use positive ones. Note that
$S(z)$ , $S((z-1)/z)$ , $5(1/(1-z))$ , $5(1/\mathrm{z})$ , $S(z/(z-1))$ and 5(1-z) are transformed to each

other by orientation-preserving isometries. These orientation-preserving isometries change

the order of the vertices of the simplex. On the other hand, an ideal tetrahedra $S(\overline{z})$ is

transformed to $S(z)$ by the orientation-reversing isometry that is given by a composition of

the inverse of the map of the simplex to $S(\overline{z})$ and the map of the simplex to $S(z)$ .

$\mathrm{Z}$

1

1
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In this paper, we use If to denote the figure eight knot in the 3-dimensional sphere $5\mathrm{V}^{3}$ .
It is well known that its complement $S^{3}$ -If admits a complete, volume finite hyperbolic

structure $\sigma_{\infty}$ . The hyperbolic 3-manifold $(S^{3}-K, \sigma_{\infty})$ is obtained by gluing the faces of

two ideal tetrahedra $\mathrm{S}(\mathrm{z}\mathrm{o}\mathrm{o})$ and $S(w_{\infty})$ by orientation-reversing isometries according to the

diagram in Fig. 2 (see [11]), where $z_{\infty}=w_{\infty}=-\omega^{2}$ and $\omega$
$=e^{2\pi \mathrm{i}/3}$ . Then we write

( $S^{3}$ -If, $\sigma_{\infty}$ ) $=$ S(z) $\cup S(w_{\infty})$ . Since all the faces of any ideal tetrahedron are congruent, a

complex $S(z)\cup S(w)$ ( $\approx S^{3}$ -If) can be obtained by identifying their faces by orientation-
reversing isometries with the same gluing pattern. The necessary and sufficient condition
that $S(z)\cup S(w)$ is a smooth hyperbolic manifold is described by the algebraic equation
$z$ ( $z-$ l)w(w–1) $=1,$ since all the products of the corresponding moduli of the edges of
$S(z)$ and $\mathrm{S}(\mathrm{w})$ are equal to $e^{2\pi i}$ for each solution $(z,w)$ of this equation. Then, denote by
$C$ the affine plane curve defined by this equation:

$C=\{(z,w)\in \mathrm{C}^{2}|z(z-1)w(w-1)=1\}$ . (1)

The complete hyperbolic structure $\sigma_{\infty}$ corresponds to the point $(z_{\infty},w_{\infty})$ on the affine plane
curve $C$ . Define

$U:=$ { $(z,$ $w)\in \mathrm{C}^{2}|z(z-$ l)w(w-1)=1, ${\rm Im}(z)>0,$ ${\rm Im}(w)>0$}.

Then $U$ is an open neighborhood of $(z_{\infty},w_{\infty})$ in $C$ and biholomorphic to the region

$\{z \in \mathrm{C}|\mathrm{S}(\mathrm{z})>0\}-\{z\in \mathrm{C}|z=\frac{1}{2}+yi(y\geq\frac{\sqrt{15}}{2})\}$ .

If ( $z$ , to) $\in U-\{(z_{\infty},w_{\infty})\}$ , then $S(z)\cup S(w)$ gives a hyperbolic structure $\sigma$ on $S^{3}$ -If which
is no longer complete. Let us denote the hyperbolic 3-manifold ( $S^{3}$ -If, $\sigma$) by $(S^{3}-I\mathrm{f})(z, w)$ ,
and call it a deformation of ( $S^{3}$ -If, $\sigma_{\infty}$ ). Call the affine plane curve $C$ the deformation
curve of hyperbolic structures on the figure eight knot complement $S^{3}$ -If.

$\ovalbox{\tt\small REJECT}_{\mathrm{A}}^{\mathrm{v}}\mathrm{z}$
$\ovalbox{\tt\small REJECT}_{*}^{\mathrm{v}}\mathrm{w}\mathrm{w}$

$\mathrm{W}$

Fig. 2
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Associated with each point $(z,w)\in U$ is a representation $\rho$ : $\pi_{1}(S^{3}-K)arrow$t $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ .
The image of $\rho$ is not necessarily discrete subgroup of $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ . Let $\rho_{\infty}$ denote a repre-

sentation which corresponds to $(z_{\infty},w_{\infty})$ . Then the image $\rho_{\infty}(\pi_{1}(S^{3}-I\mathrm{f}))$ is a torsion-free

discrete subgroup of $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ and $\mathrm{H}^{3}/\rho_{\infty}$ ( $\pi_{1}$ ( $S^{3}$ -If)) is exactly the complete, volume finite

hyperbolic 3-manifold $(S^{3}-K,\sigma_{\infty})$ .
Let $T$ be a boundary torus of a tubular neighborhood of If in $57^{3}$ and $m$ and $l$ be the

standard meridian and longitude of $K$ on $T$ , respectively. Then for each coprime pair of

integers $(p,q)$ , one can obtain a closed 3-manifold $(S^{3}-I\mathrm{f})(p,q)$ by performing Dehn filling

along $K$ with killing the homotopy class of the simple closed curve $pm+ql$ . First, we remark

the following.

$\mathrm{o}$ If $(p,q)=(\pm 1,0)$ , then $(S^{3}-K)_{(p,q)}$ admits a spherical structure. In fact, both of
$(S^{3}- \mathrm{A}’)(\mathrm{b}1,0)$ are homeomorphic to $5^{3}$ .

Let $(z,w)\in U.$ Then, associated to a representation $\rho$ : $\pi_{1}(S^{3}-K)arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$

corresponding to $(z, w)$ is a representation $\mu$ : $\pi_{1}(T)arrow \mathrm{C}^{*}$ . It can be checked that $\mu(m)=$

$(1-z)$to and $\mu(l)=z^{2}(1-z)^{2}$ . Hence, if $(z, w)$ $\neq$ (z, $w_{\infty}$ ), we define the generalized Dehn

filling coefficient $(p, q)\in \mathrm{R}^{2}$ by the equation

$p\log\{(1-z)w\}+q\log\{z^{2}(1-z)^{2}\}=2$si, (2)

where $\log$ is taken with $-\mathrm{z}\mathrm{r}$ $<\arg\leq\pi$ . Note that there is a unique solution $(p, q)$ to

this equation, if $(z, w)\in U-\{(z_{\infty},w_{\infty})\}$ , because $\log\{(1-z)u\}$ is not a real multiple of

10g $\{z^{2}(1-z)^{2}\}$ if $(z, w)\in U-\{(z_{\infty},w_{\infty})\}$ . If $(z, w)=(z_{\infty},w_{\infty})$ , we take $(p,q)=\infty$ . Then
define a map

$HDF:Uarrow$t $\mathrm{R}^{2}J$ $\{\infty\}$

by
$HDF((z,w))=(p, q)$ ,

where $(p, q)$ is given as above.
The image of the map $HDF$ includes every coprime pairs of integers except the fol-

lowing twenty pairs : $(\pm 1,0)$ , $(0, \pm 1)$ , $(\pm 1,1 1)$ , $(\mathrm{z}, \pm_{-}1)$ , $(\pm 3,1 1)$ , $(\pm 4, \pm 1)$ (see Sections
4.6 and 4.7 in [11] $)$ . Then, if $(p, q)$ is a coprime pair of integers and is not any exception

above, the closed 3-manifold $(S^{3}-K)_{(p,q)}$ admits a hyperbolic structure $\overline{\sigma}$. This hyperbolic
structure $\overline{\sigma}$ on $(S^{3}-I\acute{\iota})(p,q)$ is the completion of the hyperbolic structure $\sigma$ of ( $S^{3}-$ K)(z, $w$),

where $(z,w)$ is an inverse image of $(p,q)$ by $HD$ F. The twenty exceptions above do not have

hyperbolic structures. If $(p, q)=(\pm 1,0)$ , then $(S^{3}-K)(p,\mathfrak{g})$ admits a spherical structure as
described above. In each of the other eighteen exceptional cases, there is a point $(z_{0}, w_{0})$
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on au which satisfies the equation (2) with the coprime pair of integers in question. Then

a degeneration of hyperbolic structures happens and another geometric structure appears if
$(z, w)$ tends to the point $(Z_{0}, Ul)_{Q})$ (see Sect. 4.9 in [11] and Sect. 5.7 in [1]):

1 If $(p,q)=(0,\pm 1)$ , then $(S^{3}-I\mathrm{f})(p,q)$ admits a Sol-structure. The image of the corre-
sponding representation $\rho(p,q)$ : $\pi_{1}(S^{3}-IC)$ $arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ is included in $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{R})$ .

$\mathrm{o}$ If $(p, q)=(\pm 1, \pm 1)$ , $(2)\pm 1)$ or ( $\pm 3$ , il), then $(S^{3} - K)_{(p,q)}$ admits a $\overline{\mathrm{P}\mathrm{S}}\mathrm{L}_{2}(\mathrm{R})-$

structure. The image of the corresponding representation $\rho(\mathrm{p},q)$ : $\pi_{1}(S^{3}-K)arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$

is included in $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{R})$ .
$\circ$ If $(p, q)=$ $(\pm 4, \pm 1)$ , then $(S^{3}-K)(p,q)$ contains an incompressible torus which splits

the manifold into the union of the trefoil knot complement and the non-trivial /-bundle

over the Klein bottle, where I denotes the closed interval $[0, 1]$ . The trefoil knot com-
plement has a $\overline{\mathrm{P}\mathrm{S}}\mathrm{L}_{2}(\mathrm{R})$ -structure and the non-trivial $I$-bundle over the Klein bottle
has a Euclidian structure. The images of the representations corresponding to them
are included in $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{R})$ or 50(3) respectively.

Thurston showed in Sect. 4.11 of his lecture notes [11] that for each coprime pair of integers
$(p,q)$ except the cases ( $\pm 4$,il) and $(0, 11)$ the 3-manifold $(S^{3}-K)(\mathrm{p},q)$ is not Haken.

If the generalized Dehn filling coefficient $(p,q)\in \mathrm{R}^{2}-\{(0,0)\}$ satisfies the condition
that $p\neq 0$ and $q/p$ is rational, take a coprime pair of integers $(\alpha,\beta)$ so that $q/p=\beta/\alpha$ .
Then a closed 3-manifold $(S^{3}-K)(\alpha,\beta)$ obtained by Dehn filling of type $(\alpha,\beta)$ along $K$

could have a hyperbolic 3-c0ne-structure with a simple closed curve as its singular locus
of cone angle $2\pi|\alpha/p|$ . Now consider specially the case as $q=0.$ In this case, we take
$(\alpha,\beta)=(1,0)$ or $(\alpha,\beta)=$ $(-1,0)$ depending on whether $p$ is positive or negative. Note that
both of $(S^{3}-K)(\pm 1,0)$ are homeomorphic to $5^{3}$ and singularities of cone-structures could
appear along $K$ . First, let us consider the case where $p$ is positive. Thurston analyzed
that the image of $HDF$ includes the open interval $( \frac{2\pi}{\sin^{-1}(\sqrt{15}/4)}, +\mathrm{o}\mathrm{o})$ in the -axis. (Note
that $2\pi/\sin^{-1}(\sqrt{15}/4)\approx$ 4.76679.) Then $S^{3}$ admits a hyperbolic 3-c0ne-structure with
singular locus $K$ of cone angle $2\pi/p$ , where $p>\epsilon \mathrm{i}\mathrm{n}^{-1}(15/4)2\pi$ . After his works, without using
ide tetrahedr decompositions, Hilden, Loz $0$ nd Montesinos-A .libia [4] constructed
a one-parameter family of 3-c0ne-manif0lds $\{(S^{3},\tau(p))\}_{p\in[3,+\infty]}$ whose sectional curvature
increases monotonely from -1 at $p=+\mathrm{o}\mathrm{o}$ to 0 at $p=3$ and whose singular locus is
the figure eight knot $K$ with cone angle $2\pi/p$ . The 3-c0ne-manif0ld $(S^{3},\tau(+\infty))$ coincides
with the hyperbolic 3-manifold $(S^{3},\sigma,)$ . The 3-c0ne-manif0ld $(S^{3},\tau(3))$ is a Euclidean 3-
orbifold with $K$ as the singular locus of cone angle $2\pi/3$ . For each $p\mathrm{E}$ $(3, +\mathrm{o}\mathrm{o})$ , rescaling
the Riemannian metric of $(S^{3},\tau(p))$ adequately, we obtain a hyperbolic 3-c0ne-manif0ld
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$(S^{3},\hat{\tau}(\mathrm{p}))$ whose singular locus is If with cone angle $2\pi/p$ . This collapses to a point as

$p[searrow] 3$ . Then, on the contrary, it is considered that the hyperbolic 3-c0ne-manif0ld $(S^{3}-$

$K,\hat{\tau}(p|))$ can be rescaled to converge to the Euclidean 3-orbifold $(S^{3}, \tau(3))$ as $parrow 3$ (see also

Sect. 5.7 in Cooper-Hodgson-Kerckhoff [1] $)$ . If $p$ is negative, $p$ moves in the open interval
Denote by $(S^{3},\tau(-3))$ a Euclidean 3-
$[-\infty, -3]\cup[3,$ $+$”L there corresponds

a representation $\rho_{\hat{\tau}(p)}$ : $\pi_{1}$ ( $S^{3}-$ A) $arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ . With the Euclidean 3-orbifolds $(S^{3}, \tau(\pm 3))$

are associated representations $\rho_{\tau(\pm 3)}$ : $\pi_{1}(S^{3}-K)arrow SO(3)$ . By taking conjugation, the

representation $\rho_{\hat{\tau}(p)}$ converges to $\rho_{\tau}(\pm 3)$ when $parrow\pm 3$ .

3. A birational map from the deformation curve C to an elliptic curve in Weier-

strass form.

Let $V$ be the projective completion of the complex affine plane curve $C$ . Then $V=$

$\{(x_{0} : x_{1} : x_{2})\in \mathrm{C}\mathrm{P}^{2}|x_{1}(x_{1}-x_{0})x_{2}(x_{2}-x_{0})=x_{0}^{4}\}$. Let $A$ and $B$ denote points at infinity

of $C$ which correspond to the points (0 : 0:1) and (0 : 1:0) on $V$ , respectively. These

points (0: 0: 1) and (0: 1 : 0) are ordinary double points. Then the genus of $C$ is one.

Th$\mathrm{e}$ curve $C$ is transformed to a non-singular cubic curve in Weierstrass form $E$ by the

following birational map. The curve $E$ is the elliptic curve denoted by $15A8$ in the table of

Cremona [2].

$C$ :
$z(z-1)w(w-1)=1\# z=u,w=_{v}^{1}$

$u^{2}v+v^{2}-uv-u^{2}+u=0$

$0_{0}^{u=\frac{X}{X}[perp]}$ , $v= \frac{X}{\chi}0Z$

$X_{1}^{2}\lambda_{2}’+X_{0}X_{2}^{2}-X_{0}X_{1}X_{2}-X_{0}X_{1}^{2}+X_{0}^{2}X_{1}=0$

$\mathit{6}^{Ko=-s;\mathit{0}-\mathrm{s}_{1}}$ , $X_{1}=x_{2}$ , $X_{2}=-\mathrm{s}\mathrm{r}_{\mathrm{S}}$

$-x_{0}x_{1}^{2}-x_{1}^{3}+x_{0}x_{1}x_{2}+x_{0}x_{2}^{2}+x_{0}^{2}x_{2}=0$

$\#^{x=_{0’}}*.\lrcorner y=_{\mathit{9}0}^{Z}$

.
$E:y^{2}+xy\mathit{1}$ $y=x^{3}+x^{2}$ (3)

Any elliptic curve allows an addition law $+$ and the points on it form an abelian

group under this operation $+$ , with a point $O$ as identity element. On our elliptic curve
$E:y^{2}+xy+y$ $=x^{3}+x^{2}$ , the addition law is described explicitly (see Appendix). We choose

the point at infinity of $E$ as the identity element. Using the addition law on $E$ , we consider

additions of points of $C$ . Note that this addition law on $C$ depends on choice of birational

transformations from $C$ to $E$ and is determined up to translation on $E$ .
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Let $E(\mathrm{Q})$ be the Mordell-Weil group over $\mathrm{Q}$ that is the subset consisting of all rational
points of $E$ . It is a subgroup of $E$ . On our elliptic curve $E$ , it is isomorphic to $\mathrm{Z}/4\mathrm{Z}$ , the

cyclic group of order 4 (see [2]). By the birational map, the singular point $A$ (resp. $B$) of

the deformation curve $C$ is transformed to two non-singular points $A_{1}$ , $A_{3}$ (resp. $B_{2}$ , $B_{4}$ )

on $E$ . These four points $A_{1}$ , $B_{2}$ , A3 and $B_{4}$ on $E$ form the Mordell-Weil group $E(\mathrm{Q})$ . In

fact, we have $A_{1}=(0, -1)$ , $2A_{1}=B_{2}=(-1,0)$ , $3A_{1}=A_{3}=(0,0)$ and $4A_{1}=B_{4}=O$ .

4. Points of finite order on the elliptic curve $E$ and Dehn filling on the figure

eight knot.

4.1. Rational points on $E$ and Haken manifolds.

Culler and Shalen [3] investigated the character varieties of representations of funda-
mental groups of hyperbolic 3-manifolds. They showed that there corresponds an incom-
pressible surface in a hyperbolic 3-manifold to each ideal point of a complex affine algebraic
curve in its character variety. On the other hand, Yoshida [15] gave an explicit understand-
ing of the restriction of the general theory given by Culler-Shalen to the special case of
hyperbolic 3-manifolds with one cusp which have ideal tetrahedral decompositions. Instead
of the character varieties, he used deformation curves of hyperbolic structures constructed
by making use of ideal tetrahedral decompositions and defined ideal points of deformation
curves. Our complex affine plane curve $C$ is an example of such a deformation curve. He
showed that there are four ideal points on our deformation curve $C$ and constructed incom-
pressible surfaces explicitly to these four ideal point. The genaralized Dehn filling coefficients
corresponding to these four ideal points are $(\pm 4, \pm 1)$ . In fact, these incompressible surfaces
are capped with disks to be the ones discussed in Sect. 2. Let $b_{1}$ , $b_{2}$ , $b_{3}$ and $b_{4}$ be the ideal
points of $C$ corresponding to $(4,$ $-1)$ , $(-4,$ $-1)$ , $(4, 1)$ and (-4, 1), respectively.

It can be checked that the four rational points $A_{1}$ , $B_{2}$ , A3 and $B_{4}$ on $E$ correspond
to the four ideal points $b_{1}$ , $b_{2}$ , $b_{3}$ and $b_{4}$ , respectively. In fact, these points Ai, $B_{2}$ , A3 and
$B_{4}$ are said to be ideal points in the sense of Culer and Shalen if we apply their setting for
an algebraic curve in the character variety to our deformation curve $C$ . Then on hyperbolic

structures of the figure eight knot complement $S^{3}-K$ the rational points of its deformation
curve correspond exactly to the closed Haken 3-manifolds $(S^{3}-K)_{(\pm 4,\pm 1)}$ which contain
incompressible surfaces each of that comes from a non-trivial splitting of $\pi_{1}(S^{3}-K)$ .

4.2. Points of finite order on $E$ and Sol-manifolds.

The point $( \frac{1-\sqrt{5}}{2}, \underline{1}\pm_{2}\not\in)$ on $C$ corresponds to the point $T:=(_{22}^{\mathrm{B}1c_{5},\mathrm{H}\mathrm{E}})$ on $E$ . Al-
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though this point $(^{\frac{1-\sqrt{5}}{2}}, \frac{1+\sqrt{5}}{2})$ is not contained in $U$ , there is a sequence of points in $U$

which converges to this point $(^{\frac{1-\sqrt{5}}{2}}, \frac{1+\sqrt{5}}{2})$ . Then this point gives a degenaration of hyper-

boli$\mathrm{c}$ structures on $\mathrm{S}^{3}$ -If as follows. Let us consider the equation (2). Take the path $L\tau$

on $C$ connecting the two points $(-\omega^{2}, -\omega^{2})$ and $( \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2})$ defined as follows:

$( \frac{1}{2}\geq t\geq 1-7)$ .

- $\mathrm{c}\mathrm{u}^{2}$

$-\omega^{2}$

$\mathrm{L}_{7}$

$\tau$

$|||$

$|l$

$||||$

$11||1$

$\frac{1-5}{2}$
0

$\frac{1}{2}$

$\hat{|..}$

–

0 $\frac{\dot{1}}{2}$ 1 $15\vee\overline{\overline{2}}$

$\mathrm{z}-\mathrm{p}1$ ane $\mathrm{w}-\mathrm{p}1$ ane
$\mathrm{F}\mathrm{i}\mathrm{g}$ . 3

Then, along the path $L_{T}$ , the corresponding generalized Dehn filling coefficients are of type
$(0, q)$ . The value of $q$ decreases monotonely from oo at $t= \frac{1}{2}$ to 1 at $t= \frac{1-\sqrt{5}}{2}$ . Especially,
if $(z,w)$ goes to $( \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2})$ along $L_{T}$ , then $(0, q)$ goes to $(0, 1)$ . Denote the incomplete

hyperbolic structure of ( $S^{3}-$ If)(z (t), $w(t)$ ) by $\sigma(0,g)$ . The incomplete hyperbolic 3-manif0ld
$(S^{3}-K, \sigma_{(0,q)})$ is completed to be a hyperbolic 3-c0ne-manif0ld $((S^{3}-I\mathrm{f})(0,1),\overline{\sigma}(0,q))$ . Its

underlying space $(S^{3}-K)_{(0,1)}$ is homeomorphic to a torus bundle over a circle with the

Anosov monodromy $(\begin{array}{ll}1 11 2\end{array})$ . Its singular locus is a section of this torus bundle and its cone

angle is equal to $2\pi/q$ . When $qarrow 1$ , the hyperbolic 3-c0ne-manif0ld $((S^{3}-K)(0,1)$ , $\overline{\sigma}$(0,q).

collapses to the circle that forms the base of the torus bundle. On the other hand, the

3-manifold $(S^{3}-I\mathrm{f})(0,1)$ admits a Sol-structure. After rescaling the hyperbolic metric $\overline{\sigma}(0,\mathrm{g})$

this converges to the Sol-structure as $qarrow 1$ . Then the point $T$ can be considered to

correspond to the 3-manifold with the Sol-structure that occurs by the degeneration of the

hyperbolic structures. Note that the developing images of the ideal tetrahedra $S(z(t))$ and
$S(w(t))$ are flattening out in a 2-dimensional subspace $\mathrm{i}\mathrm{i}^{2}$ in $\mathrm{H}^{3}$ as $qarrow 1$ and then the
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developing map of the hyperbolic 3-c0ne-manif0ld $((S^{3}-I\mathrm{f})_{(0,1)},\overline{\sigma}_{(0,q)})$ converges to that

of a transversely codimension 2 hyperbolic foliation on $(S^{3}-I\mathrm{s}’)_{(0,1)}$ when $qarrow 1$ . Then

the corresponding representation converges as $qarrow$r 1 to a (non-discrete) representation into
$\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{R})$ by taking a suitable conjugation. (See Sect. 4.9 in [11].)

We can check that $2T=A_{3},3T=(^{\frac{1-\sqrt{5}}{2}},-2+\sqrt{5})$, $4T=B_{2},5T=( \frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2})$ ,
$6T=A_{1},7T=(^{\frac{1+\sqrt{5}}{2}},-2-\sqrt{5})$ and $8T=O.$ The three points $( \frac{1-\sqrt{5}}{2},1-\sqrt{5})\overline{\overline{2}}$ , $(^{\underline{1}\pm_{2}E}, \frac{1-\sqrt{5}}{2})$

and $( \frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2})$ on $C$ correspond to $3T$ , $5T$ and $7T$ , respectively, by the birational map.

Then, by computations si milar to the above, it is checked that $3T$ , $5T$ and $7T$ correspond

to the generalized Dehn filling coefficients $(0,$ $-1)$ , $(0,$ $-1)$ and $(0, 1)$ , respectively. As in
the case of $T$ , the point $5T$ can be considered to be a limit of points in $U$ and gives a Sol-
structure on $(S^{3}-K)(0,-1)$ that is a limit of hyperbolic structures on $S^{3}-K.$ On the other
hand, the points $3T$ and $7T$ are not limits of points in $U$ , since both paths connecting the

original point $(z_{\infty},w_{\infty})$ to $( \frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2})$ and to $(_{22}^{\underline{1}\pm\not\in\underline{1}\pm\not\in},)$ should cross the region $C-U.$

So far, there is no idea to construct hyperbolic structures along a path connecting the points
$(-\omega^{2}, -\omega^{2})$ and $( \frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{-2})$ or $(_{22}^{\mathrm{H}L5\mu 3C5},)$ especially in the outside of $U$ . Therefore we
consider the points $3T$ and $7T$ do not correspond to 3-manifolds obtained by Dehn filling of
the hyperbolic 3-manifold $(S^{3}-K,\sigma_{\infty})$ .

4.3. Points of finite order on E and Euclidean orbifolds.

The point $(z_{\infty}, w_{\infty})(=(-\omega^{2}, -\omega^{2}))$ on the deformation curve $C$ corresponds to the

point $R:=$ $(\omega^{2}, -1)$ on $E$ . We can check that $2R=A_{1}$ and that the point $5R$ also
corresponds to $(\overline{z_{\infty}},\overline{w_{\infty}})(=(-\omega, -\omega))$. Since ${\rm Im}(-\omega)<0,$ the ideal tetrahedron $S(-\omega)$

is negative and we can consider that $S(-(\omega))$ $\cup S(- \mathrm{c}\mathrm{p})$ is a hyperbolic 3-manifold which
is overlapped to $(S^{3}-K, r_{\infty})$ $=S(-\omega^{2})\cup$ $5$ $(-\mathrm{E}\mathrm{J}^{2})$ by orientation-reversing isometry. So
far, there is no idea to construct deformations of the hyperbolic structure $\sigma_{\infty}$ connecting
$(S^{3}-K)(z_{\infty}, w_{\infty})$ alld $(S^{3}-K)(\overline{z_{\infty}},\overline{w_{\infty}})$ . Then we have to consider now that the hyperbolic
3-manifold $(S^{3}-K)(\overline{z_{\infty}},\overline{w_{\infty}})$ is not obtained by hyperbolic Dehn filling of the original
hyperbolic 3-manifold $(S^{3}-I\mathrm{f})(z_{\infty},w_{\infty})$ .

The point on $C$ corresponding to the point $7R=$ $(\omega^{2}, -\omega^{2})$ (resp. $3R=(\omega$ , -$\omega$)) on $E$

is $(-\omega, -c\omega^{2})$ (resp. $(-\omega^{2},$ $-\omega$ )). Since ${\rm Im}(-\omega)<0,$ these points $(-\omega, -<i^{2})$ and ( $-\omega^{2}$ , -u)

are not contained in $U$ . Now let us consider the equation (2) on the Riemannian surface of
$C$ . Take the path $L_{7R}$ on this Riemannian surface connecting the two points $(-\omega^{2}, -\omega^{2})$

and $(-\omega, - \mathrm{w}^{2})$ defined as follows:

$L_{7R}=(z, w)=(z(t),w(t))$ , there $z(t)= \frac{1}{2}+\mathrm{i}$ $t$ , $w(t)= \frac{1}{2}+_{\overline{2}}\cdot$ $\frac{-4t^{2}+15}{4t^{2}+1}$ , $( \frac{3}{2}\geq t\geq-\frac{3}{2})$ .
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Then, along this line $L_{7R}$ , the corresponding Dehn filling coefficients are of type $(p,0)$ . The

value of $p$ decreases monotonely from $+$ oo at $t=\sqrt{3}/2$ to 3 at $t=-\sqrt{3}/2$ . Especially,

if $(z, w)$ goes to $(-\omega, -\omega^{2})$ along $L_{7R}$ , then $(p,0)$ goes to $(3, 0)$ . Unfortunately however,

the paths $L_{7R}$ gets into the region $C-U$ at $(z’,w’)=(1/2, (1+\sqrt{15}i)/2)$ . Let $(p’,0)$ be

the Dehn surgery coefficient corresponding to ( $z’$ , $\mathrm{p}’$ . As described above, the value of

$p’$ is near 4.76679. If $p>p’$ , the ideal tetrahedra $S(z(t))$ and 5 $(\mathrm{t}\mathrm{t}\mathrm{z}(t))$ are positive and a

hyperbolic 3-manifold ( $S^{3}-$ If)(z (t), $w(t)$ ) can be constructed by gluing the faces of $S(z(t))$

and $S(w(t))$ with the same pattern as $(S^{3}-K, \sigma_{\infty})$ . Denote its hyperbolic structure by $\sigma(p,0)$ .

This gives rise to a hyperbolic 3-c0ne-manif0ld ( $(S^{3}-K)_{(1,0)},\overline{\sigma}$(p,o)) by its completion. The

underlying space $(S^{3}-I\mathrm{f})_{(1,0)}$ is homeomorphic to $S^{3}$ and If forms the singular locus with

con$\mathrm{e}$ angle $2\pi/p$ . Beyond the point $(z’,w’)$ , so far it is difficult to argue deformations of

$\mathrm{S}(z(t))$ $\cup S(w(t))$ . But the hyperbolic Dehn filling does not break down at $(z’,w’)\in\partial U$ . In

fact, as mentioned in Sect. 2, the hyperbolic 3-c0ne-structures $i(p)$ on $\mathrm{S}^{3}(\approx(S^{3}-K)(1,0))$

are obtained beyond the point $(p’, 0)$ (and until the point (3, 0)). If $p>p’$ , the cone angles

of the two hyperblic 3-c0ne-manif0lds $(S^{3},\overline{\sigma}(p,0))$ and $(S^{3},\hat{\tau}(p))$ are the same and are smaller

than $2\pi/p’$ . Then, by Kojima’s global rigidity theorem on hyperbolic 3-c0ne-manif0lds (see

[7] $)$ : $(S^{3},\hat{\tau}(p))$ is isometric to ( $S^{3}$

:
$\overline{\sigma}$(p,0). if $p>p’$ . Hence, $(S^{3},\hat{\tau}(\mathrm{p}))$ $(p’\geq p>3)$ can be

consider$\mathrm{e}\mathrm{d}$ to realizations of the completions of ($S^{3}-$ If)(z, $w$ ) along the paths $L_{7R}$ beyond

the point $(z’,w’)$ . Moreover, when $p\mathrm{z}$ $3$ , (S3, $\hat{\tau}(p)$ ) is rescaled to converge to the Euclidean

3-orbifold $(S^{3},\tau(3))$ . Then the point $(p, q)=(3,0)$ can be regarded to correspond to the
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Euclidean 3-orbifold $(S^{3},\tau(3))$ . Therefore we might consider that $7R$ corresponds to the

Euclidean 3-orbifold $(S^{3}, \tau(3))$ that occurs by the degeneration of the hyperbolic structures.

By taking another path which connects $(-\omega^{2}, -,2)$ and ( $-\omega^{2}$ , -u) and preforming the same

process, we also might consider that $3R$ corresponds to the Euclidean 3-orbifold $(S^{3}, \tau(-3))$

given in Sect. 2.

4.4. Theorem.

By summerizing the above, we have the following theorem.

Theorem. Let $K$ be the figure eight knot in the $S$-dimensional sphere $S^{3}$ . Let

$C$ : $z(z-1)w(w-1)=1$

be the deformation curve of hyperbolic structures on the figure eight knot complement $S^{3}-K$ .
For each coprime pair of integers $(p, q)$ , let us denote by $(S^{3}-K)_{(p,q)}$ a closed 3-manif0ld
obtained from the figure eight knot complement $S^{3}-K$ by a Dehn filling along $K$ which

kills the homotopy class of the simple closed curve $pm+ql,$ where $m$ and $l$ are the standard
meridian and longitude of $K$ in $S^{3}$ .

(1) The defo rmation curve $C$ is birationally equivalent to the elliptic curve

$E$ : $y^{2}+ry$ $+y=x^{3}+x^{2}$

whose conductor is i5 and Mordell- Weil group $E(\mathrm{Q})$ is isomorphic to $\mathrm{Z}/4\mathrm{Z}_{J}$ the cyclic

group of order four.
(2) The four points $A_{1}:=(0, -1)$ , $B_{2}:=(-1,0)$ , $A_{3}:=(0,0)$ and $B_{4}:=O$ on $E$ forrn the

Mordell-Weil group $E(\mathrm{Q})$ , sphere $O$ denotes the point at infinity of $E$ .

(9) The teoo points $R:=(\omega^{2}, -1)$ and $T:=(_{22}^{1\pm E1\pm\Phi},)$ on $E$ are points of order eight and

satify that $2R=6T=A_{1},4R=4T=B_{2},6R=2T=A_{3}$ and $8R=8T=B_{4}=O$ .
Here $\omega$ denotes the complex number $e^{2\pi}:/3$ .

(4) There is the following correspondence beteoeen the points $nR$ , $nT(n=1, \ldots, 8)$ on the

elliptic curve $E$ except the three points $5R,$ $3T$ and $7T$ and the 8-manifolds $(S^{3}-K)(p,q)$

$((p, q)=\infty$ , (4) 11), $(\pm 1,0)$ , $(0, \pm 1))$ with geometric $st$ uctures. where $(S^{3}-K)_{\infty}$

means the unsurgered manifold $S^{3}-K\mathrm{r}$
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$R$ $\Leftrightarrow$
$S^{3}$ -If with a complete volume finite hyperbolic structure

$2R=6T=A_{1}$ $\Leftrightarrow$ $(S^{3}-I\acute{\mathrm{t}})_{(4,-1)}$ contains an incompressible torus

that gives rise to a splitting into $a$ Euclidean manifold
and a $\overline{PS}L_{2}(\mathrm{R})$ manifold

$3R$ $\Leftrightarrow$ $(S^{3}-K)_{(-1,0)}$ with $a$ Euclidean orbifold $st$ ucture

of cone angle $2\pi/3$ along the singular locus $K$

$4R=4T=B_{2}$ $\Leftrightarrow$ $(S^{3}-I\mathrm{f})_{(-4,-1)}$ contains an incompressible to us

that gives rise to a splitting into $a$ Euclidean manifold
and a $\overline{PS}L_{2}(\mathrm{R})$ manifold

$6R=2T=A_{3}$ $\Leftrightarrow$ $(S^{3}-K)_{(4,1)}$ contains an incompressible torus

that gives rise to a splitting into $a$ Euclidean manifold
and a $\overline{PS}L_{2}(\mathrm{R})$ manifold

$7R$ $\Leftrightarrow$ $(S^{3}-I\mathrm{f})_{(1,0)}$ with $a$ Euclidean orbifold structure

of cone angle $2\pi/3$ along the singular locus $K$

$8R=8T=B_{4}=O$ $\Leftrightarrow$ $(S^{3}-I\mathrm{f})_{(-4,1)}$ contains an incompressible torus

that gives rise to a splitting into $a$ Euclidean manifold
and a $\overline{PS}L_{2}(\mathrm{R})$ manifold

$T$ $\Leftrightarrow$ $(S^{3}-K)_{(0,1)}$ with a Sol-structure
$5T$ $\Leftrightarrow$ $(S^{3}-K)_{(0,-1)}$ with a Sol-structure

$\mathrm{q}$

$\mathrm{L}_{7}$

$\mathrm{B}_{\mathrm{o}_{1}^{\underline{4}}---------------------}$

|

$———————-*\mathrm{T}$
$\mathrm{A}_{3}$

1
$3\mathrm{R}$ $7\mathrm{R}$

$||1\mathrm{I}$

$\mathrm{L}_{7\mathrm{R}}$

$||1$

-4.76679$\cdots$

$||’|-4$
$\sim 3$ -I3 $4_{1}|$

4. 76679 $\cdots$
$\mathrm{p}$

$-\wedge--------------------$

$\mathrm{B}_{2}$

$5\mathrm{T}$
$\mathrm{A}_{1}$

$\mathrm{F}\dot{1}$ g. 5

Remark. The correspondence in (4) is not canonical, since it depends on choice of birationl

maps from $C$ to $E$ . It is determined up to translation of $E$ .
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The theorem above intimates that there are some relationship between information on

arithemeticity of the deformation curves of hyperbolic 3-manifolds and one on the topology

and the geometry of 3-manifolds obtained from the hyperbolic 3-manifolds by Dehn filling.

5. An automorphic form and the $L$-function for E.

Our deformation curve $C$ is birational to the elliptic curve $E$ . The condutor of this

elliptic curve is 15. Let $\Gamma_{0}(15)$ be the Hecke congruence group of level 15:

FO(15) $=\{$ $(\begin{array}{ll}a bc d\end{array})\in \mathrm{S}\mathrm{L}_{2}(\mathrm{Z})|c\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 15)\}\mathrm{c}$

The modular curve $X_{0}(15):=\mathrm{H}^{2}\cup \mathrm{Q}\cup\{\infty\}/\Gamma_{0}(15)$ is isomorphic to the elliptic curve
$y^{2}\}$ $xy$ $+y=x^{3}$ $-\}$ $x^{2}-$ 10x – 10. Let $S_{2}(\Gamma_{0}(15))$ denote the space of cusp forms of weight

2 and level 15. The complex dimension of the space $S_{2}(\Gamma_{0}(15))$ is 1. The ry-product

$\varphi(\tau)=\eta(\tau)\eta(3\tau)\eta(5\tau)\eta(15\tau)$ $(\tau\in \mathrm{H}^{2})$

is a newform and becomes a base of this space, where $\eta(\tau)=e^{\pi i\tau/12}\prod_{n=1}^{\infty}(1-e^{2\pi})$
; is the

Dirichlet $\eta$-function (see Cor. in Section 3.1 of Ligozat [8]). Let

$\varphi(\tau)=\sum_{n=1}^{\infty}c_{n}e^{2\pi*}$

.
$n\tau$

be a Fourier expansion of the newform. Then the $L$-function of the elliptic curve $E$ is given
by the Dirichlet series

$L(E, s)$ $= \sum_{n=1}^{\infty}\frac{c_{n}}{n^{s}}$ .

This $L$-function $L(E,s)$ has an Euler product expansion

$L(E, s)$ $=[ \frac{1}{1+3^{-s}}][\frac{1}{1-5^{-}},]p$ .
$\prod_{\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}}^{\infty}[\frac{1}{1-c_{p}p^{-s}+p^{1-2s}}]$

$p\neq 3,5$

which converges for ${\rm Re} s> \frac{3}{2}$ .

Appendix.

In this appendix, we describe the addition law on the elliptic curve $E:y^{2}+xy+y=x^{3}+x^{2}$

explicitly (see [5] [6] [10] [14]). The elliptic curve $E$ has a unique point at infinity. Denote

this point by $O$ . If we identify $(x, y)\in E$ with a point $($ 1 : $x$ : $y)$ on the corresponding
projective variety of $E$ , then $O=(0:0:1)$ . Let $P=(x_{1}, y_{1})$ and $Q=(x_{2}, y_{2})$ be points on
$E$ . We give formulas to compute $P+Q$ as follows.
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$\mathrm{o}$ If $x_{1}\neq x_{2_{l}}$ then
$(x_{1},y_{1})+(x_{2},y_{2})=(x_{3},y_{3})$ ,

where

$x_{3}=( \frac{y_{2}-y_{1}}{x_{2}-x_{1}})^{2}+(\frac{y_{2}-y_{1}}{x_{2}-x_{1}})-1-x_{1}-x_{2}$, $y_{3}=-( \frac{y_{2}-y_{1}}{x_{2}-x_{1}}+$ $1)$ $x_{3}-( \frac{y_{1}x_{2}-y_{2}x_{1}}{x_{2}-x_{1}})-1$ .

$\mathrm{o}$ If $x_{1}=x_{2}$ and $y_{1}+y_{2}+x_{2}+1=0,$ then

$(x_{1}, y_{1})+(x_{1}, y_{2})=$ $()$ .

$\mathrm{o}$ If $x_{1}=x_{2_{l}}$ $\mathrm{j}\mathrm{i}\mathrm{l}$ $=y_{2}$ and $y_{1}+y_{2}+x_{2}+1$ $=0_{J}$ then

$2(x_{1}, y_{1})=O.$

$\mathrm{o}$ If $x_{1}=x_{2}$ , $y_{1}=y_{2}$ and $y_{1}+y_{2}+x_{2}+1\neq 0,$ then

$2(x_{1}, y_{1})=(x_{3},y_{3})$ ,

where

$x_{3}=$ $( \frac{3x}{2}$

$y_{3}$ $=$

$-( \frac{y_{1}+x_{1}+1213x_{1}^{2}+2x_{1}-y_{1}+2x_{1}-y_{1)^{2}}}{2y_{1}+x_{1}+1}+\grave{1},\frac{11-x_{1}^{3}y_{1}+1-y1\underline{)}-1}{2y_{1}+x_{1}+1},)-1+\frac{3x_{1}^{2}+2x}{2y_{1}+x,x_{3}-(}-2x_{1}.$

’

$\mathrm{o}$ $-(x_{1}, y_{1})=$ $(x_{1}, -x_{1}- 1\mathrm{s}-1)$ .

Then the points on $E$ form an abelian group under this addition law. The point $O$ is the

identity element of this group.

where

$x_{3}=$ $( \frac{3x}{2}$

$y_{3}$ $=$

$-( \frac{y_{1}+x_{1}+1213x_{1}^{2}+2x_{1}-y_{1}+2x_{1}-y_{1)^{2}}}{2y_{1}+x_{1}+1}+\grave{1}+\frac{3x_{1}^{2}+2}{2y_{1}+,x_{3}-(}$
,

$x_{1}+1x_{1}-y_{1)}-1$

$\frac{-x_{1}^{3}-y_{1}}{2y_{1}+x_{1}+1}$

$\mathrm{o}$ $-(x_{1},y_{1})=(x_{1}, -x_{1}-y_{1}-1)$ .

Then the points on $E$ form an abelian group under this addition law. The point $O$ is the

identity element of this group.
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