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FATOU AND LITTLEWOOD THEOREMS FOR POISSON
INTEGRALS WITH RESPECT TO NON-INTEGRABLE
KERNELS
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1. Farou THEOREM AND LITTLEWOOD THEOREM
In 1906 Fatou [5] proved the following:

Theorem (Fatou Theorem). Let f be a bounded analytic function on the
unit disk U = {|lz] < 1} in C. Then f has non-tangential limit at a.e.
e e gU.

Ficure 1. Fatou Theorem. Ficure 2. Littlewood Theorem.

In 1927 Littlewood [9, 10] proved the sharpness of non-tangential ap-
proach.

Theorem (Littlewood Theorem). Let vy C U be a tangential curve at 1
and let vy be the rotation. Then there exists a bounded analytic function f
on U such that the limit of f along g does not exists for a.e. € € dU.

There are many generalizations of Fatou theorem as follows:
e Hardy space H? '
e Harmonic functions
e Local Fatou theorem
e Invariant harmonic functions. Korényi (1969) (8]



¢ Square root of the Poisson kernel. Sjogren (1983) [18, 19, 20]
e Non non-tangential convergence. Nagel-Stein (1984) [13]
e Harmonic functions on trees
¢ Symmetric spaces |
On the other hand, there are rather few works for Littlewood theorem:

e Zygmund (1949) [21]. (Blaschke product/Real Analysis)
e Lohwater-Piranian (1957) [11]. (Blaschke product. Everywhere
divergence)
o Hakim-Sibony (1983) [6]. (Invariant harmonic functions)
e Aikawa (1990) [1, 2]. (Everywhere divergence)
e Salvatori-Vignati (1997) [17]. (Homogeneous tree).
e Di Biase (1998) [4]. (General tree)
e Hirata (2003) [7]. (Invariant harmonic functions in the unit ball
of C")
In this note, we would like to observe that Fatou Theorem and Littlewood
Theorem should go hand in hand.

2. Farou AND LiTTLEWOOD THEOREMS FOR HARMONIC FUNCTIONS ON R™*!

1

Let W(x) = (1 + [x?)"®*V”2 for x € R and put ¥,(x) = t—nly(g) fort > 0.

Then ¥, * 1 = ¢, and v
Ferf_ 1 f tf(y)dy
¥exl  cn Jre (Ix —yl? + 2)m+D2

is the Poisson integral Pf(x,¢) for the half space R™! = {(x,8) : x €
R",t > 0}. By A we denote a positive constant whose value may change
from occurrence to the next. If two positive functions f and g satisfy f <

Ag for some A > 1, then we write f < g. If f S gand g < f, then we write
f ~ g. Let h(¢) be a positive function for ¢ > 0. Define the approach region

() ={(x.1): lx- £ <h(r)} foréeR".

If h(t) ~ ¢, then «,(€) gives a nontangential approach to £&. We say that
a function u in R**! has a nontangential limit at £ if the limit of « along
2,(€) exists for every nontangential approach «7,(&¢).

Theorem A (Fatou Theorem). Let 1 < p < oo, If f € LP(R"), then Pf(x, 1)
has nontangential limit f(£¢) at a.e. £ € R".




FiGure 3. Approach region 4 (€).

Theorem B (Littlewood Theorem). If limsup,_,h(f)/t = oo, then there
exists f € L'(R™) N L*(R") such that
&in& Pf(x,1) fails to exist at every £ € R".
(x.nen(£)
If v is a tangential curve in R ending at OR™!, then there exists f €
L'(R™) N L=(R™) such that
lin(} Pf(x,t) fails to exist at every £ € R".
(x,ggwf -

The above theorems suggest that the higher integrability of the boundary
function f does not improve the admissible tangency.

3. NON-INTEGRABLE KERNEL

Sjogren [18, 19, 20] gave extensions of the Fatou theorem for fractional
Poisson integrals. Let

11—z
Ped = arie=cr

be the Poisson kernel for the unit disk U. Then the classical Poisson inte-
gral

Pf(2) = f Pz, €)1 (®)d6
0

U
is, of course, harmonic, i.e., APf = 0.
Consider the fractional integral, or the A-Poisson integral

u=P,f(z) = f P(z, eig)’l+1/ 2 f(eig)dO.
U



Then, with the invariant or hyperbolic Laplacian
~_1 242
A= 4(1 |zI°)°A,
u enjoys Au = (A% - %)u. Sjogren studied the boundary behavior of the
normalization PLF@) ;
z
Pf(z) = 2=
JO=3.10
If 2 > 0, then the Fatou theorem holds for , f almost verbatim.

Theorem C. If f € L'(0U), then P.f(z) has nontangential limit f(e®) at
a.e. €9 € oU.

If A = 0, then suddenly tangential limits appear (Sjogren [18, 19, 20]
and Ronning [14, 15, 16]).

Theorem D. Suppose f € LP(OU) with 1 < p < oo. Then Pyf(z) has limit
- f(e®) along <,(€®) at a.e. €® € OU, where

t(log 1/¢)? if1 <p<oo,
h(t
()S{tl'g foralle >0 ifp= oo,

How should we understand the tangential nature? It seems that the
tangential nature is caused by the non-integrability of the kernel.

1 1--|z|2 1
mlz—2PF k-4l

Let us observe this phenomenon with the half space version due to Brundin
[3] and Mizuta-Shimomura [12]. Define (P f)(x, t) by

P(z,{)'* =

]n/(n+l)

t
j;" [Cn(lx — yI? + ) D12 . J(y)dy.

Then (Ppl)(x,t) = oo (non-integrable). Fix a bounded open set Q c R”
and regard (Poyq)(x, t) as a substitute of (Pyl)(x, ). Let us study the nor-
malization (P f)(x, £)/(Poxa)(x, t).

Theorem E. Let 1 < p < oo. Suppose, for smallt >0,
3.1) h(t) s tllog1/yP'"  ifl<p<oo,
(3.2) k@) st foralle >0 ifp=co.



If f € LP(R"), then

i (Pof)(x, 1)
28 o Pa)n) e £€Q
(x,tig;é:(g) (Poxo)(x, 1) f& fofae £e
Observe that

e For the critical power n/(n + 1), certain tangential limits exist.
e Possible tangency depends on the Lebesgue exponent p for which
f e LP(R™).
The tangential nature in Theorem E is caused by the non-integrability of
the kernel. Let ®(x) = W(x)"™*D = (1 + |x/*)™2. Then
(Pof)(x,0) _ D * f(x)
(Poxa)(x, 1) @ * ya(x)
Observe that ® ¢ LI(R"); ® € LP(R") for 1 < p < o0; and @, * yq(x) ~
log 1/t as t — O for x € Q. This is a sharp contrast between ¥ and ®.
From now on we need not the explicit form (1 + |x|?)™2. Instead we
suppose
e ®(x) > 0 is a doubling function of |x|.
e ®¢L'(R"),®ec LR forl < p < oo.

Let
o(r) = f O(x)dx.
|xl<r

Then ¢(r) T oo is doubling. Assume

(33) im £20 -
r—e (1)

This condition looks technical; but it turns out to be crucial as observed in
Proposition 1 below. Fix a bounded open set Q2 ¢ R". Study the boundary
behavior of the normalization

D, * f(x)

(Pof)x,0) = , *xald)
Proposition 1. Condition (3.3) holds if and only if
Hm(Zof)(x,7) = f(x) forxeQ
for all f € Co(R"). |
With (3.3) we obtain the following Fétou theorem for (%7, f)(x; b).

1.




Theorem 1. Let 1 < p < 0. Suppose, for small t > 0,
(3.4 h(t) < to(1/t)P"  if1 < p < oo,

ek
oy O fp=ee

(3.5)

If f € LP(R™, then
| lim (Pof)x1) = f€) forae teQ
(Deh(®) |

Remark 1. Theorem 1 extends Theorem E.

e (3.4) = (3.5).
o If ®(x) = (1 + |x]*)™2, then
(i) ¢(r) ~ logr for large r > 0;
(i) (3.1) & (B.4),(3B.2) < @3.)5).

What is a Littlewood type theorem? The cases 1 < p < coand p = o
are different.

Theorem 2. Let 1 < p < oo, If (3.4) does not hold, i.e.,

. h@)
0 NP w0

then there exists f € LP(QQ) such that for all £ € Q,
—00 = lirtn %nf(@of)(x, 1) < limsup(Z f)(x, 1) = oo.

(x.1)eh(€) (x,t)t:.e%,(f)
Theorem 3. If (3.5) does not hold, i.e.,
. e(h(r)/1)
3.7 lim su > 0.
G- DS 1)

then there exists f € L*(£2) such that for all ¢ € €,
lim inf (Pof)(x, 1) < limsup(Fof)(x, 1).

(e (©) etk
Let us close this section with the proof of Proposition 1. Let B(x, r) be
the open ball with center at x, radius r and éqo(x) = dist(x, 6Q2). By diam Q

we denote the diameter of Q.



Proof of Proposition 1. For simplicity we assume that Q is a bounded Lip-
schitz domain. For all x € Q, there exists a cone I'(x) C € with vertex at x
and fixed aperture « and radius ry. Change of variable gives

diam Q)
t 9

Atp(-rf) S @ * xa(x) < 90(

where A > 0 depends only on the aperture a. Since ¢ is doubling, it follows
that

3.8) D; * yaolx) ~ ¢ (%) for x € Q.

Let x € Q and let 0 < & < dg(x). Then (3.8) and the doubling of ¢ gives
p(da(x)/t) — p(e/t) ¢(diam Q/1) — (/1)

S (Zoxa\Bae) (X, 1) S

| @(e/t) P(e/t)
Hence lim,_,o( Zoxa\see)(X, t) = 0 if and only if (3.3) holds. Proposition
1 follows from this. ]

4. INGREDIENTS OF PROOF OF THEOREM 1

We state some estimates needed for the proof of Theorem 1. The com-
plete proof will be given elsewhere. First we estimate the influence of the
local part of f. If p = oo, this is stated as follows.

Lemma 1. Suppose h satisfies (3.5). Then

(x,t%l_)ﬂ(lg’o)(@o)( Bxah))(X, 1) = 0 for £ € Q.

If 1 < p < o, then the Lebesgue point argument gives an estimate at
almost every boundary point.
Lemma 2. Let 1 < p < o and f € LP(R"). Suppose h satisfies (3.4). Then
forae £€Q),

lti.l,% (Zolx BaneyfDx, 1) = 0.
(x,0)eh(£)

On the other hand the influence of the global part is controlled by maxi-
mal functions. Define the truncated maximal function by

lf@)ldy |

M f(x) =su
() = SUP oI Jacen



with t > 0. Mf(x) = Myf(x) is the classical Hardy-Littlewood maximal
function. Define another maximal function .4, f(£) by

1
sup  |—————
neah@) | P * Xa(X) Jix-yizahe)

associated with the approach region 27,(£).
‘Lemma 3. There is A such that

Muf(€) < AMSf(E) foréeQ
for arbitrary h(t) > 0.

Lemma 4. Let f € LP(Q) with1 < p < 0. Then
Lim [(Pof)C 1) = fllp = 0.

As a result, for a.e. x € ), some subsequence {(P,f)(x,t;)}; converges to

f(x).

O,(x ~ y)f(y)dy

5. OuTLINE OF PROOF OF THEOREM 2

Let us prove Theorem 2 with the aid of the following two lemmas, whose
proof will be given elsewhere.

Lemma S (Lower Estimate). We find 0 < EIAo < 1 such that
@(r/t)
Poxsen)(x, 1) = A
(ZoXBan) (%, 1) 0 o(1/0)
forxeQ, t>0,r>0small
Lemma 6 (Upper Estimate). If f € L}(Q), then
(Pof)x. )l S M f(x) forxeQ.
Proof of Theorem 2. By (3.6) we find ¢; | O such that
tip(1/1;)P/"
h(t;)

Let {x7}, be lattice points (h(z;)/ Vn)Z". Observe x’; are vertices of cubes

of side length A(¢;)/ /n. Hence we have X} € B, h(t))).
If £ € Q, then

- 0.

(x}f, t;) € &(€) with x; €Q,
provided j is sufficiently large.



Put vertical line segments connecting (x}, 0) and (x;, t;). We obtain a bed
of thorns. We observe that .o#,(£€) cannot touch Q without being pierced by

some thorn. Now we construct f; such that (2% f;)(x, t) is large on each
“thorn”. Put '

1 , ,
fi= 90('5))(1), with D; = LVJB(xj, t) N Q.

Extract subsequence, find ¢; T oo and let

f=D (~1Ve;f; e PR,
j=1

=
If jis even and j — oo, then

(Lof)(x}, 1)) — 0
if jis odd and j — oo, then

(Pof)(x}s17) = —oo.

Since &,(£) cannot touch Q without being pierced by some thorn, we ob-
tain
—00 = lirtni()nf(yof)(x, t) < limsup(Zf)(x,t) = oo.
(x,))eh(£) (x,t§:,g%,(g)

6. OSCILLATING LIMITS ALONG CURVES

If p = oo, then a result stronger than Theorem 3 can be obtained. Let
¥ be a curve in R?*! ending at the boundary. Let y[a] be the connected
component of y N {(x, ) : 0 < ¢ < a} containing the end point of .



N/
yla]

Theorem 4. Assume @(2r)/¢(r) is nonincreasing of r. Suppose 7y is more
tangential than (3.5), i.e.,

: ¢(diam(y[t])/?)
©1 S e/
Then there exists f € L*(Q)) such that for every £ € Q,
liltn %nf( Pof)(x, 1) < limsup(Fyf)(x, 1).

(x)ey+€ ( xgzg £

> 0.

The proof of this theorem will be given elsewhere.
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