FATOU AND LITTLEWOOD THEOREMS FOR POISSON INTEGRALS WITH RESPECT TO NON-INTEGRABLE KERNELS

相川 弘明 (HIROAKI AIKAWA) 島根大学 総合理工学部

1. FATOU THEOREM AND LITTLEWOOD THEOREM

In 1906 Fatou [5] proved the following:

Theorem (Fatou Theorem). Let f be a bounded analytic function on the unit disk $U = \{|z| < 1\}$ in \mathbb{C} . Then f has non-tangential limit at a.e. $e^{i\theta} \in \partial U$.

FIGURE 1. Fatou Theorem.

FIGURE 2. Littlewood Theorem.

In 1927 Littlewood [9, 10] proved the sharpness of non-tangential approach.

Theorem (Littlewood Theorem). Let $\gamma \subset U$ be a tangential curve at I and let γ_{θ} be the rotation. Then there exists a bounded analytic function f on U such that the limit of f along γ_{θ} does not exists for a.e. $e^{i\theta} \in \partial U$.

There are many generalizations of Fatou theorem as follows:

- Hardy space H^p
- Harmonic functions
- Local Fatou theorem
- Invariant harmonic functions. Korányi (1969) [8]

- Square root of the Poisson kernel. Sjögren (1983) [18, 19, 20]
- Non non-tangential convergence. Nagel-Stein (1984) [13]
- Harmonic functions on trees
- Symmetric spaces

On the other hand, there are rather few works for Littlewood theorem:

- Zygmund (1949) [21]. (Blaschke product/Real Analysis)
- Lohwater-Piranian (1957) [11]. (Blaschke product. Everywhere divergence)
- Hakim-Sibony (1983) [6]. (Invariant harmonic functions)
- Aikawa (1990) [1, 2]. (Everywhere divergence)
- Salvatori-Vignati (1997) [17]. (Homogeneous tree).
- Di Biase (1998) [4]. (General tree)
- Hirata (2003) [7]. (Invariant harmonic functions in the unit ball of \mathbb{C}^n)

In this note, we would like to observe that Fatou Theorem and Littlewood Theorem should go hand in hand.

2. Fatou and Littlewood Theorems for Harmonic functions on \mathbb{R}^{n+1}

Let $\Psi(x) = (1 + |x|^2)^{-(n+1)/2}$ for $x \in \mathbb{R}^n$ and put $\Psi_t(x) = \frac{1}{t^n} \Psi(\frac{x}{t})$ for t > 0. Then $\Psi_t * 1 = c_n$ and

$$\frac{\Psi_t * f(x)}{\Psi_t * 1} = \frac{1}{c_n} \int_{\mathbb{R}^n} \frac{t f(y) dy}{(|x - y|^2 + t^2)^{(n+1)/2}}$$

is the Poisson integral Pf(x,t) for the half space $\mathbb{R}^{n+1}_+ = \{(x,t) : x \in \mathbb{R}^n, t > 0\}$. By A we denote a positive constant whose value may change from occurrence to the next. If two positive functions f and g satisfy $f \le Ag$ for some $A \ge 1$, then we write $f \le g$. If $f \le g$ and $g \le f$, then we write $f \sim g$. Let h(t) be a positive function for t > 0. Define the approach region

$$\mathscr{A}_h(\xi) = \{(x,t) : |x - \xi| < h(t)\} \quad \text{for } \xi \in \mathbf{R}^n.$$

If $h(t) \sim t$, then $\mathcal{A}_h(\xi)$ gives a nontangential approach to ξ . We say that a function u in \mathbb{R}^{n+1}_+ has a nontangential limit at ξ if the limit of u along $\mathcal{A}_h(\xi)$ exists for every nontangential approach $\mathcal{A}_h(\xi)$.

Theorem A (Fatou Theorem). Let $1 \le p \le \infty$. If $f \in L^p(\mathbb{R}^n)$, then Pf(x, t) has nontangential limit $f(\xi)$ at a.e. $\xi \in \mathbb{R}^n$.

Figure 3. Approach region $\mathcal{A}_h(\xi)$.

Theorem B (Littlewood Theorem). If $\limsup_{t\to 0} h(t)/t = \infty$, then there exists $f \in L^1(\mathbf{R}^n) \cap L^{\infty}(\mathbf{R}^n)$ such that

$$\lim_{\substack{t\to 0\\(x,t)\in\mathscr{A}_h(\xi)}} Pf(x,t) \text{ fails to exist at every } \xi \in \mathbf{R}^n.$$

If γ is a tangential curve in \mathbb{R}^{n+1}_+ ending at $\partial \mathbb{R}^{n+1}_+$, then there exists $f \in L^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ such that

$$\lim_{\substack{t\to 0\\(x,t)\in\gamma+\xi}} Pf(x,t) \text{ fails to exist at every } \xi \in \mathbf{R}^n.$$

The above theorems suggest that the higher integrability of the boundary function f does not improve the admissible tangency.

3. Non-integrable Kernel

Sjögren [18, 19, 20] gave extensions of the Fatou theorem for fractional Poisson integrals. Let

$$P(z,\zeta) = \frac{1}{2\pi} \frac{1 - |z|^2}{|z - \zeta|^2}$$

be the Poisson kernel for the unit disk U. Then the classical Poisson integral

$$Pf(z) = \int_{\partial U} P(z, e^{i\theta}) f(e^{i\theta}) d\theta$$

is, of course, harmonic, i.e., $\Delta Pf = 0$.

Consider the fractional integral, or the λ -Poisson integral

$$u = P_{\lambda}f(z) = \int_{\partial U} P(z, e^{i\theta})^{\lambda + 1/2} f(e^{i\theta}) d\theta.$$

Then, with the invariant or hyperbolic Laplacian

$$\widetilde{\Delta} = \frac{1}{4}(1 - |z|^2)^2 \Delta,$$

u enjoys $\Delta u = (\lambda^2 - \frac{1}{4})u$. Sjögren studied the boundary behavior of the normalization

 $\mathcal{P}_{\lambda}f(z) = \frac{P_{\lambda}f(z)}{P_{\lambda}1(z)}.$

If $\lambda > 0$, then the Fatou theorem holds for $\mathcal{P}_{\lambda} f$ almost verbatim.

Theorem C. If $f \in L^1(\partial U)$, then $\mathcal{P}_{\lambda}f(z)$ has nontangential limit $f(e^{i\theta})$ at a.e. $e^{i\theta} \in \partial U$.

If $\lambda = 0$, then suddenly tangential limits appear (Sjögren [18, 19, 20] and Rönning [14, 15, 16]).

Theorem D. Suppose $f \in L^p(\partial U)$ with $1 \le p \le \infty$. Then $\mathcal{P}_0 f(z)$ has limit $f(e^{i\theta})$ along $\mathcal{A}_h(e^{i\theta})$ at a.e. $e^{i\theta} \in \partial U$, where

$$h(t) \lesssim \begin{cases} t(\log 1/t)^p & \text{if } 1 \leq p < \infty, \\ t^{1-\varepsilon} & \text{for all } \varepsilon > 0 & \text{if } p = \infty. \end{cases}$$

How should we understand the tangential nature? It seems that the tangential nature is caused by the non-integrability of the kernel.

$$P(z,\zeta)^{1/2} = \sqrt{\frac{1}{2\pi} \frac{1-|z|^2}{|z-\zeta|^2}} \sim \frac{1}{|z-\zeta|}.$$

Let us observe this phenomenon with the half space version due to Brundin [3] and Mizuta-Shimomura [12]. Define $(P_0 f)(x, t)$ by

$$\int_{\mathbb{R}^n} \left[\frac{t}{c_n(|x-y|^2+t^2)^{(n+1)/2}} \right]^{n/(n+1)} f(y) dy.$$

Then $(P_01)(x,t) \equiv \infty$ (non-integrable). Fix a bounded open set $\Omega \subset \mathbb{R}^n$ and regard $(P_0\chi_\Omega)(x,t)$ as a substitute of $(P_01)(x,t)$. Let us study the normalization $(P_0f)(x,t)/(P_0\chi_\Omega)(x,t)$.

Theorem E. Let $1 \le p \le \infty$. Suppose, for small t > 0,

$$(3.1) h(t) \lesssim t(\log 1/t)^{p/n} if 1 \leq p < \infty,$$

(3.2)
$$h(t) \lesssim t^{1-\varepsilon} \text{ for all } \varepsilon > 0 \quad \text{if } p = \infty.$$

If $f \in L^p(\mathbf{R}^n)$, then

$$\lim_{\substack{t\to 0\\(x,t)\in \mathscr{A}_h(\xi)}}\frac{(P_0f)(x,t)}{(P_0\chi_\Omega)(x,t)}=f(\xi)\quad \textit{for a.e. } \xi\in\Omega.$$

Observe that

- For the critical power n/(n+1), certain tangential limits exist.
- Possible tangency depends on the Lebesgue exponent p for which $f \in L^p(\mathbb{R}^n)$.

The tangential nature in Theorem E is caused by the non-integrability of the kernel. Let $\Phi(x) = \Psi(x)^{n/(n+1)} = (1 + |x|^2)^{-n/2}$. Then

$$\frac{(P_0f)(x,t)}{(P_0\chi_\Omega)(x,t)} = \frac{\Phi_t * f(x)}{\Phi_t * \chi_\Omega(x)}.$$

Observe that $\Phi \notin L^1(\mathbf{R}^n)$; $\Phi \in L^p(\mathbf{R}^n)$ for $1 ; and <math>\Phi_t * \chi_{\Omega}(x) \sim \log 1/t$ as $t \to 0$ for $x \in \Omega$. This is a sharp contrast between Ψ and Φ .

From now on we need not the explicit form $(1 + |x|^2)^{-n/2}$. Instead we suppose

- $\Phi(x) > 0$ is a doubling function of |x|.
- $\Phi \notin L^1(\mathbf{R}^n)$, $\Phi \in L^p(\mathbf{R}^n)$ for 1 .

Let

$$\varphi(r) = \int_{|x| < r} \Phi(x) dx.$$

Then $\varphi(r) \uparrow \infty$ is doubling. Assume

(3.3)
$$\lim_{r \to \infty} \frac{\varphi(2r)}{\varphi(r)} = 1.$$

This condition looks technical; but it turns out to be crucial as observed in Proposition 1 below. Fix a bounded open set $\Omega \subset \mathbb{R}^n$. Study the boundary behavior of the normalization

$$(\mathscr{P}_0 f)(x,t) = \frac{\Phi_t * f(x)}{\Phi_t * \chi_{\Omega}(x)}.$$

Proposition 1. Condition (3.3) holds if and only if

$$\lim_{t\to 0} (\mathscr{P}_0 f)(x,t) = f(x) \quad for \ x \in \Omega$$

for all $f \in C_0(\mathbb{R}^n)$.

With (3.3) we obtain the following Fatou theorem for $(\mathcal{P}_0 f)(x, t)$.

Theorem 1. Let $1 \le p \le \infty$. Suppose, for small t > 0,

(3.4)
$$h(t) \lesssim t\varphi(1/t)^{p/n} \quad \text{if } 1 \leq p < \infty,$$

(3.5)
$$\lim_{t\to 0} \frac{\varphi(h(t)/t)}{\varphi(1/t)} = 0 \quad \text{if } p = \infty.$$

If $f \in L^p(\mathbf{R}^n)$, then

$$\lim_{\substack{t\to 0\\(x,t)\in\mathscr{A}_h(\xi)}}(\mathscr{P}_0f)(x,t)=f(\xi)\quad for\ a.e.\ \xi\in\Omega.$$

Remark 1. Theorem 1 extends Theorem E.

- \bullet (3.4) \Longrightarrow (3.5).
- If $\Phi(x) = (1 + |x|^2)^{-n/2}$, then
 - (i) $\varphi(r) \sim \log r$ for large r > 0;

(ii)
$$(3.1) \iff (3.4), (3.2) \iff (3.5).$$

What is a Littlewood type theorem? The cases $1 \le p < \infty$ and $p = \infty$ are different.

Theorem 2. Let $1 \le p < \infty$. If (3.4) does not hold, i.e.,

(3.6)
$$\limsup_{t \to 0} \frac{h(t)}{t\varphi(1/t)^{p/n}} = \infty.$$

then there exists $f \in L^p(\Omega)$ such that for all $\xi \in \Omega$,

$$-\infty = \lim_{\substack{t \to 0 \\ (x,t) \in \mathscr{A}_h(\xi)}} (\mathscr{P}_0 f)(x,t) < \lim_{\substack{t \to 0 \\ (x,t) \in \mathscr{A}_h(\xi)}} (\mathscr{P}_0 f)(x,t) = \infty.$$

Theorem 3. If (3.5) does not hold, i.e.,

(3.7)
$$\limsup_{t \to 0} \frac{\varphi(h(t)/t)}{\varphi(1/t)} > 0.$$

then there exists $f \in L^{\infty}(\Omega)$ such that for all $\xi \in \Omega$,

$$\liminf_{\substack{t\to 0\\(x,t)\in\mathscr{A}_h(\xi)}} (\mathscr{P}_0f)(x,t) < \limsup_{\substack{t\to 0\\(x,t)\in\mathscr{A}_h(\xi)}} (\mathscr{P}_0f)(x,t).$$

Let us close this section with the proof of Proposition 1. Let B(x, r) be the open ball with center at x, radius r and $\delta_{\Omega}(x) = \operatorname{dist}(x, \partial\Omega)$. By diam Ω we denote the diameter of Ω .

Proof of Proposition 1. For simplicity we assume that Ω is a bounded Lipschitz domain. For all $x \in \Omega$, there exists a cone $\Gamma(x) \subset \Omega$ with vertex at x and fixed aperture α and radius r_0 . Change of variable gives

$$A\varphi\left(\frac{r_0}{t}\right) \leq \Phi_t * \chi_{\Omega}(x) \leq \varphi\left(\frac{\operatorname{diam}\Omega}{t}\right),$$

where A > 0 depends only on the aperture α . Since φ is doubling, it follows that

(3.8)
$$\Phi_t * \chi_{\Omega}(x) \sim \varphi\left(\frac{1}{t}\right) \quad \text{for } x \in \Omega.$$

Let $x \in \Omega$ and let $0 < \varepsilon < \delta_{\Omega}(x)$. Then (3.8) and the doubling of φ gives

$$\frac{\varphi(\delta_\Omega(x)/t)-\varphi(\varepsilon/t)}{\varphi(\varepsilon/t)} \lesssim (\mathcal{P}_0\chi_{\Omega\setminus B(x,\varepsilon)})(x,t) \lesssim \frac{\varphi(\operatorname{diam}\Omega/t)-\varphi(\varepsilon/t)}{\varphi(\varepsilon/t)}.$$

Hence $\lim_{t\to 0} (\mathscr{P}_{0\chi_{\Omega\setminus B(x,\varepsilon)}})(x,t) = 0$ if and only if (3.3) holds. Proposition 1 follows from this.

4. Ingredients of Proof of Theorem 1

We state some estimates needed for the proof of Theorem 1. The complete proof will be given elsewhere. First we estimate the influence of the local part of f. If $p = \infty$, this is stated as follows.

Lemma 1. Suppose h satisfies (3.5). Then

$$\lim_{(x,t)\to(\xi,0)}(\mathcal{P}_0\chi_{B(x,4h(t))})(x,t)=0\quad for\ \xi\in\Omega.$$

If $1 \le p < \infty$, then the Lebesgue point argument gives an estimate at almost every boundary point.

Lemma 2. Let $1 \le p < \infty$ and $f \in L^p(\mathbb{R}^n)$. Suppose h satisfies (3.4). Then for a.e. $\xi \in \Omega$,

$$\lim_{\substack{t\to 0\\(x,t)\in\mathscr{A}_h(\xi)}}(\mathscr{S}_0[\chi_{B(x,4h(t))}f])(x,t)=0.$$

On the other hand the influence of the global part is controlled by maximal functions. Define the truncated maximal function by

$$M_t f(x) = \sup_{r>t} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy$$

with $t \ge 0$. $Mf(x) = M_0 f(x)$ is the classical Hardy-Littlewood maximal function. Define another maximal function $\mathcal{M}_h f(\xi)$ by

$$\sup_{(x,t)\in\mathscr{A}_h(\xi)}\left|\frac{1}{\Phi_t*\chi_{\Omega}(x)}\int_{|x-y|\geq 4h(t)}\Phi_t(x-y)f(y)dy\right|$$

associated with the approach region $\mathcal{A}_h(\xi)$.

Lemma 3. There is A such that

$$\mathcal{M}_h f(\xi) \leq AMf(\xi)$$
 for $\xi \in \Omega$

for arbitrary h(t) > 0.

Lemma 4. Let $f \in L^p(\Omega)$ with $1 \le p < \infty$. Then

$$\lim_{t\to 0} \|(\mathscr{P}_0 f)(\cdot, t) - f\|_p = 0.$$

As a result, for a.e. $x \in \Omega$, some subsequence $\{(\mathscr{P}_0 f)(x, t_j)\}_j$ converges to f(x).

5. Outline of Proof of Theorem 2

Let us prove Theorem 2 with the aid of the following two lemmas, whose proof will be given elsewhere.

Lemma 5 (Lower Estimate). We find $0 < \frac{\exists}{A_0} < 1$ such that

$$(\mathscr{P}_0\chi_{B(x,r)})(x,t) \ge A_0 \frac{\varphi(r/t)}{\varphi(1/t)}$$

for $x \in \Omega$, t > 0, r > 0 small.

Lemma 6 (Upper Estimate). If $f \in L^1(\Omega)$, then

$$|(\mathcal{P}_0 f)(x,t)| \lesssim M_t f(x)$$
 for $x \in \Omega$.

Proof of Theorem 2. By (3.6) we find $t_j \downarrow 0$ such that

$$\frac{t_j\varphi(1/t_j)^{p/n}}{h(t_j)}\to 0.$$

Let $\{x_j^{\nu}\}_{\nu}$ be lattice points $(h(t_j)/\sqrt{n})\mathbf{Z}^n$. Observe x_j^{ν} are vertices of cubes of side length $h(t_j)/\sqrt{n}$. Hence we have $x_j^{\nu} \in B(\xi, h(t_j))$.

If $\xi \in \Omega$, then

$$(x_i^{\nu}, t_j) \in \mathscr{A}_h(\xi) \text{ with } x_i^{\nu} \in \Omega,$$

provided j is sufficiently large.

Put vertical line segments connecting $(x_j^{\nu}, 0)$ and (x_j^{ν}, t_j) . We obtain a bed of thorns. We observe that $\mathcal{A}_h(\xi)$ cannot touch Ω without being pierced by

some thorn. Now we construct f_j such that $(\mathcal{P}_0 f_j)(x, t)$ is large on each "thorn". Put

$$f_j = \varphi(\frac{1}{t_j})\chi_{D_j}$$
 with $D_j = \bigcup_{\nu} B(x_j^{\nu}, t_j) \cap \Omega$.

Extract subsequence, find $c_i \uparrow \infty$ and let

$$f = \sum_{j=1}^{\infty} (-1)^j c_j f_j \in L^p(\mathbf{R}^n).$$

If j is even and $j \to \infty$, then

$$(\mathscr{P}_0 f)(x_i^{\nu}, t_i) \to \infty;$$

if j is odd and $j \to \infty$, then

$$(\mathscr{P}_0 f)(x_j^{\nu}, t_j) \to -\infty.$$

Since $\mathcal{A}_h(\xi)$ cannot touch Ω without being pierced by some thorn, we obtain

$$-\infty = \liminf_{\substack{t \to 0 \\ (x,t) \in \mathscr{A}_h(\xi)}} (\mathscr{P}_0 f)(x,t) < \limsup_{\substack{t \to 0 \\ (x,t) \in \mathscr{A}_h(\xi)}} (\mathscr{P}_0 f)(x,t) = \infty.$$

6. OSCILLATING LIMITS ALONG CURVES

If $p = \infty$, then a result stronger than Theorem 3 can be obtained. Let γ be a curve in \mathbb{R}^{n+1}_+ ending at the boundary. Let $\gamma[a]$ be the connected component of $\gamma \cap \{(x,t): 0 \le t \le a\}$ containing the end point of γ .

Theorem 4. Assume $\varphi(2r)/\varphi(r)$ is nonincreasing of r. Suppose γ is more tangential than (3.5), i.e.,

(6.1)
$$\limsup_{t\to 0} \frac{\varphi(\operatorname{diam}(\gamma[t])/t)}{\varphi(1/t)} > 0.$$

Then there exists $f \in L^{\infty}(\Omega)$ such that for every $\xi \in \Omega$,

$$\liminf_{\substack{t\to 0\\(x,t)\in \gamma+\xi}}(\mathcal{P}_0f)(x,t)<\limsup_{\substack{t\to 0\\(x,t)\in \gamma+\xi}}(\mathcal{P}_0f)(x,t).$$

The proof of this theorem will be given elsewhere.

REFERENCES

- [1] H. Aikawa, Harmonic functions having no tangential limits, Proc. Amer. Math. Soc. 108 no. 2 (1990), 457-464, MR 90h:31003.
- [2] _____, Harmonic functions and Green potentials having no tangential limits, J. London Math. Soc. (2) 43 no. 1 (1991), 125–136, MR 92b:31005.
- [3] M. Brundin, Boundary behaviour of eigenfunctions for the hyperbolic Laplacian, Ph.D. thesis, Department of Mathematics, Chalmers University, 2002.
- [4] F. Di Biase, Tangential curves and Fatou's theorem on trees, J. London Math. Soc. (2) 58 no. 2 (1998), 331-341, MR 99m:31016.
- [5] P. Fatou, Séries trigonométriques et séries de Taylor, Acta. Math. 30 (1906), 335-400.
- [6] M. Hakim and N. Sibony, Fonctions holomorphes bornées et limites tangentielles, Duke Math. J. 50 no. 1 (1983), 133-141, MR 84m:32011.
- [7] K. Hirata, Sharpness of Korányi approach region, preprint (2003).
- [8] A. Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507-516, MR 43:3480.
- [9] J. E. Littlewood, On a theorem of Fatou, J. London Math. Soc. 2 (1927), 172–176.
- [10] _____, On functions subharmonic in a circle (II), Proc. London Math. Soc. (2) 28 (1928), 383–394.

- [11] A. J. Lohwater and G. Piranian, *The boundary behavior of functions analytic in a disk*, Ann. Acad. Sci. Fenn. Ser. A. I. **1957** no. 239 (1957), 17, MR **19,950c**.
- [12] Y. Mizuta and T. Shimomura, Growth properties for modified Poisson integrals in a half space, preprint.
- [13] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 no. 1 (1984), 83–106, MR 86a:42026.
- [14] J.-O. Rönning, Convergence results for the square root of the Poisson kernel, Math. Scand. 81 no. 2 (1997), 219–235, MR 99e:31004.
- [15] _____, On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1, Studia Math. 125 no. 3 (1997), 219–229, MR 98k:42026.
- [16] _____, A convergence result for square roots of the Poisson kernel in the bidisk, Math. Scand. 84 no. 1 (1999), 81-92, MR 2000b:32008.
- [17] M. Salvatori and M. Vignati, Tangential boundary behaviour of harmonic functions on trees, Potential Anal. 6 no. 3 (1997), 269–287, MR 98m:31012.
- [18] P. Sjögren, Une remarque sur la convergence des fonctions propres du laplacien à valeur propre critique, Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., vol. 1096, Springer, Berlin, 1984, pp. 544–548, MR 88f:31001.
- [19] _____, Convergence for the square root of the Poisson kernel, Pacific J. Math. 131 no. 2 (1988), 361-391, MR 89d:43012.
- [20] _____, Approach regions for the square root of the Poisson kernel and bounded functions, Bull. Austral. Math. Soc. 55 no. 3 (1997), 521-527, MR 98h:31002.
- [21] A. Zygmund, On a theorem of Littlewood, Summa Brasil. Math. 2 no. 5 (1949), 51-57, MR 12,88c.

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY, MATSUE 690-8504, JAPAN E-mail address: haikawa@math.shimane-u.ac.jp